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Abstract. We investigate minimization-based approaches to iter-
ated belief change in multi-agent systems. A network of agents is
represented by an undirected graph, where propositional formulas are
associated with vertices. Information is shared between vertices via
a procedure where each vertex minimizes disagreement with other
vertices in the graph. Each iterative approach takes into account the
proximity between vertices, with the underlying assumption that in-
formation from nearby sources is given higher priority than infor-
mation from more distant sources. We have identified two main ap-
proaches to iteration: in the first approach, a vertex takes into ac-
count the information at its immediate neighbours only, and infor-
mation from more distant vertices is propagated via iteration; in the
second approach, a vertex first takes into account information from
distance-1 neighbours, then from distance-2 neighbours, and so on,
in a prioritized fashion. There prove to be three distinct ways to de-
fine the second approach, so in total we have four types of iteration.
We define these types formally, find relationships between them, and
investigate their basic logical properties. We also implemented the
approaches in a software system called Equibel.

1 INTRODUCTION

We investigate several approaches for iterated belief change in multi-
agent systems, each based on minimizing disagreements between
agents in a prioritized manner. A problem instance is an undirected
graph with formulas attached to vertices. Information is shared be-
tween vertices via a process of minimization over the graph. Pre-
vious work [2] dealt with one-shot belief change, where every ver-
tex updates its beliefs through a global minimization process, with
a weak notion of distance between vertices in a graph. We general-
ize this work to model iterated approaches, where distance between
vertices is explicitly taken into account. One approach is for each
vertex to repeatedly update its beliefs by taking into account only the
beliefs of its immediate neighbours; another is for a vertex to take
into account the beliefs of its distance-1 neighbours, and then take
into account the beliefs of its distance-2 neighbours, and so on. We
show that this second approach can be defined in three different ways,
which lead to different behaviours. We implemented the approaches
described in this paper in a software system called Equibel, available
at https://github.com/asteroidhouse/equibel.

To motivate this work, we consider two interpretations of a graph:
the first is where the graph represents a network of communicating
agents, and the second is where the graph represents some general
domain (such as a spatial domain), with local information contained
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at each vertex. Iterated belief change in these settings can be under-
stood as follows. In the multi-agent setting, each agent consistently
incorporates information from other agents in a stepwise fashion,
where the agent is more inclined to trust close acquaintances com-
pared to more distant ones. In the general setting, the goal is to get
an overall picture of the state of the world by combining information
from multiple sources.

To illustrate one of the approaches to iterated belief change, con-
sider a specific example in which a graph models a weather-sensing
system, where vertices represent weather stations from which ob-
servations are made, and edges encode the adjacency of the spatial
regions where the stations are located. The goal is to determine what
information holds at a region by combining the information that is
known to hold at that region (through local observations) with in-
formation coming from neighbouring regions. By the assumption
of spatial persistence between adjacent regions, information from
nearby regions should be prioritized over information from more dis-
tant regions. Informally, an approach to do this is as follows. We first
consider the observations from directly adjacent regions (i.e., vertices
at distance 1), and determine which observations minimize disagree-
ment with the observations of the first region; then, we consider the
observations from the next-nearest regions (i.e., vertices at distance
2), and we find observations which further minimize disagreement
with the observations from distance 1, and so on. This can be seen
as prioritized minimization of disagreements with respect to increas-
ingly large neighbourhoods around a vertex of interest.

Multi-agent approaches in which an agent considers the beliefs
of other agents in increasingly large neighbourhoods can be thought
of as modeling a group conversation — an agent takes into account
the beliefs of other agents, as well as the connections between those
agents, in order to decide how to update its beliefs so as to minimize
disagreement with the group. An agent tries to satisfy all protagonists
to the greatest possible degree, in a prioritized manner (where nearby
agents are given higher priority than distant agents).

The next section discusses related work in multi-source merging.
Section 3 defines the iterative approaches we examine. Section 4
presents results concerning the relationships between the approaches.
It proves to be the case that each of the approaches we propose yields
non-comparable results when applied iteratively. Section 5 shows ba-
sic logical properties of the approaches. Sections 6 and 7 discuss our
work and present the conclusion, respectively.

2 RELATED WORK

Most work on updating knowledge bases given new information
stems from the AGM approach to belief revision [1, 7]. Belief merg-
ing [8, 5, 10] can be seen as an extension of belief revision to situ-
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ations involving multiple belief bases, where the goal is to combine
several, possibly conflicting, bases into a coherent whole.

Here we provide some background behind standard approaches
to merging. Given a language LP , a belief base K is a finite set of
propositional formulas, and a belief profile K = 〈K1, . . . ,Kn〉 is
a finite vector consisting of n belief bases which are not necessarily
pairwise different. A merging operator Δ is a function LP ×Ln

P →
LP that associates a formula μ and a belief profile K with a new
formulaΔμ(K), which is called the merged belief state. The operator
Δ aims at consistently merging the beliefs in K under the integrity
constraint given by μ. A set of nine postulates denoted (IC0)-(IC8)

have been proposed to capture the notion of rational belief merging.
These are called the Integrity Constraint (IC) merging postulates [9],
listed below:

(IC0) Δμ(K) � μ

(IC1) If μ � ⊥, then Δμ(K) � ⊥
(IC2) If

∧
K∈K K ∧ μ � ⊥, then Δμ(K) ≡ ∧

K∈K K ∧ μ

(IC3) If K1 ≡ K2 and μ1 ≡ μ2, then Δμ1(K1) ≡ Δμ2(K2)

(IC4) If K1 � μ, K2 � μ and Δμ(〈K1,K2〉) ∧ K1 � ⊥, then
Δμ(〈K1,K2〉) ∧K2 � ⊥
(IC5) Δμ(K1) ∧Δμ(K2) � Δμ(K1 	 K2)

(IC6) If Δμ(K1) ∧Δμ(K2) is consistent, then Δμ(K1 	 K2) �
Δμ(K1) ∧Δμ(K2)

(IC7) Δμ1(K) ∧ μ2 � Δμ1∧μ2(K)
(IC8) IfΔμ1(K)∧μ2 is consistent, thenΔμ1∧μ2(K) � Δμ1(K)∧
μ2

Any operatorΔ that satisfies these postulates is called an IC merging
operator. Classical approaches to belief merging, such as [9] and
[11], begin with a set of belief bases and produce a single, merged
base. Our approach differs from these in that we deal with updating
multiple belief bases simultaneously.

Distance-based merging operators Δd,f are characterized by a
pseudo-distance d (that is, d does not have to satisfy the trian-
gle inequality) between models and an aggregation function f :
R+ × · · · × R+ → R+ [8]. Commonly used distances include the
drastic distance (that is 0 if two models are equal and 1 otherwise),
and the Hamming distance (the number of atoms on which two mod-
els differ). Our approach to minimization uses a set-theoretic distance
between models, which is distinct from any of the standard distances
used by IC merging operators.

[6] presents a framework for updating the beliefs of a group of
agents via an iterated merge-and-revise procedure. The paper intro-
duces conciliation operators which map a belief profile to a new be-
lief profile in each step of the process. These operators are defined
in terms of IC merging operators and the revision operators they
induce. The authors describe two approaches: in the skeptical one,
each agent gives priority to its previous beliefs over the merged be-
liefs of the group, while in the credulous one, each agent views the
merged beliefs of the group as more important than its previous be-
liefs. The work in [6] focuses on the issue of updating a belief profile;
it does not consider graphs. Since each agent considers the beliefs of
all other agents simultaneously, the conciliation approach would cor-
respond in our approach to connecting all agents in a complete graph.

More closely related to our approach is [13]. Belief Revision
Games (BRGs) are games that model the dynamics of the beliefs of
a group of communicating agents. Beliefs are associated with nodes
in a directed graph. In each iterative step, each agent updates its be-

liefs by considering the beliefs of its neighbours. The authors define
18 different revision policies based on various IC merging operators
that an agent can use to combine its beliefs with those of its neigh-
bours. Each revision policy ascribes a different level of importance
to the beliefs of an agent’s neighbours compared to the current belief
of the agent itself. The revision policies range from one in which an
agent completely relinquishes its prior belief and replaces it with the
merged beliefs of the group, to one where an agent does not give up
its initial beliefs, but strengthens its opinion by incorporating consis-
tent information from its neighbours.

The REV!GIS system [14] deals with belief revision in geographic
information systems, using information at one location to revise adja-
cent locations. This conforms closely to the interpretation of a graph
as representing a spatial-domain. BReLS [12] is a framework for in-
tegrating information from multiple sources, using an approach that
combines merging, revision, and update.

In this paper, we build on the general framework for belief change
introduced in [2] and [3]. Our approach to minimizing change be-
tween vertices in a graph is similar to that used in belief extrapolation
[4], which can be seen as minimization of change in a chain graph
where vertices represent successive points in time.

3 ITERATIVE APPROACHES

3.1 Preliminaries

We work with a propositional language L defined over a finite alpha-
bet P = {p, q, r, . . . } of atoms. We use the constants 
 (resp. ⊥) to
represent formulas that are always true (resp. false), and the connec-
tives ¬,∧,∨,→, and ↔ to construct formulas in the standard way.
An interpretation of L is an assignment of truth values to the atoms in
P . We represent an interpretation by the set of atoms that are true in
the interpretation. For example, given P = {p, q, r}, the interpreta-
tion where p is false but q and r are true is expressed by the set {q, r}.
The set of all interpretations of L is denoted W . Given a formula
α ∈ L and an interpretation w ∈ W , we write w |= α iff w makes α
true in the usual truth-functional way; then we say that w is a model
of α. We denote the set of models of α by Mod(α). If ω is a model
over the finite alphabet P , let form(ω) =

∧
p∈ω p ∧∧

p∈(P\ω) ¬p.
For a set of models Γ ⊆ W , let form(Γ) =

∨
ω∈Γ form(ω). For a

set A, let P (A) denote its power set, i.e., the set of all subsets of A.

3.2 Model Graphs

In this paper, we consider only connected, undirected graphs G =
〈V,E〉, where the vertices are identified by an initial sequence of
natural numbers, e.g. for |V | = n, we have V = {1, . . . , n}.

Definition 3.1 (G-Scenario). Let G = 〈V,E〉 be a graph. A G-
scenario is a function σ : V → L that associates a propositional
formula with each vertex in the graph. σ is consistent iff σ(v) is
consistent for all v ∈ V .

Next, we define a graph-theoretic representation for a graph G and
an associated G-scenario σ, to make explicit the process by which in-
formation is shared between vertices. The idea is that a vertex v ∈ V
with formula σ(v) is replaced by a set of vertices representing the
models of σ(v). For each edge (v, w) ∈ E, the vertices representing
the models of σ(v) and those representing the models of σ(w) are
connected in a complete bipartite graph. Each edge of the complete
bipartite graph is given a label representing the level of disagreement
between the models it connects. Various approaches for updating the
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information at a vertex can be defined in terms of selecting one or
more models corresponding to each original vertex, such that the la-
bels of the edges involved are collectively minimal in some way. Next
we formally define the model graph corresponding to a base graph
G and an associated G-scenario.

Definition 3.2 (Model Graph). Let G = 〈V,E〉 be a graph, and let
σ be a G-scenario. For a vertex v ∈ V , λ(v) = {(v,m) | m ∈
Mod(σ(v))} is the set of model vertices corresponding to v. For an
edge (v, w) ∈ E, δ(v, w) = λ(v) × λ(w) is the set of model edges
corresponding to (v, w). The model graph of G under σ, denoted
J(G, σ), is the graph J(G, σ) = 〈⋃v∈V λ(v),

⋃
(v,w)∈E δ(v, w)〉.

For a model vertex (v,m), let M((v,m)) = m, so M : V×W →
W is a function that extracts the model from a model vertex. For a
set Γ of model vertices, let M(Γ) = {M((v,m)) | (v,m) ∈ Γ}.

As an example, given the base graph shown in Figure 1, the
corresponding model graph is shown in Figure 2. Here we have
P = {p, q, r} and σ(1) = p ∧ ¬q, so Mod(σ(1)) = {{p}, {p, r}}.
Thus, λ(1) = {(1, {p}), (1, {p, r})}. This is represented in Figure
2 by the rectangle labelled 1 that contains nodes labelled {p} and
{p, r}. Each edge in Figure 2 is labelled by the symmetric differ-
ence of the models at its endpoints.

Figure 1. Base graph

Figure 2. Model graph corresponding to the base graph

3.3 Types of Neighbourhoods

The iterative approaches we define in the next section are based on
the notion of distance prioritization, which informally states that
a vertex gives higher priority to information coming from nearby
sources compared to more distant sources. In order to deal with

sources of information within a certain distance from a vertex of in-
terest, we define neighbourhoods about vertices. In this section, we
give formal definitions of the neighbourhoods we consider. In the fol-
lowing, let dist(v, w) denote the length of the shortest path between
nodes v and w, where we define dist(v, v) = 0.

Definition 3.3 (Neighbourhood, Pseudo-Neighbourhood). Let G =
〈V,E〉 be a graph.

• A neighbourhood of v ∈ V is a connected subgraph G′ =
〈V ′, E′〉 of G such that v ∈ V ′.

• A pseudo-neighbourhood of v ∈ V is a connected graph G′ =
〈V ′, E′〉 where v ∈ V ′ ⊆ V and E′ ⊆ V ′ × V ′.

Note that a pseudo-neighbourhood is not a subgraph of G, i.e.,
there is no relationship between the edges in E and those in E′.
Shortest-path trees are a natural starting point to define neighbour-
hoods consisting of nodes within a certain distance of a given node.

Definition 3.4 (Shortest-Path Tree). Given a graph G = 〈V,E〉, a
shortest-path tree rooted at a vertex v ∈ V is a spanning tree T of G,
such that the path between the root v and any other vertex u in T is
the shortest path between v and u in G. In graphs with un-weighted
edges, shortest-path trees are equivalent to breadth-first search trees.
Define a shortest-path tree of radius r rooted at v to be a breadth-first
search tree of depth r from v.

Definition 3.5 (Cross-Edge). Let G = 〈V,E〉 be a graph, and let v ∈
V . A cross-edge for v is an edge (s, t) ∈ E such that dist(v, s) =
dist(v, t).

Cross-edges are not included in shortest-path trees (because they
break the tree property). Using the above definitions, we propose four
types of neighbourhoods to be considered for iterative approaches.
The following neighbourhood types are defined in alternative ways
with respect to a root or central node v and a radius r ∈ N:

1. Use Shortest-Path Trees (SPTs) to define neighbourhoods. There
may be multiple SPTs from a vertex to a specified radius, be-
cause there may be multiple shortest paths between two nodes.
Let {SPTj(v, r) | j ∈ {1, . . . , k}} be the set of all distinct SPTs
of radius r rooted at v. One type of neighbourhood about v is an
arbitrary SPT of depth r: SPTj(v, r).

2. Use the union of all SPTs to a specified radius from a certain node:
USPT(v, r) =

⋃
j SPTj(v, r). This removes the ambiguity in-

volved in selecting an arbitrary SPT, and makes sense intuitively,
since by considering all possible shortest paths from the root node
to all other nodes in the neighbourhood, we look at all possible
means of propagation of information to the root node. Note that a
USPT neighbourhood does not contain cross-edges.

3. Use the union of SPTs together with all cross-edges; we call this
a complete neighbourhood. Let D(v, r) = {w | dist(v, w) ≤ r}.
We define the complete neighbourhood about v of radius r to
be the graph W (v, r) = 〈D(v, r), {(i, j) | (i, j) ∈ E, i ∈
D(v, r), j ∈ D(v, r)}〉. That is, the complete neighbourhood
consists of all nodes within distance r of v, and all the edges that
involve those nodes as endpoints.

4. Use the ring of nodes at distance r from the root node, i.e.,
find nodes at distance r and construct a star graph that con-
nects those nodes directly to the root node. We define the ring
about v of radius r to be the graph R(v, r) = 〈T (v, r), S(v, r)〉
where T (v, r) = {v} ∪ {w | w ∈ V, dist(v, w) = r} and
S(v, r) = {(w, v) | w ∈ V, dist(v, w) = r}.
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Note that alternatives 1-3 are neighbourhoods of v, while alterna-
tive 4 is a pseudo-neighbourhood of v. In the discussion of our ap-
proaches, we use the diameter of a graph and eccentricity of a node,
defined as follows:

Definition 3.6 (Eccentricity, Diameter). Let G = 〈V,E〉 be
a graph. The eccentricity of a node v ∈ V , denoted ε(v), is
the greatest shortest distance between v and any other vertex:
ε(v) = maxw∈V dist(v, w). The diameter of the graph G, denoted
diam(G), is the maximum eccentricity of any vertex: diam(G) =
maxv∈V ε(v).

For simplicity and uniformity in the definitions of different ap-
proaches, for any neighbourhood type N ∈ {SPTj ,USPT,W,R}
and any vertex v, we restrict the radius of the neighbourhood so that
it cannot exceed the eccentricity of v:

N(v, r) =

{
N(v, r) if r < ε(v)

N(v, ε(v)) if r ≥ ε(v)

By definition diam(G) = maxv∈V ε(v), so for every node
v ∈ V , N(v, diam(G)) = N(v, ε(v)). Note that the com-
plete neighbourhood is the only one with the property that if we
look at a neighbourhood with a very large radius about any node,
then that is equivalent to considering the original graph G. So
N(v, diam(G)) = G when N = W (complete neighbourhood),
but in general N(v, diam(G)) �= G when N �= W (for example, if
N is a union of shortest-path trees).

3.4 Defining the Approaches

In this section, we define four approaches to iterated belief change,
which we call the simple, augmenting, expanding, and ring ap-
proaches. Each approach involves a different procedure to select
model vertices corresponding to each node in a graph. The follow-
ing definition formalizes the notion of a model selection.

Definition 3.7 (Model Selection). Let G = 〈V,E〉 be a graph. A
model selection is a function s : P (V ×W) → V ×W that selects
exactly one model vertex from the set λ(v) of model vertices for each
v ∈ V . Let S(G) be the set of all possible model selections over G.

• For a subgraph G′ = 〈V ′, E′〉 of G and a model selection s ∈
S(G), let s(G′) denote the selection s restricted to G′.

• For N ∈ {SPTj ,USPT,W,R}, let SN (v, r) be the set of
all model selections restricted to neighbourhood N(v, r). For a
neighbourhood centered about a node v, and a model selection
s ∈ SN (v, r), let h(s) = s(λ(v)), so that h(s) is the model
vertex selected at the central node v by the selection s. For a set
T ⊆ SN (v, r) of model selections, let h(T ) = {h(s) | s ∈ T}
be the set of model vertices selected at v by any of the model
selections in T .

• For a model selection s ∈ SN (v, r), we define the subselection
of radius r′, denoted sub(s, r′) for r′ ≤ r, to be the selection s
restricted to the subgraph N(v, r′).

Next we define change sets induced by model selections. These
change sets measure the overall disagreement between the models
selected by a model selection at adjacent vertices.

Definition 3.8 (Change Set Induced by a Model Selection). The
change set induced by a model selection s ∈ S(G), denoted Δ(s),
is defined as Δ(s) = {〈(v, w), p〉 | (v, w) ∈ E, s(λ(v)) =
(v, a), s(λ(w)) = (w, b), p ∈ a ⊕ b}, where a ⊕ b denotes the
symmetric difference between sets a and b.

The following definition uses change sets to define a preference
relation over model selections.

Definition 3.9 (Preferred Model Selections). Given two model se-
lections s, s′ ∈ S, we define s � s′ iff Δ(s) ⊆ Δ(s′) and s � s′

iff Δ(s) ⊂ Δ(s′). We say that s is a preferred or minimal model
selection iff �s′ ∈ S : s′ � s. We denote the set of all preferred
model selections by Pref (S,�).

Thus, s is preferred to s′ iff the change set induced by s is included
in the change set induced by s′. Preferred model selections are those
that induce inclusion-minimal change sets, and therefore minimize
disagreement between the models at adjacent vertices.

It is useful to distinguish between two classes of model selec-
tions: those that induce change sets not induced by other model selec-
tions (which we call unique model selections), and those that induce
change sets that are also induced by other model selections (which
we call duplicated model selections).

Definition 3.10 (Unique and Duplicated Model Selections). Let Γ
be a set of model selections. Then, q(Γ) = {s ∈ Γ | �s′ ∈ Γ :
s′ �= s and Δ(s′) = Δ(s)} and d(Γ) = {s ∈ Γ | ∃s′ ∈ Γ :
s′ �= s and Δ(s′) = Δ(s)}. The functions q and d define unique and
duplicated model selections, respectively, referring to the existence
of other model selections that induce identical change sets. These
functions partition Γ, so Γ = q(Γ) ∪ d(Γ) and q(Γ) ∩ d(Γ) = ∅.

We are particularly interested in the case where Γ =
Pref (S(G),�). For a model selection s to be strictly preferred to
another selection s′, it must be the case that for any subgraph g of
G, s(g) � s′(g) and for some subgraph g′ of G, s(g′) � s′(g′).
A special case of this is when we consider subgraphs of G that are
neighbourhoods of different radii about a node v. Then, in order for
selection s to be strictly preferred to selection s′, we must have:
∀r . 1 ≤ r ≤ diam(G) : s(N(v, r)) � s′(N(v, r)) and ∃r . 1 ≤
r ≤ diam(G) : s(N(v, r)) � s′(N(v, r)).

The following proposition states that a unique minimal model se-
lection for a graph H must be contained within some minimal model
selection for any supergraph I of H .

Proposition 1. Let G = 〈V,E〉 be a graph, and let H = 〈V ′, E′〉
and I = 〈V ′′, E′′〉 be subgraphs of G such that H is a subgraph of I .
If s ∈ q(Pref (S(H),�)) then ∃s′ ∈ Pref (S(I),�) : s′(H) = s.

Proof. Let s ∈ q(Pref (S(H),�)). Consider the set of model se-
lections O = {s′ ∈ S(I) | s′(H) = s}; that is, the set of all
model selections over I that have subselections over H equal to s.
O is a partially-ordered set with respect to �, and thus has minimal
elements. Denote the set of minimal elements of O by Min(O,�).
Take an arbitrary element z ∈ Min(O,�). We want to show that
z ∈ Pref (S(I),�). Suppose not. Then there must be a model se-
lection z′ ∈ Pref (S(I),�) such that z′ � z. In order for z′ to be
strictly preferred to z we must have that for any subgraph g of G,
z′(g) � z(g). In particular, we must have z′(H) � z(H) = s.
But since s ∈ q(Pref (S(H),�)), if z′(H) � s, then we must
have z′(H) = s. Since z′ ∈ S(I) and z′(H) = s, we have
z′ ∈ O. But z ∈ Min(O,�), so z′ � z, which is a contradic-
tion. Thus, z ∈ Pref (S(I),�) and z(H) = s, so we have con-
structed a model selection with the desired properties. This proves
that ∃s′ ∈ Pref (S(I),�) : s′(H) = s.

Corollary 1.1. If x ∈ {s(λ(v)) | s ∈ q(Pref (S(H),�))} then
x ∈ {s(λ(v)) | s ∈ Pref (S(I),�)}.
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A consequence of this is that h(q(Pref (SN (v, r),�))) ⊆
h(Pref (SN (v, r + 1),�)). This states that if a model vertex is se-
lected at a node v by a unique minimal selection s in a neighbourhood
of radius r about v, then that model vertex must be selected at v in
every neighbourhood of radius greater than r (i.e., that model ver-
tex will not be eliminated when considering larger neighbourhoods).
The next proposition gives an analogous result for duplicated mini-
mal selections.

Proposition 2. Let G = 〈V,E〉 be a graph, and let H = 〈V ′, E′〉
and I = 〈V ′′, E′′〉 be subgraphs of G such that H is a subgraph of
I . If s ∈ d(Pref (S(H),�)) then ∃s′ ∈ Pref (S(I),�) : s′(H) ∈
{t ∈ Pref (S(H),�) | Δ(t) = Δ(s)}.

Proof. This proof is nearly identical to the proof of Proposition 1;
we omit it due to space constraints.

Corollary 2.1. At least one of the model vertices selected at the cen-
tral node v by a duplicated minimal model selection over H must
be selected by a minimal model selection over I: {s(λ(v)) | s ∈
d(Pref (S(H),�))} ∩ {s(λ(v)) | s ∈ Pref (S(I),�)} �= ∅.

A consequence of this for concentric neighbourhoods is:

h(d(Pref (SN (v, r),�))) ∩ h(Pref (SN (v, r + 1),�)) �= ∅

Before defining the iterative approaches we investigate, we define
the global completion operation studied previously [2], which per-
forms one-shot (as opposed to iterative) belief change. This allows
us to compare the global approach with our iterative approaches in
Section 4.

Definition 3.11 (Global Completion). Let G = 〈V,E〉 be a
graph, and let σ be an associated G-scenario. We define C(v) =
h(Pref (SW (v, diam(G)),�)) = {s(λ(v)) | s ∈ Pref(S(G),�
)}. The global completion of σ, denoted σC , is the G-scenario such
that ∀v ∈ V : σC(v) = form(M(C(v))).

Now we define the simple, augmenting, and expanding approaches
to iteration, by defining three functions F , A, and E, respectively,
that select specific model vertices for each node that minimize dis-
agreement between the beliefs of that node and those of its neigh-
bours.

For a model graph J of G = 〈V,E〉 under σ, the set of model se-
lections over J is denoted by SJ. Given an approach Ω ∈ {F,A,E}
and neighbourhood type N ∈ {SPTj , USPT,W}, for any itera-
tion i > 0, Ωi

N (v) is the set of model vertices selected for v by Ω in
iteration i using neighbourhood N , and we define

Ji
Ω,N =

〈 ⋃
v∈V

Ωi
N (v),

⋃
(v,w)∈E

Ωi
N (v)× Ωi

N (w)

〉

to be the model graph that results from the ith iteration of approach
Ω using neighbourhood N . The set of all model selections over Ji

Ω,N

is SJi
Ω,N

, which we abbreviate to Si
Ω,N . In this context, we let S0

Ω,N

stand for SJ, so that S0
A,N = S0

E,N = S0
F,N . Then, Si

Ω,N (v, r) is
the set of model selections over Ji

Ω,N , restricted to neighbourhood
N(v, r). Next, we define the following iterative approaches:

Definition 3.12 (Simple/Fixed-Radius Iteration). Let G = 〈V,E〉
be a graph, and let σ be an associated G-scenario. For i ≥ 1, we
define F i

N (v) = h(Pref (Si−1
F,N (v, 1),�)). The G-scenario that re-

sults from the ith iteration of the simple approach is denoted σi
F,N ,

and is defined as the G-scenario such that ∀v ∈ V : σi
F,N (v) =

form(M(F i
N (v))).

In each iteration of the simple approach, a vertex changes its be-
liefs by considering only the beliefs of its immediate neighbours.

Definition 3.13 (Augmenting Iteration). Let G = 〈V,E〉 be a graph,
and let σ be an associated G-scenario. Then for i ≥ 1, we define
Ai

N (v) = h(T i
N (v)), where

T i
N (v) = {s ∈ Pref (Si−1

A,N (v, diam(G)),�) |
∀r . 1 ≤ r ≤ diam(G) : sub(s, r) ∈ Pref (Si−1

A,N (v, r),�)}
The G-scenario that results from the ith iteration of the augmenting
approach is denoted σi

A,N , and is defined as the G-scenario such that
∀v ∈ V : σi

A,N (v) = form(M(Ai
N (v))).

A model selection s ∈ T i
N (v) can be constructed stepwise by:

1) starting from v and considering preferred model selections over
a radius 1 neighbourhood about v; then 2) augmenting those pre-
ferred selections by considering minimal model edges that cross the
boundary between the radius 1 and radius 2 neighbourhoods about v
(as well as the model edges between distance-2 nodes, in the case of
complete neighbourhoods), and so on. Once we find preferred model
selections over a radius 1 neighbourhood, we take into account only
the model vertices (and model edges) involved in those selections for
future steps of the procedure; at each radius, we examine ways to
augment preferred model selections from the preceding radius.

Definition 3.14 (Expanding Iteration). Let G = 〈V,E〉 be a graph,
and let σ be an associated G-scenario. For i ≥ 1, we define Ei

N (v) =

I
ε(v)
i,N (v), where

I1i,N (v) = h(Pref (Si−1
E,N (v, 1),�))

and for r > 1,

Iri,N (v) = h(Pref ({s ∈ Si−1
E,N (v, r) | s(λ(v)) ∈ Ir−1

i,N (v)},�))
Note that Ir+1

i,N (v) ⊆ Iri,N (v). The G-scenario that results from
the ith iteration of the expanding approach is denoted σi

E,N , and
is defined as the G-scenario where ∀v ∈ V : σi

E,N (v) =
form(M(Ei

N (v))).

The definition of expanding iteration captures the following intu-
ition: at radius r, a subset of model vertices are selected at v that are
associated with preferred model selections in the neighbourhood of
radius r about v. When we expand to radius r + 1, we select a sub-
set of models at v associated with preferred model selections in the
radius r + 1 neighbourhood from the models that remain after the
selection at radius r.

In addition to the three iterative approaches defined above, that are
based on minimal model selections, we introduce another approach
called the ring method, which is defined in terms of generic merging
operators. The ring method involves iterated merging of beliefs from
nodes in different “layers” about a particular node, where layer r
consists of nodes at distance r from that node. In contrast to the other
approaches, the ring method does not consider the topology of the
graph between the central node and nodes at distance r.

Definition 3.15 (Ring Iteration). Let G = 〈V,E〉 be a graph, and
let σ be an associated G-scenario. The G-scenario that results from
the ith iteration of the ring method is denoted σi

R, and is defined as
follows. Let Cr

i (v) = {σi−1
R (w) | dist(v, w) = r} be the context

at distance r from v, in the ith iteration of the ring method. Then,
σ0
R = σ and for i ≥ 1, we have R0

i (v) = σi−1
R (v) and Rt

i(v) =
Δ

Rt−1
i (v)

(Ct
i (v)). σ

i
R is defined as the G-scenario where ∀v ∈ V :

σi
R(v) = R

ε(v)
i (v).
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In the tth step of the ith ring iteration, we merge the belief profile
Ct

i (v) under the integrity constraint Rt−1
i (v), which represents the

result of the previous step of the ith iteration. Δ can be any merging
operator, but certain properties of the approach can be shown if Δ
satisfies certain IC merging properties.

For simplicity, when we discuss the global completion and the ring
approach together with the other approaches (simple, augmenting,
and expanding), we do not explicitly denote the neighbourhood type,
because the global and ring approaches are not defined to use dif-
ferent neighbourhoods. In this case, the neighbourhood type can be
arbitrarily chosen.

Each of the four iterative approaches reaches a fixpoint, because
each monotonically reduces the set of models at each node. This
leads to the following observation:

Observation 1 (Monotonicity). For Ω ∈ {A,E, F,R}, we have:
∀v ∈ V : σi+1

Ω |= σi
Ω.

For an approach Ω ∈ {A,F,E,R}, denote by σ∗
Ω the fixpoint

reached by iterating the approach, so that σ∗
Ω = σt

Ω where t is the
smallest integer for which σt

Ω = σt+1
Ω .

We observe that whenΔ is the consistency-based projection merg-
ing operator [3], the ring method can be expressed as expanding
iteration performed with respect to ring neighbourhoods, so that
σi
R = σi

E,R.

4 RELATIONSHIPS BETWEEN APPROACHES

In the previous section we discussed one global approach to belief
change (C), and four iterative approaches: simple iteration (F ), ex-
panding iteration (E), augmenting iteration (A), and ring iteration
(R). Here we show how these approaches relate to one another (i.e.,
whether two approaches are comparable, and if so, which approach
is logically stronger or weaker than the other). The notion of logical
strength of G-scenarios is defined below:

Definition 4.1 (Equivalence and Logical Strength of G-Scenarios).
Let G be a graph, and σ and σ′ be two G-scenarios.

• We say that σ and σ′ are equivalent, denoted σ ≡ σ′, iff for all
v ∈ V we have |= σ(v) ≡ σ′(v).

• We say that σ is at least as strong as σ′, denoted σ |= σ′, iff
|= σ(v) → σ′(v) for all v ∈ V .

Given Ω,Ω′ ∈ {A,E, F,R,C} and r, t ≥ 1, we say that σr
Ω and

σt
Ω′ are non-comparable iff there exists a graph G = 〈V,E〉 and

scenario σ such that σr
Ω � σt

Ω′ and σt
Ω′ � σr

Ω.
First we give a result concerning the relationship between neigh-

bourhoods. The following proposition states that adding a new edge
between two nodes in a graph cannot logically strengthen the results
of iteration, i.e., the results are either equivalent or weaker.

Proposition 3. Let G = 〈V,E〉 be a graph, and σ be a G-scenario.
Let G′ = 〈V ′, E′〉 be a subgraph of G such that ∃v, w ∈ V ′ :
[(v, w) ∈ E and (v, w) /∈ E′]. Let (v, w) be such an edge, and let
G′′ = 〈V ′, E′ ∪ {(v, w)}〉 be a copy of G′ that contains (v, w).
Then, Pref (S(G′),�) ⊆ Pref (S(G′′),�).
Corollary 3.1. For Ω ∈ {A,E, F}, we have ∀i > 0 : σi

Ω,SPTj |=
σi
Ω,USPT and ∀i > 0 : σi

Ω,USPT |= σi
Ω,W .

That is, for any of the approaches A, E, or F , arbitrary SPT
neighbourhoods yield the strongest results, followed by union-of-
SPT neighbourhoods, and finally by complete neighbourhoods.

Propositions 4-11 compare the first iterations of all the ap-
proaches. Then, Corollaries 8.1 and 9.1 and Propositions 12-15 com-
pare their fixpoints. For Propositions 4-7 and 10, let G be an arbitrary
connected, undirected graph, let σ be an arbitrary G-scenario, and let
N ∈ {SPTj , USPT,W} be an arbitrary neighbourhood.

Proposition 4. σ1
A,N |= σ1

F,N

Proof. By definition, every model selection s found by the augment-
ing approach is preferred over restricted neighbourhoods of all radii
1 ≤ r ≤ diam(G); in particular, sub(s, 1) ∈ Pref (S0

F,N (v, 1),�),
which implies that s(λ(v)) ∈ F 1

N (v). Thus, σ1
A,N |= σ1

F,N .

Proposition 5. σ1
A,N |= σ1

E,N

Proof. Due to space constraints, we just give an outline of this proof.
Let BA,N (v, r) = {s ∈ Pref (S0

A,N (v, r),�) | ∀r′.1 ≤ r′ ≤
r : sub(s, r′) ∈ Pref (S0

A,N (v, r
′),�)} and let BE,N (v, 1) =

Pref (S0
E,N (v, 1),�) and for r > 1, BE,N (v, r) = Pref ({s ∈

S0
E,N (v, r) | s(λ(v)) ∈ Ir−1

1,N (v)},�). We prove by induction that
every minimal model selection of radius r about an arbitrary node
v found by the augmenting approach is also found by the expand-
ing approach, so BA,N (v, r) ⊆ BE,N (v, r). When r = 1, we
have S0

A,N (v, 1) = S0
E,N (v, 1), so BA,N (v, 1) = BE,N (v, 1).

For the inductive step, assume that BA,N (v, r) ⊆ BE,N (v, r).
Take s ∈ BA,N (v, r + 1) and let t = sub(s, r). By definition,
t ∈ BA,N (v, r), and by the inductive assumption t ∈ BE,N (v, r).
There are two cases: if t ∈ q(BE,N (v, r)), then we use Proposition
1 to show that s ∈ BE,N (v, r + 1); if t ∈ d(BE,N (v, r)), then we
use Proposition 2 to show that s ∈ BE,N (v, r + 1). It follows by
induction that σ1

A,N |= σ1
E,N .

Proposition 6. ∀i ≥ 1 : σi
A,N |= σC

Proof. If m ∈ A1
W (v), then by definition, m ∈

h(Pref (SW (v, diam(G)),�)), so m ∈ C(v). Since ∀v ∈ V :
Ai+1

W (v) ⊆ Ai
W (v), we have ∀v ∈ V, ∀i ≥ 1 : Ai

W (v) ⊆ C(v).
Thus, ∀i ≥ 1 : σi

A,W |= σC . Since σi
A,USPT |= σi

A,W and
σi
A,SPTj

|= σi
A,USPT we see that for N ∈ {SPTj , USPT,W},

∀i ≥ 1 : σi
A,N |= σC .

Proposition 7. σ1
E,N |= σ1

F,N

Proof. By the definition of expanding iteration, σ1
E,N (v) =

form(M(E1
N (v))), where E1

N (v) = I
ε(v)
1,N (v). We have I11,N (v) =

h(Pref (S0
E,N (v, 1),�)) = h(Pref (S0

F,N (v, 1),�)) = F 1
N (v),

where S0
E,N = S0

F,N for any neighbourhood type. Since Ir+1
i,N (v) ⊆

Iri,N (v), we have E1
N (v) = I

ε(v)
1,N (v) ⊆ I11,N (v) = F 1

N (v). This
implies that σ1

E,N |= σ1
F,N .

Proposition 8. ∀i ≥ 1 : σi
E,N and σC are in general non-

comparable.

Proof. We begin with a counterexample to the statement that
σ1
E,N and σC are always comparable: Let G = 〈V,E〉, where V =

{1, 2, 3, 4, 5} and E = {(1, 2), (2, 3), (3, 4), (4, 5)}, and let σ be a
G-scenario such that σ = 〈1 : q∨(r∧¬s), 2 : p, 3 : (¬p∧¬q)∨s, 4 :

, 5 : ¬s〉. Then, the first iteration of the expanding approach yields
σ1
E,N , where σ1

E,N (1) = σ1
E,N (2) = σ1

E,N (3) = p ∧ q ∧ s and
σ1
E,N (4) = σ1

E,N (5) = ¬p ∧ ¬q ∧ ¬s, while the global com-
pletion yields σC = 〈1 : (p ∧ q ∧ s) ∨ (p ∧ ¬q ∧ r ∧ ¬s), 2 :
(p∧q∧s)∨(p∧¬q∧r∧¬s), 3 : (p∧q∧s)∨(¬p∧¬q∧r∧¬s), 4 :
(p∧q)∨(¬p∧¬q∧r∧¬s), 5 : (p∧q∧¬s)∨(¬p∧¬q∧r∧¬s)〉. We
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see that σ1
E,N (4) � σC(4) and σC(4) � σ1

E,N (4). For this example,
we have ∀i > 1 : σi

E,N = σ1
E,N , so ∀i ≥ 1 : σi

E,N and σC are in
general non-comparable.

Corollary 8.1. σ∗
E,N and σC are non-comparable.

Proposition 9. ∀i ≥ 1 : σi
F,N and σC are in general non-

comparable.

Proof. We begin with a counterexample to the statement that
σ1
F,N and σC are always comparable: Let G = 〈V,E〉, where

V = {1, 2, 3, 4} and E = {(1, 2), (2, 3), (3, 4)}, and let σ be a
G-scenario such that σ = 〈1 : ¬r, 2 : ¬p∨r, 3 : (p∨q)∧r, 4 : ¬q〉.
Then the result of the first simple iteration is σ1

F,N = 〈1 : ¬p∧¬r, 2 :
(p ∧ r) ∨ (¬p ∧ q), 3 : p ∧ ¬q ∧ r, 4 : p ∧ ¬q ∧ r〉 while the re-
sult of the global completion is σC = 〈1 : (¬p ∨ ¬q) ∧ ¬r, 2 :
(¬p∧¬r)∨(p∧¬q∧r), 3 : r∧(p∨q)∧(¬p∨¬q), 4 : ¬q∧r〉. We
see that σ1

F,N (2) � σC(2) and σC(2) � σ1
F,N (2). For this example,

we have σ2
F,N = 〈1 : ¬p ∧ q ∧ ¬r, 2 : (¬p ∧ q) ∨ (p ∧ ¬q ∧ r), 3 :

p ∧ ¬q ∧ r, 4 : p ∧ ¬q ∧ r〉. We find that σ2
F,N (2) � σC(2) and

σC(2) � σ2
F,N (2), so the second iteration of the simple approach

is in general non-comparable with the global completion. In addi-
tion, ∀i > 2 : σi

F,N = σ2
F,N , so ∀i ≥ 1 : σi

F,N and σC are non-
comparable.

Corollary 9.1. σ∗
F,N and σC are non-comparable.

Now, we show that the first iteration of the ring method produces
logically stronger results than the first iteration of the simple ap-
proach.

Proposition 10. σ1
R |= σ1

F,N if the merging operator Δ used in the
ring method is the consistency-based projection merging operator.

Proof. From the definition of the ring method, R0
1(v) =

σ0
R(v) = σ(v), and R1

1(v) = ΔR0
1(v)

(C1
1 (v)) = Δσ(v)(C

1
1 (v)).

Note that Δσ(v)(C
1
1 (v)) = σ1

F,USPT (v) = σ1
F,SPTj

(v) and
Δσ(v)(C

1
1 (v)) |= σ1

F,W (v), so we can say that Δσ(v)(C
1
1 (v)) |=

σ1
F,N (v) regardless of the type of neighbourhood used for simple it-

eration. For all i > 1, Ri
1(v) |= R1

1(v); in particular, Rε(v)
1 (v) |=

R1
1(v), and since R1

1(v) |= σ1
F,N (v), we have σ1

R |= σ1
F,N .

The following proposition shows that the first iteration of the ring
method is in general non-comparable to the first iterations of aug-
menting iteration, expanding iteration, or the global completion.

Proposition 11. σ1
R is in general not comparable with any of σ1

A,N ,
σ1
E,N , or σC .

Proof. All these statements can be proven by a single example
for which augmenting iteration, expanding iteration, and the global
completion produce the same result, which is different from, and
not comparable to, the result produced by the ring method. Con-
sider the graph G = 〈V,E〉 where V = {1, 2, 3, 4} and E =
{(1, 2), (2, 3), (3, 4)} and let σ be a G-scenario such that σ = 〈1 :
p ⊕ q, 2 : p, 3 : 
, 4 : ¬p〉. We find that σ1

A,N = σ1
E,N =

σC = 〈1 : p ∧ ¬q, 2 : p ∧ ¬q, 3 : ¬q, 4 : ¬p ∧ ¬q〉, while
σ1
R = 〈1 : p ∧ ¬q, 2 : p ∧ ¬q, 3 : p ⊕ q, 4 : ¬p ∧ q〉. Note that

σ1
A,N (4) = σ1

E,N (4) = σC(4) = ¬p ∧ ¬q, while σ1
R(4) = ¬p ∧ q.

Since ¬p ∧ ¬q � ¬p ∧ q and ¬p ∧ q � ¬p ∧ ¬q, we conclude that
the first iterations of expanding iteration, augmenting iteration, and
the global completion are in general non-comparable with the first
iteration of the ring method.

Propositions 12-15 compare the fixpoints of the augmenting, ex-
panding, simple, and ring approaches.

Proposition 12. σ∗
E,N and σ∗

F,N are in general non-comparable.

Proof. Counterexample to the statement that σ∗
E,N and σ∗

F,N are al-
ways comparable: Let G = 〈V,E〉, where V = {1, 2, 3, 4, 5, 6} and
E = {(i, i + 1) | 1 ≤ i ≤ 5}, and let σ be a G-scenario such that
σ = 〈1 : ¬r, 2 : 
, 3 : ¬p ∨ r, 4 : (p ∨ q) ∧ r, 5 : 
, 6 : ¬q〉.
The fixpoint of simple iteration is σ∗

F,N = 〈1 : ¬p ∧ q ∧ ¬r, 2 :
¬p∧q∧¬r, 3 : ¬p∧q∧r, 4 : p∧¬q∧r, 5 : p∧¬q∧r, 6 : p∧¬q∧r〉
The fixpoint of expanding iteration is σ∗

E,N = 〈1 : ¬p ∧ q ∧ ¬r, 2 :
¬p∧q∧¬r, 3 : p∧¬q∧r, 4 : p∧¬q∧r, 5 : p∧¬q∧r, 6 : p∧¬q∧r〉.
We see that σ∗

F,N (3) � σ∗
E,N (3) and σ∗

E,N (3) � σ∗
F,N (3), so the

simple and expanding approaches are not comparable in general.

Proposition 13. σ∗
E,N and σ∗

A,N are in general non-comparable.

Proof. Counterexample to the statement that σ∗
E,N and σ∗

A,N are al-
ways comparable: Let G = 〈V,E〉, where V = {1, 2, 3, 4, 5} and
E = {(1, 2), (2, 3), (3, 4), (4, 5)}, and let σ be a G-scenario such
that σ = 〈1 : p, 2 : 
, 3 : (p ∧ r) ∨ (¬p ∧ ¬q ∧ ¬r), 4 : ¬r, 5 : q〉.
Then the fixpoint of augmenting iteration is σ∗

A,N = 〈1 : p∧q∧r, 2 :
p ∧ q ∧ r, 3 : ¬p ∧ ¬q ∧ ¬r, 4 : ¬p ∧ ¬r, 5 : ¬p ∧ q ∧ ¬r〉, while
the fixpoint of expanding iteration is σ∗

E,N = 〈1 : p ∧ ¬q ∧ r, 2 :
p ∧ ¬q ∧ r, 3 : ¬p ∧ ¬q ∧ ¬r, 4 : ¬p ∧ ¬r, 5 : ¬p ∧ q ∧ ¬r〉. Note
that the beliefs produced by each approach at vertices 1 and 2 are not
comparable, i.e., σ∗

E,N (1) � σ∗
A,N (1) and σ∗

A,N (1) � σ∗
E,N (1).

Proposition 14. σ∗
A,N and σ∗

F,N are in general non-comparable.

Proof. Counterexample to the statement that σ∗
A,N and σ∗

F,N are al-
ways comparable: Let G = 〈V,E〉, where V = {1, 2, 3, 4, 5} and
E = {(1, 2), (2, 3), (3, 4), (4, 5)}, and let σ be a G-scenario such
that σ = 〈1 : p ∧ r, 2 : p, 3 : s, 4 : ¬r ∨ s, 5 : ¬s〉. Then the
fixpoint of simple iteration is σ∗

F,N = 〈1 : p∧ r∧ s, 2 : p∧ r∧ s, 3 :
p ∧ r ∧ s, 4 : p ∧ ¬r, 5 : p ∧ ¬r ∧ ¬s〉, while the fixpoint of aug-
menting iteration is σ∗

A,N = 〈1 : p ∧ r ∧ s, 2 : p ∧ r ∧ s, 3 :
p ∧ r ∧ s, 4 : p ∧ (r ↔ s), 5 : p ∧ ¬r ∧ ¬s〉. Note that the be-
liefs produced by each approach at vertex 4 are not comparable, i.e.,
σ∗
F,N (4) � σ∗

A,N (4) and σ∗
A,N (4) � σ∗

F,N (4).

We also show that the fixpoint of the ring method is in general
non-comparable to the fixpoints of augmenting iteration, expanding
iteration, simple iteration, or the global completion.

Proposition 15. σ∗
R is in general not comparable with any of σ∗

A,N ,
σ∗
E,N , σ∗

F,N , or σC .

Proof. All these statements can be proven by a single example for
which augmenting iteration, expanding iteration, simple iteration
and the global completion produce the same fixpoint, which is dif-
ferent from, and not comparable to, the fixpoint produced by the
ring method. Once again consider the graph and associated scenario
shown in the proof of Proposition 11. We find that σ∗

A,N = σ∗
E,N =

σ∗
F,N = σC = 〈1 : p ∧ ¬q, 2 : p ∧ ¬q, 3 : ¬q, 4 : ¬p ∧ ¬q〉,

while σ∗
R = 〈1 : p ∧ ¬q, 2 : p ∧ ¬q, 3 : p ∧ ¬q, 4 : ¬p ∧ q〉. Note

that σ∗
A,N (4) = σ∗

E,N (4) = σ∗
F,N (4) = σC(4) = ¬p ∧ ¬q, while

σ∗
R(4) = ¬p ∧ q. Since ¬p ∧ ¬q � ¬p ∧ q and ¬p ∧ q � ¬p ∧ ¬q,

we conclude that the fixpoints of expanding iteration, augmenting
iteration, simple iteration, and the global completion are in general
non-comparable with the fixpoint of the ring method.
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5 LOGICAL PROPERTIES

In this section we investigate logical properties that are satisfied by
the approaches defined in Section 3. Observation 1 already noted the
monotonicity of the iterative approaches. Here, we start with the ba-
sic property that if an initial scenario is consistent, then it remains
consistent throughout every iteration of each approach.

Proposition 16 (Consistency Preservation). Let G be a graph and σ
be a G-scenario. If σ is consistent, then σi

Ω is consistent for all i and
all Ω ∈ {A,E, F,R,C}.

It proves to be the case that if the conjunction of formulas at all
vertices is consistent, then the result at each vertex will be just this
conjunction. We formalize this as follows:

Definition 5.1 (Agreement Preservation (AP)). Let G = 〈V,E〉 be a
graph, σ be a G-scenario, and σ′ be the G-scenario that results from
applying an approach to updating the information at the vertices in
V . If

∧
v∈V σ(v) is consistent, then ∀v ∈ V : σ′(v) ≡ ∧

v∈V σ(v).

The following proposition states that the augmenting, expanding,
simple, and global approaches satisfy Agreement Preservation.

Proposition 17. For Ω ∈ {A,E, F,C}, σ∗
Ω satisfies (AP).

Proof. This was shown for Ω = C in [2]. If
∧

v∈V σ(v) is
consistent, then

⋂
v∈V Mod(σ(v)) �= ∅. For each model m ∈⋂

v∈V Mod(σ(v)), we can define a model selection s ∈ S(G) such
that for each v ∈ V , s(λ(v)) = (v,m). Then, Δ(s) = ∅. Clearly, s
is minimal over any connected subgraph of G. So, given a vertex v,
s is minimal over a neighbourhood of any radius about v. In particu-
lar, s is minimal in the radius-1 neighbourhood about v, so (v,m) is
selected by the simple approach. s is minimal over neighbourhoods
of all radii 1 ≤ r ≤ diam(G), so (v,m) is selected by the aug-
menting approach. For the expanding approach, s is minimal over
a neighbourhood of radius 1, so (v,m) is selected in the first step.
Since all other vertices agree on model m, (v,m) will continue to
be part of the minimal selection s over increasingly large neighbour-
hoods. Thus, (v,m) is selected by the expanding approach. Finally,
although additional models m′ /∈ ⋂

v∈V Mod(σ(v)) may initially
be selected by an approach (e.g. due to local minimization), such
models are progressively eliminated when the approach is iterated,
so that the fixpoint of each approach contains only the information
agreed upon by all vertices.

We also show that the ring method satisfies the Agreement Preser-
vation property under certain conditions.

Proposition 18. The ring method satisfies (AP) iff Δ satisfies (IC2).

Proof. Let G = 〈V,E〉 be a graph, and let v ∈ V be an arbitrary ver-
tex. Note that C1

1 (v)	C2
1 (v)	· · ·	Cε(v)

1 (v) =
⊔

1≤r≤ε(v) C
r
1 (v) =

{σ(v) | v ∈ V }, where 	 denotes multiset union. Then, by using the
definition of the ring method, we have R0

1(v) = σ(v) and

R1
1(v) = ΔR0

1(v)
(C1

1 (v)) =
∧

C1
1 (v) ∧ σ(v)

...

R
ε(v)
1 (v) = Δ

R
ε(v)−1
1 (v)

(C
ε(v)
1 (v)) =

∧
v∈V

σ(v)

So σ1
R(v) =

∧
v∈V σ(v) for all v ∈ V . Since the beliefs of all nodes

are equivalent after the first iteration of the ring method, clearly there
will be no further change, so σ∗

R(v) =
∧

v∈V σ(v) for all v ∈ V .

The number of iterations for any approach to reach a fixpoint has
an upper bound, given by the following proposition.

Proposition 19. Given a graph G = 〈V,E〉 and a G-scenario σ,
an upper bound on the number of iterations of any approach Ω ∈
{A,E, F,R} is

(∑
v∈V |Mod(σ(v))|)− |V |.

Proof. By monotonicity, in each iteration the number of models at a
node can either stay the same or decrease. Clearly, the smallest pos-
sible change from one iteration to the next is for a single model to be
eliminated from the set of models at a specific node. The total num-
ber of models over all nodes in the graph is

∑
v∈V |Mod(σ(v))|. At

the fixpoint (assuming σ is consistent), each node must have at least
one model; the minimum number of models over the graph in any it-
eration is |V |. Thus, in the case that each iteration yields the minimal
change, we see that there can be at most

(∑
v∈V |Mod(σ(v))|)−|V |

iterations before the scenario reaches a fixpoint.

6 DISCUSSION

This work calls for some comparisons with Belief Revision Games
(BRGs) [13]. A BRG represents a network of communication agents,
where each agent iteratively updates its beliefs by applying a revi-
sion policy that takes into account its current beliefs and the beliefs
of its neighbours. By definition, each revision policy takes as input
the current belief of an agent and the belief profile consisting of the
beliefs of her neighbours, and returns a new set of beliefs. In this ap-
proach, agents do not take into account the topology of the graph be-
yond their immediate neighbours. The fixed-radius approach (using
USPT neighbourhoods) introduced in this paper has a similar struc-
ture to BRGs, in that agents repeatedly update their beliefs by taking
into account the beliefs of their immediate neighbours. However, our
method of updating information by minimizing disagreements in a
set-theoretic fashion is distinct from any of the IC merging operator-
based revision policies. The expanding and augmenting approaches
presented here further diverge from the BRG approach; they take as
input an entire graph G, an associated scenario σ, and a node v, and
yield a new set of beliefs for v. The expanding and augmenting ap-
proaches take into account the beliefs of agents throughout the graph,
as well as the connections between those agents, to minimize dis-
agreement within increasingly large neighbourhoods about a vertex
of interest, in a prioritized manner.

7 CONCLUSION

In this paper, we have generalized the work presented in [2] by defin-
ing minimization-based approaches to iterated belief change that take
into account the distance between nodes in a graph. We defined four
iterated approaches which we call the simple, augmenting, expand-
ing, and ring approaches. We showed that each approach is distinct,
in that each produces results that are non-comparable with the re-
sults of the other approaches. We also compared these iterated ap-
proaches to the global approach studied previously. We found that
the augmenting approach produces logically stronger results in each
iteration than global completion, while the other approaches produce
results that are non-comparable with global completion. We exam-
ined basic logical properties for the approaches, and stated an upper
bound on the number of iterations needed to reach a fixpoint. Finally,
we compared our approaches to related work.

We have also implemented the approaches to belief change
described in this paper, in a software system called Equibel.
This software is publicly available at https://github.com/
asteroidhouse/equibel.
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