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Abstract. Sponsored Search Auctions (SSAs) arguably represent
the problem at the intersection of computer science and economics
with the deepest applications in real life. Within the realm of SSAs,
the study of the effects that showing one ad has on the other ads,
a.k.a. externalities in economics, is of utmost importance and has so
far attracted the attention of much research. However, even the ba-
sic question of modeling the problem has so far escaped a definitive
answer. The popular cascade model is arguably too idealized to re-
ally describe the phenomenon yet it allows a good comprehension of
the problem. Other models, instead, describe the setting more ade-
quately but are too complex to permit a satisfactory theoretical anal-
ysis. In this work, we attempt to get the best of both approaches:
firstly, we define a number of general mathematical formulations for
the problem in the attempt to have a rich description of externalities
in SSAs and, secondly, prove a host of results drawing a nearly com-
plete picture about the computational complexity of the problem. We
complement these approximability results with some considerations
about mechanism design in our context.

1 Introduction

The computation of solutions maximizing the social welfare, i.e.,
maximizing the total “happiness” of the advertisers, in sponsored
search auctions (SSAs) strongly depends on how such happiness is
defined. Clearly, the more clicks their ads receive, the more con-
tent advertisers are. A naive measure to forecast clicks, named click
through rate (CTR), would only consider the quality of the ad itself
(“better” ads receive more clicks). However, one should not over-
look the importance of externalities in this context: specifically, slot-
dependent externalities (i.e., ads positioned higher in the list have a
higher chance to get a click) and ad-dependent externalities (e.g., the
ad of a strong competitor – e.g., BMW – shown in the first slot can
only decrease the number of clicks that the ad – e.g., of Mercedes –
in the second slot gets).
Related Work. Much research focused on modeling externalities in
SSAs and providing algorithms for the resulting optimization prob-
lem. On one hand of the scale, there is the simple, yet neat, cascade
model [10, 1]. In the cascade model, users are assumed to scan the
ads sequentially from top to bottom and the probability with which a
user clicks on the ad ai shown in slot sm is the product of the intrin-
sic quality qi of the ad, the relevance λm of slot sm (slot-dependant
externality) and of all the ads allocated to slots s1 through sm−1.
A host of results is proved in this model as the input parameters
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vary (e.g., λm ∈ {0, 1} rather than λm ∈ [0, 1]). In its more gen-
eral version, the optimization problem of social welfare maximiza-
tion is conjectured to be NP-hard, shown to be in APX (i.e., a 1/4-
approximation algorithm is given) and shown to admit a QPTAS (a
quasi-polynomial time approximation scheme) [10]. In addition to
its unknown computational complexity, the cascade model has two
main limitations to be considered a satisfactory model of externali-
ties in SSAs. First, it assumes that users have unlimited “memory”
and that, consequently, an ad in slot s1 exerts externalities on an ad
many slots below. This is experimentally disproved in [8] wherein it
is observed how the distance between ads is important. Second, it as-
sumes that the externality of an ad is the same no matter which ad it
is exerted on. Nevertheless, while BMW can have a strong external-
ity on Mercedes since both makers attract the high end of the market,
the externality on makers in a different price bracket, e.g., KIA, is
arguably much less strong.

On the other hand of the scale, we can find models that try to ad-
dress these limitations. In [6] Fotakis et al. propose a model whereby
users have limited memory, i.e., externalities occur only within a win-
dow of c consecutive slots, and consider the possibility that externali-
ties boost CTRs (positive externalities) as well as reduce CTRs (neg-
ative externalities). In particular, the externalities of an ad apply to
ads displayed c slots below (forward externalities) and ads displayed
c slots above (backward externalities). Moreover, in order to model
the fact that externalities might have ad-dependent effect, they in-
troduce the concept of contextual graph, whereby vertices represent
ads and edge weights represent the externality between the endpoints.
Their model turned out to be too rich to allow tight and significant al-
gorithmic results (their main complexity results apply to the arguably
less interesting case of forward positive externalities).
Our contribution. The present work can be placed in the mid-
dle of this imaginary spectrum of models for externalities in SSAs.
Our main aim is to enrich the literature by means of more general
ways to model slot- and ad-dependent externalities, while giving a
(nearly) complete picture of the computational complexity of the
problem. We do not attempt to explicitly model the user’s behav-
ior but bridge the aforementioned models in order to overcome the
respective weaknesses. In detail, we enrich the naive model of SSAs
by adding the concepts of window and contextual externalities, while
keeping ad- and slot-dependent externalities factorized as in the cas-
cade model. We also complement much of the known literature by
studying a model wherein the externalities coming from ads and slots
cannot be expressed as a product. Our study gives rise to a number
of novel and rich models for which we can provide (often tight) ap-
proximability results. Since the case of selfish advertisers is of par-
ticular relevance in this context, we also initiate the study of mech-
anism design for the optimization problems introduced and consider
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the incentive-compatibility of our algorithms, i.e., whether they can
be augmented with payment functions so to work also with selfish
advertisers.

We analyze two families of models with Forward Negative
Externalities (FNE): one, named FNEsa, in which slot- and ad-
dependent externalities cannot be factorized and another one, named
FNEaa, where we assume that externalities can be factorized. Fur-
thermore, we discriminate our models along two other dimensions
that are orthogonal to the factorization of externalities. The first di-
mension has to do with the size c of the user memory with respect
to the number of slots K. Specifically, we consider the cases when
users have “limited” memory, i.e., c < K, and “large” memory, i.e.
c = K. The second dimension regards the effect empty slots have on
users’ attention. In a sort of whole page optimization fashion [11],
we think of those slots as occupied by a special fictitious ad (e.g.,
an image) that either raises users’ attention (reset model), or does
nothing (non-reset model). The combination of these orthogonal di-
mensions give rise to the models listed in the first row of Table 1,
which gives an overview of our results (formal definitions of these
models are given in Section 2).

For FNEsa(c) (i.e. the version in which slot- and ad-dependant
externalities cannot be factorized and externalities occur in a window
of size c) we prove that the optimization problem is in P , if c is a
constant. We consider the LP relaxation of the ILP describing the
problem and prove that the integrality gap is 1.

For FNEaa(c) (i.e. the variant of the problem with factorized ex-
ternalities, contextual ad-dependent externalities and window of c
slots) the aforementioned distinction on the effects that empty slots
have on users’ behavior is useful. For FNEaa(c)-nr (i.e. the variant of
FNEaa(c) where the special ad cannot be used, or, equivalently, the
user’s attention cannot be reset) we prove that the allocation problem
is poly-APX-complete whenever c = K. Specifically, we give an
approximation preserving reduction from the Longest Path problem
and design an approximation algorithm using several different ideas
and sources of approximation; interestingly, its approximation guar-
antee matches the best known approximation guarantee for Longest
Path. However, we prove that this algorithm cannot be used in any
truthful mechanism and note that a simple single-item second price
auction gives a weaker, yet close, truthful approximation. We com-
plement the results for this model with the identification of tractable
instances for which we provide an exact polynomial-time algorithm.
For c < K instead, we are unable to determine the exact hardness of
approximating the problem in general. To the APX-hardness proof,
we pair a number of approximation algorithms that assume constant
c. The first, based on color coding [2], returns a non-constant ap-
proximation on any instance of SSA. The second assumes that the
contextual graph is complete and returns a solution which (roughly)
guarantees a γc

min fraction of the optimum social welfare, γmin being
the minimum edge weight in the graph. Interestingly, this algorithm
shows the APX-completeness of the subclass of instances having
constant γmin (we indeed further provide a hardness result for in-
stances with complete contextual graphs). We believe the tight result
for this subclass of instances to be quite relevant. In fact, complete
contextual graphs are quite likely to happen in real-life: the results
returned by a keyword search are highly related to one another, and,
as such, each pair of ads has a non-null externality, however small.

For FNEaa(c)-r (i.e., the variant of FNEaa(c) where the special ad
can be used to refresh users’ memory) the problem becomes easier
and turns out to be APX-complete, for any c. We first prove the prob-
lem with c = K to be APX-hard, via a reduction from (a subclass of)
ATSP (i.e., asymmetric version of TSP) and then surprisingly con-

nect instances with c < K to instances with c = K by reducing the
case with c = 1 to the case with c = K and binary externalities (i.e.,
the weights of the edges of the contextual graph can be either 0 or
1). We also observe how a simple greedy algorithm cleverly uses the
special ad to return 1/2-approximate solutions and leads to a truthful
mechanism.

Three final observations on our set of results are needed. Firstly,
as common in the literature on SSAs, the number of slots is an input
parameter of the problem, rather than a fixed constant. This is consis-
tent with common practice of SSA in real life in some scenarios: for
instance, the number of ads displayed by major search engines like
Google and Bing is not constant, but rather varies with respect to the
keyword being used. However, in the scenarios where K can be as-
sumed to be constant, the allocation problem in our models becomes
computationally tractable (by, e.g., running the color coding algo-
rithm) and truthfulness can be achieved by imposing VCG payments.
Secondly, more research is needed to complete the picture concern-
ing truthful SSAs with externalities. The fact that we principally ad-
dress computational complexity issues is nevertheless a needed step
in this direction. Indeed, recall that in our (single-parameter) setting,
truthfulness reduces to designing a (computationally efficient) mono-
tone algorithm (see below for details). Therefore, settling the com-
putational complexity serves as a benchmark for the approximation
guarantee of the monotone algorithms we design. Thirdly, our anal-
ysis is worst case and then does not rule out the possibility that on
real-life instances the approximation ratio obtained is smaller: e.g.,
the best know algorithm for the cascade model performs better than
its theoretical approximation guarantee.

Due two space limitation, we have omitted the proofs of some mi-
nor results. All the details are available in a longer pre-print version
of this paper [7].

2 Model

In a SSA we have N ads and K slots. We assume that each ad corre-
sponds to an advertiser; this is w.l.o.g. from the optimization point of
view. We denote each ad by ai with i ∈ N , where N = {1, . . . , N}
is the set of indices of the ads. We introduce a fictitious ad, denoted
by a⊥, s.t., when allocated, the slot is left empty. The K slots are
denoted by sm with m ∈ K, K = {1, . . . ,K} being the set of slot
indices s.t. s1 is the slot at the top of the page and sK is at the bot-
tom. We also have a fictitious slot, denoted by s⊥ s.t. an ad allocated
to s⊥ is not displayed in the webpage. Each ad ai is characterized
by: (i) the quality qi ∈ [0, 1], i.e., the probability a user clicks on
ad ai when he observes it, irrespectively of other externalities; (ii)
the valuation vi ∈ R

+ advertiser i associates to his ad being clicked
by a user. The fictitious ad a⊥ has q⊥ = v⊥ = 0.

A feasible allocation of ads to slots, denoted as θ, consists of an
ordered sequence of ads θ = 〈a1, . . . , aK〉 s.t. the ads are ordered
by increasing slot number, i.e., a1 is allocated to the top slot, aK

to the bottom one. Every ad ai can be allocated to at most one slot,
whereas a⊥ can be allocated to more than one slot. The set of all
possible feasible allocations is denoted as Θ. With a slight abuse of
notation, we let (i) θ(ai) denote the index of the slot ad ai is allocated
to, and (ii) θ(sm) denote the index of the ad allocated to slot sm.
Given θ ∈ Θ, the click through rate of ad ai, denoted as CTRi(θ),
is the probability ad ai is clicked by the user taking externalities into
consideration. The optimal allocation θ∗ is the one maximizing the
social welfare, namely: θ∗ ∈ argmaxθ∈Θ SW (θ), where

SW (θ) =
∑
i∈N

CTRi(θ)vi.

N. Gatti et al. / Towards Better Models of Externalities in Sponsored Search Auctions1168



FNEaa(c) FNEaa(K)
FNEsa(c)

nr r nr r

LB APX-hard
APX-complete poly-APX-complete APX-complete P �

UB
log(N)

2min{N,K}
�

SP
log(N)

2min{N,K}
�

1/2 1/K 1/2 1�

Table 1. Summary of our results: LB (UB, resp.) stands for lower (upper, resp.) bound on the approximation of the problem; the row SP, instead, contains the
approximation guarantees we obtain with truthful mechanisms. Results marked by ‘�’ require c = O(1). APX-completeness of a subclass of FNEaa(c)-nr is
also given. (See the model for details on the notation.)

A 1/α-approximate solution θ satisfies SW (θ) ≥ SW (θ∗)/α.
Typically, CTRi(θ) defines how the quality qi of ad ai is “per-

turbed” by the externalities in terms of click probability. Accord-
ingly, in general CTRi(θ) = qiΓi(θ), Γi(θ) being a function
encoding the effect of externalities. For instance, in the cascade
model, Γi(θ) = Λθ(ai)

∏θ(ai)−1
l=1 γθ(sl), where Λθ(ai) =

∏θ(ai)
l=1 λl,

λm ∈ [0, 1], called the factorized prominence of sm, denotes the
slot-dependant externality and γi ∀i ∈ N , called continuation prob-
ability, denotes the ad-dependent externality. (W.l.o.g., we assume
Λ1 = λ1 = 1.) Our conceptual contribution rests upon novel and
richer ways to define Γi(θ), along three main dimensions.

The first dimension concerns the user memory, a.k.a. window. We
let c be the number of ads displayed above ai in θ, from sθ(ai)−1

to sθ(ai)−c, that affect Γi(θ). The second dimension concerns a
generalization of the externalities. Here we propose two alterna-
tive families of externalities, called sa (for slot-ad) and aa (for ad-
ad). The sa-externalities remove the factorization in slot- and ad–
dependent externalities: i.e., λm and γi are substituted by parameters
γm,j ∈ [0, 1], m ∈ K and j ∈ N . When the window is c, the CTR
is defined as CTRi(θ) = qiΓi(θ), where

Γi(θ) =

θ(ai)−1∏
m=max{1,θ(ai)−c}

γm,θ(sm).

This definition captures the situation in which an ad can affect the
ads displayed below it in a different way according to the position
in which it is displayed. For the aa-externalities, on the other hand,
we preserve the factorization in λm and γi, but redefine these latter
parameters as γi,j ∈ [0, 1] where aj is the ad that is displayed in the
slot just below θ(ai). It is convenient to see the γi,j’s as the weights
of the contextual graph G = (N , E) where the direct edges (i, j)
weigh γi,j > 0 and represent the way ad ai influences aj . Note that
non-edges of G correspond to the pairs of ads ai, aj s.t. γi,j = 0.
Here, with window c,

Γi(θ) = Λθ(ai)

θ(ai)−1∏
l=max{1,θ(ai)−c}

γθ(sl),θ(sl+1)

where Λm is defined as above. This definition captures the situation
in which each ad can affect each other ad in a different way.

The third dimension concerns the definition of γm,⊥ for the sa-
externalities and γi,⊥ and γ⊥,i for the aa-externalities. In the model
with reset we have γm,⊥ = 1 for sa and γi,⊥ = γ⊥,i = 1 ∀i ∈
N ∪ {⊥} for aa. This variant captures the situation in which slots
can be distributed in the page in different positions (a.k.a., slates)
and, in order to raise the user’s attention, we can allocate a content,
e.g. pictures, that nullifies the externality between the ad allocated
before and after the content. In the model without reset, γm,⊥ = 0
for sa and γi,⊥ = γ⊥,i = 0 ∀i ∈ N ∪{⊥} for aa, thus capturing the
situation in which leaving a slot empty between two allocated slots
does not provide any advantage.

We let FNEx(c)-y be the problem of optimizing the social welfare
in our model with Forward Negative Externalities with window c,
x ∈ {sa, aa}-externalities and y ∈ {r, nr} reset (r stands for reset; nr
for no reset). When the value of y is not relevant for our results, we
talk about FNEx(c). We are interested in two particular subclasses
of FNEaa(c), namely: (i) subclass FNE+

aa(c)-y, defined upon a com-
plete contextual graph and such that 0 < γmin = mini,j∈N ,i �=j γi,j
and (ii) subclass B–FNEaa(c)-y, where γi,j can take values in {0, 1}.
Mechanism design. A mechanism M is a pair (f, p), where f :
(R+)N → Θ is an algorithm that associates to any vector v =
(v1, . . . , vN ) of valuations a feasible outcome in Θ (only valuations
are private knowledge). The payment function pi : (R+)N → R

+

maps valuation vectors to monetary charges for advertiser i. The
aim of each advertiser is to maximize his own utility ui(v, vi) =
CTRi(f(v))vi − pi(v). An advertiser could misreport his true val-
uation and declare v̂i 
= vi when ui((v̂i,v−i), vi) > ui(v, vi), v−i

being the vector of the valuations of all the agents but i. We are
then interested in truthful mechanisms. A mechanism is truthful if
for any i ∈ N , v−i ∈ (R+)N−1, vi, v̂i ∈ R

+, ui((v̂i,v−i), vi) ≤
ui(v, vi).

In this setting, a monotone algorithm must be used in truthful
mechanisms [3]. Algorithm f is monotone if for any i ∈ N ,
v−i ∈ (R+)N−1, CTRi(f(v̂i,v−i)) is non-decreasing in v̂i. Im-
portant for our work is also the family of VCG-like mechanisms,
a.k.a., Maximal In Range (MIR) mechanisms. An algorithm f is
MIR if there exists Θ′ ⊆ Θ s.t. f(v) ∈ arg maxθ∈Θ′ SW (θ)
∀v ∈ R

N [12]. These algorithms can be augmented with a VCG-like
payment so to obtain truthful mechanisms. (VCGs are MIR mecha-
nisms wherein Θ′ = Θ.) We are interested in mechanisms for which
both f and p are computable in polynomial time. MIR mechanisms
run in polynomial-time if the MIR algorithm does. As usual in the
context of SSA, we adopt a pay-per-click payment scheme, i.e., we
charge pi(v)/CTRi(f(v)) when a user clicks on ai.

3 FNEsa(c) is in P for constant c

Our presentation focuses on FNEsa(1)-nr to simplify the notation.
The more general cases when c > 1 and the reset model is consid-
ered are easily obtainable by generalization from FNEsa(1), but re-
quire a more cumbersome notation without significant new ideas (see
discussion at the end of this section). We first give the ILP formula-
tion of FNEsa(1)-nr and prove that if there is an optimal fractional
solution, then there are at least two feasible integral solutions with
the same value of social welfare. Since it is well known, by LP the-
ory, that the ellipsoid algorithm can be forced (in polynomial-time)
to output an integral optimal solution, we are able to prove the fol-
lowing:

Theorem 1. For c = O(1), there is a polynomial-time optimal al-
gorithm for FNEsa(c).
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FNEsa(1)-nr can be formulated as following ILP:

max

K∑
m=2

∑
i∈N

∑
j∈N ,j �=i

γm−1,jqivixj,m,i +
∑
i∈N

x1,iqivi

subject to:
K∑

m=2

∑
j∈N ,j �=i

xj,m,i + x1,i ≤ 1 ∀i ∈ N

x1,i =
∑

j∈N ,j �=i

xi,2,j ∀i ∈ N
∑

j∈N ,j �=i

xj,m,i =
∑

j∈N ,j �=i

xi,m+1,j ∀i ∈ N ,

2 ≤ m < K∑
i∈N

x1,i = 1 (1)

∑
j∈N

∑
i∈N ,i �=j

xj,m,i = 1 ∀m ∈ K \ {1}

x1,i ∈ {0, 1} ∀i ∈ N
xj,m,i ∈ {0, 1} ∀2 ≤ m ≤ K,

i, j ∈ N , i 
= j

where xj,m,i = 1 iff ai is allocated to slot sm, m > 1, and aj

is allocated to slot sm−1; x1,i = 1 iff ai is allocated to s1. The
objective function and the constraints are rather straightforward and,
hence, their description is omitted here.

The next proposition proves Theorem 1 since it shows that we can
solve the above ILP in polynomial-time, despite its similarities with
the 3D-assignment, a well-known NP -hard problem.

Proposition 1. The continuous relaxation of the above ILP always
admits integral optimal solutions.

Proof. We show that, if there is an optimal fractional solution x,
then there are at least two feasible integral solutions with the same
value of social welfare. Specifically, we prove that x is equivalent to
a probability distribution over integral allocations θ = 〈a1, . . . , aK〉.
The probability P(θ) given to θ is:

P(θ) =
K∏
i=1

P

(
θ(ai) = si

∣∣∣ ∧
j<i

θ(aj) = sj

)

= x1,1

K∏
l=2

xl−1,l,l∑
m≥l

xl−1,l,m
.

In order to show that P(θ) is actually a probability distribution over
allocations, we show that

∑
θ∈Θ P(θ) = 1.

The proof is recursive. Let Θ′ be the set of allocations θ with the
same first K − 1 ads. The allocations in Θ′ differ only for the ad
allocated to sK . To fix the notation, for θ ∈ Θ′ let θ(sl) = al, for
l < K. We have:∑
θ∈Θ′

P(θ) = x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

) ∑
h≥K

xK−1,K,h∑
m≥K

xK−1,K,m

= x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

) ∑
h≥K xK−1,K,h∑
m≥K xK−1,K,m

= x1,1

K−1∏
l=2

(
xl−1,l,l∑

m≥l xl−1,l,m

)
.

By applying recursively the same argument above from Θ′′ ⊃ Θ′,
the set of all allocations θ satisfying θ(sl) = al, for l ≤ K − 2,
down to the set of allocations having only the same first ad, we have∑

θ:θ(s1)=a1
P(θ) = x1,1. Since (1) forces

∑
i∈N x1,i = 1, we

have
∑

θ∈Θ P(θ) =
∑

i∈N x1,i = 1. This shows that P(θ) is a well
defined probability distribution. The proof concludes by observing
that all integral solutions are indeed feasible.

To solve the problem when c > 1, we just need to modify the ILP and
allow each variable x to depend on c+2 indices to take into account
the (at most) c indices of all the ads that precede the ad of interest.
The reset model for c = 1 instead requires the introduction of K
additional variables for a⊥ to be visualized in each slot (together
with some constraints to fix each variable for a⊥ to a slot).

Theorem 1 implies that mechanism design becomes an easy prob-
lem for FNEsa(c) and c = O(1), since the optimal algorithm can be
used to obtain a truthful VCG mechanism.

4 FNEaa(K)-nr is Poly–APX–complete

Easy Instances. As a warm-up, we identify a significant class of
instances of FNEaa(K)-nr for which we can design a polynomial-
time optimal algorithm. These instances are characterized by the fact
that the underlying contextual graph is a DAG, thus modeling nearly
oligopolistic markets in which the ads can be organized hierarchi-
cally. The idea of Algorithm 1 is that since DAGs can be sorted
topologically in polynomial time then we can rename the ads as
a1, . . . , aN so to guarantee that for any pair of ads ai, aj , if i < j
then (aj , ai) /∈ E . We can then prove that we can focus w.l.o.g. on
ordered allocations θ, i.e., for any pair of allocated ads ai, aj , with
i < j, θ(ai) ≤ θ(aj). Consider an unordered θ and let ai be the
first ad (from the top) for which there exists aj , i < j, such that
θ(ai) > θ(aj). Since γj,i = 0 then all the ads ak s.t. θ(ak) ≥ θ(ai)
have CTRk(θ) = 0 and, therefore, we can prune θ of (i.e., substitute
with a⊥) ai and all the subsequent ads without any loss in the social
welfare. But then in the class of ordered allocations, the optimum has
an optimal substructure and we can use dynamic programming. Let
D[i,m] be the value of the optimal ordered allocation that uses only
slots sm, . . . , sK and allocates ad ai in sm. It is not hard to see that
D[i,m] = Λmqivi +maxj>i γi,jD[j,m+1] and that the optimum
is maxi∈[N ] D[i, 1]. In the pseudo-code of the algorithm, we sim-
ply construct the table D after the topological sort of the contextual
graph (with renaming of the ads) is done. The algorithm runs in time
O(KN2).

Algorithm 1

1: TOPOLOGICALSORT(G)
2: for all m ≤ K do

3: D[N,m] = ΛmqNvN
4: for all i ≤ N do

5: D[i,K] = ΛKqivi
6: for i = N − 1 to 1 do

7: for m = K − 1 to 1 do

8: D[i,m] = Λmqivi +maxj>i γi,jD[j,m+ 1]
9: return (maxi∈[N ] D[i, 1])

Since social welfare maximization is a utilitarian problem, and given
that the algorithm above is optimal we can use the VCG mechanism
to obtain a polynomial-time optimal truthful mechanism.
Hardness. We now prove the hardness of approximating
FNEaa(K)-nr.
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Theorem 2. FNEaa(K)-nr is poly–APX–hard.

Proof. We reduce from the Longest Path problem. An instance of
the Longest Path problem consists of a direct graph G′ = (T,A)
where T is the set of vertices of the graph and A 
= ∅ is the set of un-
weighted edges. The problem demands to compute a longest simple
path, i.e., a maximum length path that visits each vertex of the graph
at most once. This problem is poly–APX–complete [5] and the best
known asymptotic approximation is log |T |/|T |. From an instance
G′ = (T,A) of Longest Path we obtain an instance of FNEaa(K)-nr
as follows. For each vertex ti ∈ T we add an ad ai, with qi = vi = 1
and for each directed arc (ti, tj) ∈ A we add an arc (i, j) in E . Fur-
thermore, we set γi,j = 1 if (i, j) ∈ E and γi,j = 0 otherwise.
Finally, we set N = K = |T | and Λm = 1, ∀m ∈ [K].

Given an ordered sequence of vertices ρ = (t1, t2, . . . , tN ), we
denote as len(ρ) the length of the path that starts in t1 and visits
the nodes in ρ till the first node tj s.t. (tj , tj+1) 
∈ A is reached.
Let us denote as ρ∗ the sequence that describes the longest path in
G′ and as θ∗ the allocation that maximizes the social welfare in the
instance of FNEaa(K)-nr defined upon G′. It is easy to check that
len(ρ∗) = SW (θ∗) − 1. Indeed, θ∗ allocates sequentially from the
first slot the ads that correspond to the vertices composing the longest
path. Conversely, we can transform an allocation θ into a sequence
of vertices ρ just by substituting the ads with their corresponding
vertices until the first a⊥ in θ is found. Thus, we have that for θ and
the corresponding ρ it holds len(ρ) = SW (θ)− 1.

Consider a generic α-approximate allocation θα for FNEaa(K)-
nr: SW (θα) ≥ αSW (θ∗). Since A is non-empty, there is a solution
θ2 to FNEaa(K)-nr of social welfare at least 2. Let θβ denote the
solution in {θα, θ2} with maximum social welfare. As θα is an α-
approximate solution so is θβ . By letting ρβ denote the path con-
structed from θβ as described above, we prove that the reduction
preserves the approximation (up to a constant factor): len(ρβ) =
SW (θβ) − 1 ≥ 1

2
SW (θβ) ≥ α

2
SW (θ∗) = α

2
(len (ρ∗) + 1) ≥

α
2
len(ρ∗).

Approximation algorithm. We show that the problem is in poly–
APX, with an approximation ratio that is asymptotically the same as
the best guarantee known for Longest Path. Our algorithm combines
the Color Coding (CC) algorithm [2] together with three approxima-
tion steps.

Let C be a set containing K different colors. CC is a random algo-
rithm, randomly assigning colors from C to the ads, and then finding
the best colorful (i.e., no pair of ads has the same color) allocation.
To find the best colorful allocation, given a random coloring we do
the following. For S ⊆ C, we define (S, ai) as the set of partial
allocations with the properties of having the same number |S| of al-
located ads (each colored with a different color of S) in the first |S|
slots and having ad ai in slot s|S|. We start from S = ∅ where no ad
is allocated. Then, allocating one of the ads in the first position, we
add one color to S until S = C. Iteratively, the algorithm extends
the allocations in (S, ai) appending a new ad, say aj , with a color
not in S in slot s|S|+1 obtaining (S ∪{oj}, aj) where oj is the color
of aj . Each partial allocation in (S, ai) is characterized by the val-
ues of SW and Γi. We can safely discard all the Pareto dominated
partial allocations: given two allocations θ1 and θ2 in (S, ai), we
say that θ2 is Pareto dominated by θ1 iff SW (θ1) ≥ SW (θ2) and
Γi(θ1) ≥ Γi(θ2). However, there is no guarantee that the number
of allocations in (S, ai) is polynomially bounded and, in principle,
all the generated O(NK) partial allocations may be Pareto efficient.
The complexity per coloring is O(2KNK+1K2). CC generates eK

random colorings, but it can be derandomized with a cost of log2(N)

and a total complexity O((2e)KK2NK+1 log2 N). To make the al-
gorithm polynomial, we apply three approximation steps. Initially,
we briefly sketch these three approximations and, subsequently, we
provide the details. Firstly, we run CC over a reduced number K′ of
slots where K′ = min{�log(N)�,K}. Secondly, we discard all the
allocations θ in which the probability to click on the last allocated ad
is smaller than a given δ ∈ [0, 1]. Finally, we discretize the γi,j’s. We
prove in the following that the running time is indeed polynomial and
the approximation ratio is (1 − δ)(1 − ε) log(N)

2min{N,K} , ε controlling
the granularity of the γi,j discretization. All the three approxima-
tions are necessary in order to obtain a polynomial-time algorithm.
This algorithm is not monotone as we show below. However, a simple
1/K-approximate truthful mechanism can be obtained, via a single-
item second price auction. From here on, we provide the details of
the algorithms and we prove its approximation ratio.

Approximation 1. We apply CC over a reduced number K′ of slots,
where K′ = min{�log(N)�,K}, implying the following approxi-
mation ratio.

Proposition 2. Given θ∗, the optimal allocation over K slots, and
θ∗K′ , the optimal allocation over the first K′ ≤ min{N,K} slots,
we have SW (θ∗K′) ≥ 1

2
K′

min{N,K}SW (θ∗).

Approximation 2. In CC, we discard allocations θ in which Γi(θ)
of the last allocated ad ai, i ∈ [N ], is less than a given δ ∈ [0, 1],
implying the following approximation ratio.

Proposition 3. Given θ∗K′ , the optimal allocation over K′ slots, and
θδK′ the optimal allocation among the allocations θ ∈ Θ where
the last allocated ad ai, i ≤ N , satisfies Γi(θ) ≥ δ, we have
SW

(
θδK′

) ≥ (1− δ)SW (θ∗K′).

Approximation 3. In CC, we use rounded values for γi,j .
More precisely, we use � 1

τ
log 1

γi,j
� in place of log 1

γi,j
, where

the normalization constant τ is defined below. The constraint
due to Proposition 3 is now a capacity constraint of the form∑

m∈[K]:m<l� 1
τ
log 1

γθ(m),θ(m+1)
� ≤ � 1

τ
log 1

δ
�. Notice that, with

rounded values, the capacity can assume a finite number of values
(i.e., � 1

τ
log 1

δ
�) and therefore we can now bound the number of al-

locations to be stored in (S, ai). More precisely, for each value of
capacity, we can discard all the allocations except one maximizing
the social welfare measured with rounded values. This step has the
following consequences on the approximation guarantee.

Proposition 4. Given θδK′ , defined as in Proposition 3, and θδεK′ , the
optimal allocation when the rounding procedure is applied, we have
that, choosing τ = 1

K′ log
1

1−ε
, SW

(
θδεK′

) ≥ (1− ε)SW
(
θδK′

)
.

The approximation ratio of the algorithm is thus (1 − δ)(1 −
ε) log(N)

2min{N,K} , asymptotically the same as the best known approx-
imation ratio of the Longest Path once N = K. The complexity
instead can be derived as follows. The maximum number of allo-
cations that can be stored in each (S, ai) is O(

log 1
δ

τ
) with τ =

log 1
1−ε

K′ thanks to dominations. Thus, given that log( 1
1−ε

) → ε as
ε → 0, the number of elements is O(K′ 1

ε
). Thus, the complex-

ity when K′ = log(N) is O((2e)log(N) 1
ε
log( 1

δ
)N2 log4(N)) =

O( 1
εδ
N3 log4(N)).

Notice that all the three above approximations are necessary in
order to obtain a polynomial–time algorithm. Approximation 2 and
Approximation 3 allow us to bound the number of the allocations
stored per pair (S, ai) and would lead, if applied without Approxi-
mation 1, to a complexity O((2e)KK2N2 log2(N) 1

εδ
). Notice also
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that, without Approximation 2, the possible values for the capacity
are not upper bounded. Approximation 1 allows us to remove the
exponential dependence on K and to obtain polynomial complexity.

Non–monotonicity of the approximation algorithm. We here
prove that the algorithm is not monotone and therefore we cannot
augment it with a payment function to obtain a truthful mechanism.

Let us initially consider the case where Approximation 1 is not
used, therefore all the K slots can be allocated. We will discuss below
how to extend the proof to the case where Approximation 1 is used.

Consider the following instance of FNEsa(K)-nr:

• K = 3 slots;
• N = 4 ads, where q1v1 = 22τ Λ2−Λ32

−6τ

Λ2−Λ3
+ 3, q2v2 = x,

q3v3 = q4v4 = 1, where τ is the generic rounding factor of
Approximation 3;

• the contextual graph is s.t. γi,j = 0 ∀i, j ∈ [N ] except: γ1,2 =
2(−4+φ)τ , γ1,3 = 2−τ , γ2,4 = 2−τ , γ3,2 = 2−τ . φ is a small
number;

• the rounded capacity
⌊

log 1
γi,j

τ

⌋
= +∞ ∀i, j ∈ [N ] except:⌊

log 1
γ1,2

τ

⌋
= 3,

⌊
log 1

γ1,3

τ

⌋
= 1,

⌊
log 1

γ2,4

τ

⌋
= 1,

⌊
log 1

γ32
τ

⌋
=

1.
• the K colours are {o1, o2, o3}.

The product q1v1 has been chosen s.t., when x is in the neighbour-
hood of 22τ Λ2−Λ32

−4τ

Λ2−Λ3
, a1 is always allocated in the first slot. Thus,

we can focus only on the colouring that assigns colour o1 to a1, o2 to
a2 and o3 to a3 and a4. Indeed, with this colouring the two longest
path of the contextual graph are colourful, i.e. the unique two colour-
ful allocations are θ1 = (a1, a3, a2) in the set ({o1, o2, o3}, a2) and
θ2 = (a1, a2, a4) in the set ({o1, o2, o3}, a4).

Notice that, with this colouring, all the allocations where there is
a pair of ads (ai, aj) with γi,j = 0 are infeasible, not satisfying the
capacity bound. We will now prove that the approximation algorithm
is not monotone with respect to a2.

Let us denote by S̃W the social welfare computed on the ba-
sis of the rounded values. It is easy to check that the following
hold: S̃W (θ1) = 22τ Λ2−Λ32

−6τ

Λ2−Λ3
+ 3 + Λ22

−4τx + Λ32
−6τ and

S̃W (θ2) = 22τ Λ2−Λ32
−6τ

Λ2−Λ3
+3+Λ22

−τ+Λ32
−4τx. Notice that the

rounded CTR2 in θ2 is always greater than the one in θ1, given Λ2 ≥
Λ3, while CTR2(θ1) = Λ32

−2τ > Λ22
(−4+φ)τ = CTR2(θ2)

when Λ2
Λ3

< 22τ−φτ .

We have that S̃W (θ1) > S̃W (θ2) when x > 22τ Λ2−Λ32
−4τ

Λ2−Λ3
.

Thus a2 gets a lower CTR by increasing her bid, which proves that
the algorithm is not monotone.

The example can be extended also to the case where Approxima-
tion 1 is applied introducing ads with qv = 0 and γi,j = 0, s.t.
logN = K.

5 FNEaa(K)-r is APX-complete

In this section we will prove the APX-hardness of FNEaa(K)-r and
provide a 1/2-approximation algorithm.

Theorem 3. The complexity of computing an allocation for
FNEaa(K)-r is APX–hard. More specifically, FNEaa(K)-r cannot
be approximated within a factor of 1

1+α
, for α < 1

412
, unless

P = NP .

Proof. We reduce from the Asymmetric TSP with weights in {1, 2},
hereinafter denoted as ATSP (1, 2). The ATSP (1, 2) problem de-
mands finding a minimum cost Hamiltonian tour in a complete di-
rected weighted graph G′ = (T,A) where T is the set of nodes of
G′, A is the set of edges and the weight function wi,j ∈ {1, 2} for
all edges (i, j) ∈ A. ATSP (1, 2) cannot be approximated in poly-
nomial time within a factor of 1

1+β
, with β < 1/206 [9]. Below, we

denote as τ a solution of an ATSP (1, 2) instance, as cost(τ) its cost
and as τ∗ the optimal tour.

Given an instance of ATSP (1, 2) on graph G′ = (T,A) we
construct an instance of FNEaa(K)-r as follows: (i) for each ver-
tex ti ∈ T we generate an ad ai with qi = vi = 1, then we have
N = |T |; (ii) the contextual graph is G = ([N ], E), where (i, j) ∈ E
iff wi,j = 1; (iii) for all (i, j) ∈ E , γi,j = 1; and finally (iv) the num-
ber of slots is equal to the cost of the optimal tour τ∗ in ATSP (1, 2),
i.e. K = cost(τ∗). We will show at the end of the proof how we can
deal with the fact that we do not know cost(τ∗). Observe that with
K = cost(τ∗), we have SW (θ∗) = N , θ∗ denoting the optimal
solution of the FNEaa(K)-r instance constructed. The definition of
the reduction is completed by observing that an allocation θ for the
FNEaa(K)-r that allocates all the N ads can be easily mapped back
to a tour τ for the ATSP (1, 2) by simply substituting the ad with
the corresponding vertex of the graph G′.

Let us suppose for the sake of contradiction that there exists a
1

1+α
-approximate algorithm for FNEaa(K)-r, with α < β

2
< 1

412
.

Let θα be the 1
1+α

–approximate solution returned by such an algo-
rithm, i.e., SW (θα) ≥ 1

1+α
SW (θ∗) = N

1+α
. It is easy to check that

θα consists of � N
1+α

� ads, each providing a contribution of 1 to the
social welfare, while there are SW (θ∗)−� N

1+α
� ads that w.l.o.g. we

can consider empty. Moreover, being α < 1, N
1+α

≥ cost(τ∗)− N
1+α

holds. For the sake of conciseness, hereinafter we omit the ceiling
notation. Let τβ be the tour obtained from θα. We state that in τβ
there are, at least, 2N

1+α
− cost(τ∗) − 1 edges of weight 1. Divide

the ads allocated in θα in two sets: the N
1+α

allocated ads ai i ∈ [N ]

and a⊥. Allocate in alternation one of the N
1+α

ads ai, with i ∈
[N ], and one of the cost(τ∗) − N

1+α
ads a⊥. When the slot index

2(cost(τ∗)− N
1+α

) is reached, the available a⊥ are finished, thus, in
the following cost(τ∗) − 2(cost(τ∗) − N

1+α
) = 2N

1+α
− cost(τ∗)

slots, only non-fictitious ads ai, i ∈ [N ], are consecutively allocated
(no slots are left empty). This means that in θα, where the ads are
disposed in a different way, we still have the guarantee that there are
2N
1+α

− cost(τ∗) − 1 pairs of consecutive ads (ai, aj) s.t. γi,j = 1.
Thus, in the tour τβ there are, at least, 2N

1+α
− cost(τ∗)− 1 edges of

weight 1. Therefore, given that a tour is composed of N edges, in τβ
there can be at most N− 2N

1+α
+cost(τ∗)+1 edges of weight 2. The

length of τβ is upper-bounded by cost(τβ) ≤ 2N
1+α

− cost(τ∗) −
1 + 2(N − 2N

1+α
+ cost(τ∗) + 1) = cost(τ∗) + 2Nα

1+α
+ 1. Now we

can state: cost(τβ) ≤ cost(τ∗) + 2αN
1+α

+ 1 ≤ cost(τ∗) + 2αN ≤
cost(τ∗) + 2α cost(τ∗) = (1 + 2α) cost(τ∗) < (1 + β) cost(τ∗),
where: (i) the second inequality holds for N ≥ 1+α

2α2 ; (ii) the third
inequality holds since N ≤ cost(τ∗) and (iii) the last inequal-
ity holds since, by assumption, α < β

2
. Thus, for the instances

where N ≥ 1+α
2α2 if there were an algorithm that 1

1+α
–approximates

FNEaa(K)-r with α < 1
412

, there would be a 1
1+β

approximation of
ATSP (1, 2) with β < 1

206
. We obtained an absurd.

We finally show that we can deal with the non existence of the
oracle returning cost(τ∗). For all the instances of ATSP (1, 2)
with N vertices, N ≤ cost(τ∗) ≤ 2N . So, we run the polyno-
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mial 1
1+α

–approximation algorithm of FNEaa(K)-r for all the val-
ues K = m with m ∈ {N . . . , 2N}, obtain m tours τm

β and set
τβ = argminm∈{N,...,2N} cost(τ

m
β ), guaranteeing

cost(τβ) ≤ cost(τ
cost(τ∗)
β ).

1
2

-Approximate Greedy Algorithm for FNEaa(c)-r, for any c. The
algorithm orders the ads in nonincreasing order of qivi and allocates
them in the odd slots, starting from the one with the highest product;
even slots are left empty.

Proposition 5. The greedy algorithm above is 1
2

-approximate for
FNEaa(c)-r, for any c.

The greedy algorithm above is a MIR, range Θ′ being all the alloca-
tions that leave even slots empty. The solution output is indeed the
one guaranteeing maximum social welfare in Θ′. We therefore have
proved the existence of a 1/2-approximate truthful polynomial-time
mechanism for FNEaa(c)-r.

6 FNEaa(c) is APX-hard

We now prove that FNEaa(1)-r (Proposition 6) and FNEaa(1)-nr
(Proposition 7) are APX-hard. First we state two auxiliary lemmata.
Hereinafter, for the sake of notation, we will denote as SW1(θ)
and SWK(θ) the objective function of B–FNEaa(1)-r and B–
FNEaa(K)-r, respectively.

Lemma 1. Let θ be an allocation (possibly containing empty slots)
and let θ′ be the allocation obtained from θ by replacing, for each
pair (ai−1, ai) in θ such that γi−1,i = 0, ad ai−1 with a⊥. Then
SW1(θ) = SW1(θ

′).

Lemma 2. Let θ be an allocation such that no pair of ads (ai−1, ai)
exists where γi−1,i = 0. Then SW1(θ) = SWK(θ).

Proposition 6. FNEaa(1)-r is APX-hard.

Proof. We prove that the subproblem B–FNEaa(1)-r is APX–hard
via an approximation preserving reduction from the APX-hard prob-
lem B–FNEaa(K)-r (Theorem 3). In particular, we will show that
computing an approximate solution for B–FNEaa(1)-r is not easier
than B–FNEaa(K)-r on the same instance.

We will first prove that SWK(θ∗K) ≤ SW1(θ
∗
1) holds, where

θ∗K and θ∗1 denote, respectively, the optimal allocation for B–
FNEaa(K)-r and B–FNEaa(1)-r. For the sake of contradiction, let
us suppose that SWK(θ∗K) > SW1(θ

∗
1). We can assume without

loss of generality that θ∗K does not contain a pair (ai−1, ai) such that
γi−1,i = 0, as replacing ai−1 with a⊥ would yield an allocation
with a non-decreasing SW value. By Lemma 2 and by hypothesis we
have that SW1(θ

∗
K) = SWK(θ∗K) > SW1(θ

∗
1), which contradicts

the optimality of θ∗1 .
We are now going to prove that given an α–approximate solution

θα1 to the objective of B–FNEaa(1)-r we can compute in polynomial
time an approximate solution θαK to the objective of B–FNEaa(K)-r
such that SW1(θ

α
1 ) ≤ SWK(θαK). This is easily done by replac-

ing ai−1 with a⊥ for each couple of ads (ai−1, ai) in θα1 such that
γi−1,i = 0, thus obtaining θ′α1 . By Lemmata 1 and 2 we finally con-
clude that SW1(θ

α
1 ) = SW1(θ

′α
1 ) = SWK(θ′α1 ).

Proposition 7. FNEaa(1)-nr is APX-hard.

Proof. We conduct the proof by reduction from problem B–
FNEaa(1)-r. In particular, we add to the instance of B–FNEaa(1)-
r K new ads {aN+1, . . . , aN+K} such that: (i) vj = 0 for all
j ∈ {N + 1, . . . , N + K} and (ii) γi,j = γj,i = 1 for all
i ∈ {1, . . . , N + K} and j ∈ {N + 1, . . . , N + K}. Let θαnr be
an α-approximate solution for the so-defined FNEaa(1)-nr problem.
We can assume w.l.o.g. that θαnr does not contain any a⊥, as in the
no-reset model we can always allocate any non-allocated ad to an
empty slot obtaining a non-decreasing SW value. We observe that,
from a generic allocation θnr , it is possible to obtain an allocation
θr by substituting any ad aj , j ∈ {N + 1, . . . , N + K}, in θnr

with a⊥ s.t. SW r(θr) = SWnr(θnr), and vice versa. Thus, from
θαnr we can obtain an allocation θαr s.t. SW r(θαr ) = SWnr(θαnr);
SW x(θ) denoting the social welfare of θ ∈ Θ in the model
with reset x ∈ {r, nr}. Furthermore, let θ∗r and θ∗nr be the opti-
mal solutions, respectively, for B–FNEaa(1)-r and the FNEaa(1)-
nr defined by our reduction. According to the observations above,
it is easy to check that SW r(θ∗r ) = SWnr(θ∗nr) holds. In fact,
let θ̃nr be the solution obtained from θ∗r by substituting each a⊥
with an ad aj , j ∈ {N + 1, . . . , N + K}. Then SW r(θ∗r ) =
SWnr(θ̃nr). Furthermore, SWnr(θ̃nr) = SWnr(θ∗nr), as other-
wise if SWnr(θ̃nr) < SWnr(θ∗nr) we could translate θ∗nr into a
solution θ̃r for B–FNEaa(1)-r such that SW r(θ∗r ) < SW r(θ̃r).
A similar argument holds if we consider the allocation θ̃r obtained
by substituting all ads aj , j ∈ {N + 1, . . . , N + K}, in θ∗nr

with a⊥. Finally, SW r(θαr ) = SWnr(θαnr) ≥ αSWnr(θ∗nr) =
αSW r(θ∗r ).

7 FNE+
aa(c)-nr is APX-complete for constant γmin

We now prove that FNEaa
+(c)-nr is APX-complete if γmin is con-

stant. In the first part of this section (Theorem 4) we prove that this
sub-problem is APX-hard, whereas in the second part we give a
constant-ratio approximation algorithm for it, via a reduction from
FNEaa

+(c)-nr to W3SP.

Theorem 4. FNE+
aa(1)-nr is APX-hard.

Proof. Let {γmin, 1}-FNE+
aa(1)-nr denote the subclass of

FNE+
aa(1)-nr where γij ∈ {γmin, 1} for all i, j ∈ N and

a given 0 < γmin < 1. We prove the APX-hardness of
FNE+

aa(1)-nr by an approximation preserving reduction from
problem B-FNEaa(1)-nr (proved APX-hard in Proposition 7) to
problem {γmin, 1}-FNE+

aa(1)-nr: we prove the existence of an
α-approximate algorithm for {γmin, 1}-FNE+

aa(1)-nr to imply the
existence of a 2α-approximate algorithm for B-FNEaa(1)-nr.

The instance of {γmin, 1}-FNE+
aa(1)-nr is obtained from the in-

stance of B-FNEaa(1)-nr by simply setting γ′i,j = γmin = 1
K−1

for
all i, j ∈ N such that γi,j = 0 in the given instance of B-FNEaa(1)-
nr, γ′i,j = 1 otherwise.

Let θ∗γmin
and θ∗B be an optimal solution for problems

{γmin, 1}-FNE+
aa(1)-nr and B-FNEaa(1)-nr, respectively. We have

SW (θ∗B) ≤ SW (θ∗γmin
). Indeed, if there is no (ai−1, ai) ∈ θ∗B s.t.

γi−1,i = 0 then SW (θ∗B) = SW (θ∗γmin
), whereas if there is a pair

(ai−1, ai) ∈ θ∗B s.t. γi−1,i = 0 then SW (θ∗B) < SW (θ∗γmin
).

Let now θγmin be an α-approximation of {γmin, 1}-FNE+
aa(1)-

nr and let θB be the corresponding solution for B-FNEaa(1)-nr. (I.e.,
θB is the solution θγmin where the γmin externalities weigh 0.) We
now prove that SW (θγmin) ≤ 2SW (θB). We have SW (θB) =
1 + P(θB), where P(θB) ≤ K − 1 denotes the number of
pairs (ai−1, ai) of ads in θB such that γi−1,i = 1. Likewise,
SW (θγmin) = 1 + P(θγmin) + (K − 1 − P(θγmin)) · γmin. By
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construction, P(θB) = P(θγmin) = P , from which it follows that
SW (θγmin) ≤ 2 · SW (θB ) is equivalent to 1 + K−1−P

1+P γmin ≤ 2.
This is proved by noticing that 1+ K−1−P

1+P γmin ≤ 1+ K−1
1+P γmin =

P+2
P+1

, where last equality follows from definition of γmin.

Approximation algorithm. We now prove that any α-approximate
algorithm for Weighted 3-Set Packing (W3SP) can be turned into an
(αγc

min)–approximation algorithm for FNE+
aa(c)–nr.

Given a universe U and a collection of its subsets each of cardi-
nality at most 3 and associated to a weight, W3SP consists of find-
ing a sub-collection of pairwise-disjoint subsets of maximal weight.
Several constant-ratio approximate algorithms are known in litera-
ture to solve this problem, e.g., the algorithm in [4] provides a 1/2-
approximation. We now present a reduction from FNE+

aa(c)-nr to
W3SP, similar in spirit to that defined, for positive only externalities,
in [6].

Theorem 5. Given an α–approximate algorithm for problem W3SP,
we can obtain an (αγc

min)-approximation algorithm for problem
FNE+

aa(c)-nr.

Proof. Given an instance of FNE+
aa(c)-nr, we obtain an instance of

W3SP by means of the following reduction. To simplify the presen-
tation, we suppose that K is even (the proof can be easily extended
for an odd K). We divide K into K/2 blocks of two slots each.
We construct a collection of K

2
· (N

2

)
sets, each set having the form

{ai, aj , p}, where p ∈ {1, 3, 5, . . . ,K − 1} and i, j ∈ N . The
weight of a set is defined as the maximum social welfare that ads
ai and aj can provide when assigned to slots sp and sp+1 without
taking into considerations the externalities of ai and aj on the ads
allocated to slots sm, m 
= p, p + 1. Specifically, W (ai, aj , p) =
max{Λpqivi + Λp+1γi,jqjvj ,Λpqjvj + Λp+1γj,iqivi}. Note that
there is an immediate mapping between solutions of W3SP and
FNE+

aa(c)-nr. For a solution θS of W3SP, let W (θS) denote its
total weight. Now, let θ∗S and θ∗ denote, respectively, an optimal
allocation for W3SP and an optimal allocation for FNE+

aa(c)-nr.
Furthermore, let θαS be an α-approximate solution for W3SP, and
θα be the corresponding solution to FNE+

aa(c)-nr. Since in W3SP,
outer-block externalities are not taken into consideration, we have:
W (θ∗S) ≥ SW (θ∗) and SW (θα) ≥ γc

minW (θαS). From these in-
equalities we obtain:

SW (θα) ≥ γc
minW (θαS) ≥ αγc

minW (θ∗S) ≥ αγc
minSW (θ∗).

Corollary 1. If γmin is bounded from below by a constant (i.e.,
γmin ∈ Ω(1)), then FNE+

aa(c)-nr is approximable within a constant
factor.

It can be easily shown that the above algorithm is not monotone.

Theorem 6. The algorithm of Theorem 5 is not monotone

Proof. Consider an instance I of FNE+
aa(1)-nr with N = K = 4

wherein Λ3γz,4 < Λ4γ3,4, for z ∈ {1, 2}, v1, v2 � v3, v4
and γ1,2 = γ2,1 = 1 so that W (a1, a2, 1) is much bigger than
any other W (ai, aj , 1). Therefore, any reasonable approximation of
the W3SP instance constructed upon I must return sets {a1, a2, 1}
and {a3, a4, 3}. Additionally consider v4 <

Λ4γ4,3

Λ2
3−Λ3Λ4γ3,4

so that

W (a3, a4, 3) = Λ3q3v3 + Λ4γ3,4q4v4. So the solution θ returned
by the algorithm run on I places a4 in s4, resulting in CTR4(θ) =
q4Λ4γ3,4. Take now the instance I ′ defined as I except that v1, v2 �
v′4 >

Λ4γ4,3

Λ2
3−Λ3Λ4γ3,4

> v4. As before, the approximation algorithm

for W3SP will return sets {a1, a2, 1} and {a3, a4, 3} but this time
W ′(a3, a4, 3) = Λ3q4v4 + Λ4γ4,3q3v3. Therefore, the solution θ′

returned by the algorithm run on I ′ places ad a4 in slot s3, i.e.,
CTR4(θ

′) = q4Λ3γz,4, where z ∈ {1, 2} is the ad placed in slot
s2 in the allocation θ′. The algorithm is therefore not monotone and
cannot be used to design a truthful mechanism.

8 Approximating FNEaa(c)-nr

Similarly to the case c = K, Color Coding can be applied to design
an optimal exponential-time algorithm finding the optimal solution
and a simple modification of such algorithm returns a log(N)

2min{N,K}
approximation in polynomial time. While the basic idea is the same,
some details change here.

We denote by S ⊆ C a subset of colors and by δ(a) a func-
tion returning the color assigned to a. Given a coloring δ, the best
colorful allocation is found by dynamic programming. For |S| >
c, W (S, 〈ah0 , . . . , ahc〉) contains the value of the best allocation
with colors in S in which the last c + 1 ads are ah0 , . . . , ahc

from top to bottom. (The definition naturally extends for |S| ≤
c.) Starting from W (∅, 〈〉) = 0, we can compute W recursively.
For instance, for |S| > c, W (S ∪ {δ(ahc)}, 〈ah0 , . . . , ahc〉) =
Λ|S|+1vhcqhc

∏c−1
i=0 γhi,hi+1 + maxa W (S, 〈a, ah0 , . . . , ahc−1〉)

if δ(ahc) 
∈ S and −∞ otherwise. Given a random coloring, the
probability that the ads composing the best allocation are colorful is
K!
KK . Thus, repeating the procedure reK times, where r ≥ 1, the
probability of finding the best allocation is 1− e−r . The complexity
is O((2e)KKNc+2). The algorithm can be derandomized with an
additional cost of O(log2(N)).

By applying the above algorithm to the first K′ slots, K′ =
min{K, �log(N)�}, we obtain an algorithm with complexity
O(K3.5Nc+2 log2(N)). We observe that if c is not a constant, the
complexity is exponential. It is not too hard to note that such an algo-
rithm is log(N)

2min{N,K} -approximate. Moreover, this algorithm is MIR
and as such can be used to design a truthful mechanism.

9 Conclusions

We enrich the literature on externalities in SSAs by introducing more
general ways to model slot- and ad-dependent externalities, while
giving a (nearly) complete picture of the computational complex-
ity of the problem. In detail, we enrich the naive model of SSAs
by adding: (i) the concepts of limited user memory (ii) contextual
externalities and (iii) refreshable user memory (i.e., reset model).

This gives rise to the FNEsa model, where ad- and slot-dependent
externalities are factorized as in the cascade model and the FNEaa

model, where the externalities and not factorized.
We satisfactorily solve the problem for FNEsa, whereas our results

leave unanswered a number of interesting questions, with regards to
both approximation and truthfulness for FNEaa. The parameter c is
central to this list. If c is constant, then we do not know whether
a constant approximation algorithm for FNEaa(c) exists; this holds
also for the special case of FNE+

aa(c)-nr when γmin is not a constant.
In the latter case, when γmin is instead constant we are not aware of
any truthful constant approximation mechanism. Motivated by the
fact that FNEaa-r is, apparently, an easier problem than FNEaa-nr,
we believe that an interesting direction for future research is to study
reset in more detail in order to understand its role w.r.t. the relatively
harder FNEaa-nr.
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