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Abstract. The Leader-Follower Markov Decision Processes (LF-
MDP) framework extends both Markov Decision Processes (MDP)
and Stochastic Games. It provides a model where an agent (the
leader) can influence a set of other agents (the followers) which
are playing a stochastic game, by modifying their immediate reward
functions, but not their dynamics. It is assumed that all agents act
selfishly and try to optimize their own long-term expected reward.
Finding equilibrium strategies in a LF-MDP is hard, especially when
the joint state space of followers is factored. In this case, it takes
exponential time in the number of followers. Our theoretical con-
tribution is threefold. First, we analyze a natural assumption (sub-
stitutability of followers), which holds in many applications. Under
this assumption, we show that a LF-MDP can be solved exactly in
polynomial time, when deterministic equilibria exist for all games
encountered in the LF-MDP. Second, we show that an additional
assumption of sparsity of the problem dynamics allows us to de-
crease the exponent of the polynomial. Finally, we present a state-
aggregation approximation, which decreases further the exponent
and allows us to approximately solve large problems. We empirically
validate the LF-MDP approach on a class of realistic animal disease
control problems. For problems of this class, we find deterministic
equilibria for all games. Using our first two results, we are able to
solve the exact LF-MDP problem with 15 followers (compared to 6
or 7 in the original model). Using state-aggregation, problems with
up to 50 followers can be solved approximately. The approximation
quality is evaluated by comparison with the exact approach on prob-
lems with 12 and 15 followers.

1 Introduction

The Leader-Follower Markov Decision Processes (LF-MDP) frame-
work [20] is a framework which has been recently proposed to ex-
tend both Markov Decision Processes (MDP) [14] and Stochastic
Games (SG) [18, 4]. In a LF-MDP, an agent (the leader) partially
controls the reward functions of several followers acting selfishly
in a stochastic game, to optimize their long-term expected reward.
However, the leader does not influence the dynamics of the stochas-
tic game, which is only governed by the followers’ actions. Some
recent applications of the LF-MDP framework include management
in organizations [21, 13].

Many real-life problems exist where a set of followers act selfishly
on a dynamical system in order to maximize their own long-term
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profit (in a game-theoretic fashion) while a leader, not acting directly
on the system, fixes the rules of the game so that game equilibria fa-
vor its own long term objective. The following are intuitive examples
of such problems:

• Carbon tax: here, the leader fixes a carbon emission tax level
(as a modifiable rate of the total carbon emissions), while follow-
ers (firms) can take costly measures to decrease their own carbon
emission rate. The followers are the only ones to emit carbon,
but their rewards/costs are functions of other followers actions
(through global carbon emissions) and leader’s actions (through
taxes). The leader has its own profit function, which depends on
total carbon emission as well as total taxes paid by followers.

• Soccer league: In a soccer league, clubs (followers) want to max-
imize both the number of points they score during a whole season
(which determines their ranking) and their financial profit. The
league (leader) does not own a club, but wishes to maximize its
own profit (through taxes on clubs’ benefits) and the interest of
the championship (which helps generating profit). The league’s
actions consist in modifying game rules, introducing salary cap,
changing tax level, etc. But these do not change directly the state
of the system (ranking, points...).

• Animal health management: Individual farmers (followers)
breed cattle in an area where some disease can spread. Their aim
is to maximize their own profit. Control actions (depopulation,
treatment) can be applied by followers, but at some cost. The
leader can decide on financial incentives to control. These cost
him money if followers apply control actions, but the reduction in
the disease spread rewards the leader [16].

Even though solution algorithms have been proposed for LF-MDP,
based on dynamic programming [16] or reinforcement learning [21],
these do not scale to the case where the followers’ joint state space
is factored, except under very drastic assumptions (no more than two
states for each follower in [16]). Even in the case where the state
space is not factored, one has to solve multiple instances of n players
games, where n is the number of followers, which can only be done
in time exponential in n.

In this article, we consider LF-MDP in which n is higher than in
usual LF-MDP (> 10) and where the joint state space is a product of
followers state spaces. After reviewing the LF-MDP model in Sec-
tion 2, we show in Section 3 that under some natural assumptions
about the followers (substitutability, structured dynamics), we can
find equilibrium strategies for the leader and followers in time poly-
nomial in n. Substitutability of followers, in particular, occurs when
the transition and reward functions of each follower do not depend on
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the “labeling of other followers”. When this holds, we show that the
equilibrium policies of followers which are in the same state are also
the same. This suggests that a LF-MDP with substitutable followers
can be replaced with smaller a LF-MDP, where the number of follow-
ers is reduced to the size of the followers’ state space. However, we
show that, unfortunately, the solution of the reduced LF-MDP is dif-
ferent from the one of the original LF-MDP in general, except when
solution polices are deterministic. Fortunately, our experiments show
that this seems to occur very often in practice...

While polynomial in n, time complexity of reduced LF-MDP is
still exponential in the size of the state space of each follower, which
keeps them hard to solve, especially when n is large (>15). We thus
present an approximation of the solution through state aggregation
which decreases the value of the exponent of n in time complexity.
Finally, in Section 5, we present an illustration of the approach based
on a realistic problem of coordination of farmers to limit the spread of
the Porcine Reproductive and Respiratory Syndrome within a group
of farms [11]. It is used, in particular, to empirically validate the qual-
ity of approximate policies obtained through state aggregation.

2 The Leader-Follower MDP model

2.1 Definition of the LF-MDP model

2.1.1 States, actions, transitions and rewards

A single leader/multiple followers finite-horizon MDP model [20]
is a multiple time steps decision process involving one leader and
n followers. It is defined, in the finite horizon case, as3: M =<
n,Σ, AL, {AF

i }i=1..n, T, r
L, {rFi }i=1..n, H >, where:

• Σ is the joint state space of the leader and the followers. It can
have a very general form and can be factored, e.g. as Σ = SL ×
SF
1 × . . .× SF

n .
• AL = {1, . . . ,m} is the finite leader action space.
• AF

i = {1, . . . , pi} is the finite action space of follower i. For
sake of notational simplicity, we will consider in this paper that
all followers have the same action space AF = {1, . . . , p}.

• T : Σ × (AF )n × Σ → [0, 1] is the joint state transition func-
tion. T

(
σ′|σ, {aF

i }i=1..n

)
is the probability to transition from

state σ to state σ′, when the actions of the followers are set to
aF = {aF

i }i=1..n. Note that the leader’s actions do not influence
transition probabilities.

• rL : Σ×AL × (AF )n → � is the leader instant reward function.
• rFi : Σ×AL×AF → � is the instant reward function of follower

i.
• H is the horizon of the problem.

2.1.2 Policies of the leader and the followers

As usual in finite horizon sequential decision problems, we assume
that agents choose their actions at time step t according to non-
stationary policies, δLt , {δFt,i}i=1...n. We will focus on Markovian,
stochastic policies. δLt (aL|σ) is the probability that aL ∈ AL is cho-
sen by the leader at time t, given current state σ ∈ Σ. δFt,i(a

F
i |σ, aL)

is the probability that aF
i ∈ AF is chosen by follower i at time t,

given current state σ and after having observed the current action aL

of the leader.
Policies are deterministic, when δLt , {δFt,i}i=1...n take value in

{0, 1}. In this case, we write aL = δLt (σ) or aF
i = δFt,i(σ, a

L).

3 Transitions and rewards are considered stationary for the sake of notational
simplicity, but the results can be easily extended to the non-stationary case.

2.1.3 Values of policies, equilibrium policies

Let Δ =
{
δLt , {δFt,i}i=1...n

}
t=1...H

be a given joint policy of the
leader and the followers. The values QL

Δ and QF,i
Δ to the leader and

the followers are defined as follows, in every joint state and time step:

QL
Δ(σ, t) = E

[ H∑
t′=t

rLt′ | Δ, σ
]
, (1)

QF,i
Δ (σ, t) = E

[ H∑
t′=t

rFt′,i | Δ, σ
]
. (2)

Solving a LF-MDP consists in finding an equilibrium joint policy,
Δ∗ =

{
δL∗
t , {δF∗

t,i }i=1...n

}
t=1...H

, for the leader and the follow-
ers4.

Definition 1 (LF-MDP equilibrium joint policy)

Δ∗ =
{
δL∗
t , {δF∗

t,i }i=1...n

}
t=1...H

is an equilibrium policy if and
only if it verifies, ∀t, δLt , {δFt,i}, σ:

QL
Δ∗(σ, t) ≥ QL

Δ∗↓δL (σ, t), ∀δL, (3)

QF,i
Δ∗(σ, t) ≥ QF,i

Δ
∗↓δF

i
(σ, t), ∀i, δFi . (4)

Δ∗↓δL (resp. Δ∗↓δFi ) is the set of policies where the δL∗
t (resp. δF∗

t,i )
have been replaced with arbitrary policy δLt (resp. δFt,i), ∀t (∀i).

In [20], extending results of [4] from stochastic games to LF-MDP,
it was shown that there exist at least one Markovian equilibrium
joint policy in which the leader equilibrium policies are determin-
istic. Such an equilibrium policy can be computed by a backward
induction type algorithm [14], interleaving Nash equilibria compu-
tation steps for the followers and backward induction steps for the
leader, at each time step.

2.2 LF-MDP solution algorithm

Let M be a LF-MDP. An equilibrium joint policy, Δ∗ can be com-
puted backward by the following algorithm [16]:

2.2.1 Final time step

At the final time step, H , any follower i applying action aF
i ∈ AF

while the state is σ and the leader action is aL, receives an immedi-
ate reward rFi (σ, aL, aF

i ), regardless of the other followers’ actions.
Therefore, δF∗

H,iis deterministic and:

δF∗
H,i(σ, a

L) ∈ arg max
aF
i ∈AF

rFi (σ, aL, aF
i ) and

QF,i

Δ∗,aL(σ,H) = max
aF
i ∈AF

rFi (σ, aL, aF
i ), ∀(σ, aL). (5)

We define the expected immediate reward of the leader at time
t ∈ {1, . . . , H}, for a joint followers stochastic policy δFt =
{δFt,i}i=1..n:

rLδFt
(σ, aL) =

∑
aF

( n∏
i=1

δFt,i(a
F
i |σ, aL)

)
rL(σ, aL, aF ). (6)

4 In the following, we use the terms equilibrium joint policy (or equilibrium
policy, for short) for a solution of a LF-MDP and Nash equilibrium for the
solution of a normal form game, in order to avoid confusion between the
two notions.
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Then, for the leader at time step H:

δL∗
H (σ) ∈ arg max

aL∈AL
rLδF∗

H
(σ, aL), (7)

QL
Δ∗(σ,H) = max

aL∈AL
rLδF∗

H
(σ, aL), ∀σ.

2.2.2 Induction step

A followers’ joint equilibrium policy at time step t, given subse-
quent time steps joint equilibrium policies, is defined inductively as
stochastic Nash equilibria5 of normal form n-players games (∀σ, aL)
[10], where each player’s action belongs to AF .

The game value to player i of joint action aF in state σ at time t
under leader action aL and assuming that a joint equilibrium policy
is applied at subsequent time steps is defined as:

Gt
σ,aL,Δ∗(i, a

F ) = rFi (σ, aL, aF
i ) (8)

+
∑
σ′

T
(
σ′|σ, aF

)
QF,i

Δ∗(σ
′, t+ 1).

Let {α∗
1, . . . , α

∗
n} be a solution of the game Gt

σ,aL,Δ∗ (α∗
i is a

probability distribution over AF ). A followers joint equilibrium pol-
icy is given by: δF∗

t,i (a
F
t,i|σ, aL) = α∗

i (a
F
i ) and

QF,i

Δ∗,aL(σ, t) =
∑
aF

( n∏
j=1

α∗
j (a

F
j )

)
Gt

σ,aL,Δ∗(i, a
F ). (9)

Since a followers’ Nash equilibrium is determined from action
aL through Equation (9), the leader optimal policies can be com-
puted as the solutions of a non-stationary Markov Decision Process
< Σ, AL, {TδF∗

t
}, {rL

δF∗
t

}t=1..H , H >, where the {rL
δF∗
t

}t=1..H

have been defined previously and

TδF∗
t

(σ′|σ, aL) =
∑
aF

n∏
j=1

δF∗
t,j (a

F
j |σ, aL)T (σ′|σ, aF ). (10)

Functions TδF∗
t

and rL
δF∗
t

are determined before being required at
each step of the backward induction algorithm.

Optimal policies δL∗
t (σ) and value functions QL∗

Δ∗(σ, t) are also
computed backward:

δL∗
t (σ) ∈ arg max

aL∈AL

{
rLδF∗

t
(σ, aL)

+
∑
σ′∈Σ

TδF∗
t

(σ′|σ, aL)QL∗
Δ∗(σ′, t+ 1)

}
,

QL
Δ∗(σ, t) = max

aL∈AL

{
rLδF∗

t
(σ, aL) (11)

+
∑
σ′∈Σ

TδF∗
t

(σ′|σ, aL)QL∗
Δ∗(σ′, t+ 1)

}
.

2.3 Computational complexity considerations

The various steps of the generic LF-MDP solution algorithm de-
scribed above have different time and space complexities.

5 Note that since game solutions are involved, there may be more than one
Nash equilibrium, leading to different equilibrium values. When solving a
LF-MDP, one is usually interested into finding a single such Nash equilib-
rium.

2.3.1 Step 1: Normal form games generation

To compute a followers Nash equilibrium, we need to build normal
form games Gt

σ,aL,Δ∗ (Equation 8). Each game has O
(
n× |AF |n)

elements and there are |Σ| × |AL| games. The time complexity to
generate them all is thus O

(
n× |AF |n × |Σ| × |AL|), but we re-

quire to store only one such game at a time.

2.3.2 Step 2: Followers policies computation and storage

Followers Nash equilibria are solutions of the games computed
above. Storing followers’ optimal policies requires space in O(n ×
|Σ| × |AF | × |AL|). Finding an (approximate) Nash equilibrium in
a game is a hard task6 by itself [2].

2.3.3 Step 3: Leader transition and reward computation

Transition tables TδF∗
t

are computed through Equation 10.
They require O

(|Σ|2 × |AL|) space to store and time
O

(
n× |AF |n × |Σ|2 × |AL|) to compute. The reward func-

tions rδF∗
t

require O
(|Σ| × |AL|) space to store and time

O
(
n× |AF |n × |Σ| × |AL|) to compute, using Equation 6.

2.3.4 Step 4: Leader dynamic programming step

δL∗
t requires O(|Σ|) space to store and O

(|Σ|2 × |AL|) to compute
(Equation 11).

2.3.5 What can we do to decrease space and time
complexity?

Given these complexity considerations, one can notice that the time
and space complexities of all steps of solving a LF-MDP are at least
either exponential in n or at least linear in |Σ| (or both). In the case
where the joint state of the problem σ ∈ Σ is factored7, for example
when Σ =

(
SF

)n
, |Σ| is itself exponential in n.

Next, we explore the property of substitutability of followers in
LF-MDP problems. Under this property, the above steps can be per-
formed, exactly or approximately, at a lower complexity cost. It al-
lows state abstraction, a classical property of factored MDP [6, 3, 9].
It also allows followers abstraction, i.e. a potential reduction of the
number of players of all considered games. Since the complexity of
solving games (and LF-MDP) is exponential in the number of fol-
lowers, this may induce an important reduction in time (and space)
complexity. Furthermore, in some cases, followers abstraction leads
to an exact solution of the LF-MDP.

We will consider two other complexity reduction approaches.
(i) Structured followers dynamics: We will exploit the sparsity of the
transition matrix of each follower, to reduce further LF-MDP solu-
tion complexity, without adding new approximations.
(ii) Joint state aggregation: An additional state abstraction approach
will allow us to design an approximate LF-MDP solution method that
scales to problem with 50-100 followers.

Substitutability and aggregation are particularly legible properties
when the leader policy must be expressed in a simple and intelligi-
ble way and when followers’ states are imperfectly observed. It is

6 This problem is PPAD-complete, where PPAD is a specific complexity class,
“believed” to strictly include P.

7 In the most general case, Σ = SL × SF
1 × . . .× SF

n , but we will give up
the dependency on SL to simplify notations.
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common in human-based systems (economical or social), where the
leader often has to consider aggregate states of “anonymous” follow-
ers.

3 Exploiting problem structure to decrease the
complexity of solving LF-MDP

3.1 Followers substitutability

3.1.1 State space reduction through substitutability

In Section 2, we considered global state σ = (s1, . . . , sn). but, in
many applications, followers are substitutable: in the view of the
leader, all followers in the same state behave identically.

Definition 2 (Substitutability of followers)

Followers are substitutable8 in a LF-MDP M if and only if:

• SF
i = SF

j , AF
i = AF

j and rFi = rFj , ∀i, j ∈ {1..n}2.
• For any τ and τ−i, permutations of {1, . . . , n} where τ−i leaves i

at its place (τ−i(i) = i), we have T (σ′
τ |στ , a

F
τ ) = T (σ′|σ, aF ),

rL(στ , a
L, aF

τ ) = rL(σ, aL, aF ) and rFi (στ−i , a
L, aF

i ) =

rFi (σ, aL, aF
i ).

Example 1 Followers are substitutable when:

• T (σ′|σ, aF ) =
∏n

i=1 p(s
′
i|si, f(σ), aF

i ),
• rL(σ, aL, aF ) =

∑n
i=1 rL(si, a

L, aF
i ) and

• rF (σ, aL, aF
i ) = rF (si, a

L, aF
i ),

with rL and rF rewards functions and provided that function f veri-
fies f(σ) = f(στ ), ∀τ .

Proposition 1 (Substitutability of optimal policies) If followers
are substitutable in a LF-MDP M, then: δL∗

t (σ) = δL∗
t (στ ),

δF∗
t,i (·|σ, aL) = δF∗

t,i (·|στ−i , a
L), ∀, σ, t, τ, τ−i. The same property

holds for QL
Δ∗ and QF,i

Δ∗ functions.

Sketch of proof: The proof follows the induction. Step H is easy, us-
ing the invariance of rL and rF from which easily follows the substi-
tutability of rδF

H
, δF∗

H,i, Q
F,i
Δ∗(·, H), δL∗

H and QL
Δ∗(·, H). The induc-

tion step goes as easily, once we have noticed that games Gt
σ,aL,Δ∗

are also substitutable. �
An important consequence of this proposition is that if a LF-MDP

is substitutable, then it can be replaced with an equivalent LF-MDP
which (reduced) state space, denoted ΣL is composed of the equiv-
alence classes of Σ for the “permutation” relation ≡: σ ≡ σ′ iff
∃τ, σ′ = στ .

It is easy to show that any equivalence class can be represented
by a reduced global state, modeling the number of followers in each
of the k = |SF | states. This reduced global state can thus be repre-
sented by the tuple of integers:

c = (c1, . . . , ck) ∈ {0, . . . , n}|SF |, where
k∑

h=1

ch = n. (12)

ΣL is thus the set of tuples satisfying Equation 12. The size of the
reduced state space of the leader is |ΣL| =

(
n+k−1
k−1

)
= O(nk),

instead of kn for |Σ|.
The time and space complexities of the steps of the algorithm (Ta-

ble 1) are now reduced, by replacing every occurrence of |Σ|, with
|ΣL|. Step 4 becomes polynomial in n.

8 Note that the current definition has links with stochastic bisimilarity [6].
However, stochastic bisimilarity only handles factored state space, not fac-
tored action space.

3.1.2 Action space reduction through substitutability

Followers’ substitutability implies the substitutability of followers
policies δF∗

t,i . In the case where followers’ policies are determinis-
tic, then any two followers’ actions are identical when the follow-
ers are in the same state. So, the action profiles of the n follow-
ers, (a1, . . . , an), are limited to profiles in which all followers in
the same state perform the same action. In this way, a followers’ ac-
tion profile is of the form dF = (dF1 , . . . , d

F
k ) ∈ (AF )k, leading to

decreased joint action space size (|AF |k instead of |AF |n).
However, optimal policies of followers can be stochastic, mean-

ing that two identical policies may lead to different actions choices.
Thus, it may be that even under the substitutability assumption, a
Nash equilibrium for the followers may give non-zero probabilities
to all the |AF |n potential profiles. For equilibrium computation, in
order to limit the size of the joint action space, we make the approxi-
mation that even when followers policies are stochastic, followers in
the same state actually implement the same action.

This suggests the following modifications to Equations 8 and 9,
which are now used to compute games and followers policies of di-
mension k: ∀h = 1, . . . , k,

Gt
c,aL,Δ∗(h, d

F ) = rFh (c, aL, dFh ) (13)

+
∑
c′

T̄
(
c′|c, dF

)
QF,h

Δ∗ (c
′, t+ 1).

And, if {α∗
1, . . . , α

∗
k} is a stochastic Nash equilibrium of the above

game, δF∗
t,h(d

F
h |c, aL) = α∗

h(d
F
h ) and

QF,h

Δ∗,aL(c, t) =
∑
dF

k∏
j=1

α∗
j (d

F
j )G

t
c,aL,Δ∗(h, d

F ). (14)

We will see in the next subsection how T̄ is defined, but first re-
mark that with the above approximation it is assumed that actions for
all followers are chosen in the following way : An action dFh ∈ AF

is chosen at random for each h ∈ 1, . . . , k, following distribution
δF∗
t,h(·|c, aL), then all followers j which are in state h apply the same

action dFh .
When all Nash equilibria are deterministic, this assumption holds,

even in the original LF-MDP. In all other cases, the computed
equilibria are only approximate. Notice also that when replacing
Equations 8 and 9 with Equations 13 and 14, the time complexi-
ties of the steps are reduced. For Step 1, for example, it becomes
O(k|AF |k|ΣL||AL|) = O(nk). The space complexity of Step 2 be-
comes O(nk) and the games to solve are k-players games so their
time complexity is independent on n. In Step 3, Equation 10 can be
replaced with: ∀c, c′ ∈ ΣL, aL ∈ AL,

TδF∗
t

(c′|c, aL) =
∑
dF

k∏
h=1

δF∗
t,h(d

F
h |c, aL)T̄ (c′|c, dF ). (15)

The complexity of Step 3 also depends on the computation of T̄ ,
which we now describe.

3.1.3 Transitions in the reduced model

Making use of the reduction of the state and action spaces, we can
compute an aggregate transition function T̄ : ΣL × (AF )k ×ΣL →
[0, 1]. T̄ (c′|c, dF ) is the probability to transition from any state
σc ∈ Σ “compatible” with c to any state σc′ ∈ Σ “compatible”
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with c′, when applying an action aF = (aF
1 , . . . , a

F
n ) “compatible”

with dF = (dF1 , . . . , d
F
k ).

To be more precise, T̄ is defined as: ∀c, c′, dF ,

T̄ (c′|c, dF ) =
∑

σ′|=c′
T (σ′|σc, . . . , dFh , . . . , d

F
h︸ ︷︷ ︸

ch

, . . .), (16)

where σc = (1, . . . , 1︸ ︷︷ ︸
c1

, . . . , k, . . . , k︸ ︷︷ ︸
ck

) is a full state compatible with

c. σ′ |= c′ means that if σ′ = (s′1, . . . , s
′
n) then, ∀h = 1, . . . , k,

there are exactly c′h indices i such that s′i = h.

Proposition 2 T̄ defined in Equation 16 is well-defined.

Proof: By well-defined, we mean that T̄ (c′|c, dF ) does not depend
on the actual choice of σc compatible with c. Indeed, this holds
thanks to the substitutability of T . �

The space and time complexities of computing T̄ are
O

(|ΣL|2|AF |k) and O
(
n|Σ||ΣL||AF |k). Indeed, since we have to

sum over all σ′ compatible with c′ and this for all c′ to compute T̄ ,
we still have to explore Σ entirely once. Hence, computing T̄ is still
exponential in n, even though the exponent has been reduced from
2n to n.

However, for a fixed c and given follower state h, the ch follow-
ers in state h change their state to a new repartition (c1h, . . . , c

k
h)

(with c1h + . . . + ckh = ch) according to a multinomial distribution
Γh
ch,dF

h
(c1h, . . . , c

k
h) of parameters {p(h′|h, c, dFh )}h′=1..k. Further-

more, ∀c, c′, dF ,

T̄ (c′|c, dF ) =
∑

(c1h,...,ckh),
∑k

h′=1
ch

′
h =ch,

∑k
h=1 ch

′
h =c′

h′

k∏
h=1

Γh
ch,dF

h
(c1h, . . . , c

k
h).

Proposition 3 The time complexity9 of computing T̄ is
O(nk|ΣL||AF |k) = O(n2k|AF |k).

Sketch of proof: For any c = (c1, . . . , ck), each ch can transition
to

(
ch+k−1

k−1

)
k-tuples (c1h, . . . , c

k
h). Therefore, for fixed c and dF ,

we need to evaluate only
∑

h

(
ch+k−1

k−1

)
terms to compute the values

T̄ (c′|c, dF ), for all feasible c′. The result comes from the fact that∑
h

(
ch+k−1

k−1

)
= O(nk). �

3.1.4 Approximate reduced LF-MDP: Followers
abstraction

The construction of the reduced versions r̄L and r̄F is immediate in a
LF-MDP with substitutable followers. In the end, we get an approx-
imate LF-MDP M̄ =< k,ΣL, AL,

∏k
h=1 A

F
h , T̄ , r̄

L, {r̄Fh }, H >,
which is only exponential in k (and no more in n) to solve. Note the
following important proposition:

Proposition 4 In the case where the joint followers equilibrium poli-
cies of approximate LF-MDP M̄ are deterministic, they can be used
to build deterministic joint equilibrium policies for the original LF-
MDP M. This also holds for the leader equilibrium policies which
are always deterministic.

9 The complexity results given in the paper are not the tightest possible, for
ease of exposition. Here, for example,

∑
h

(ch+k−1
k−1

)
= O(knk−1) =

o(nk).

Sketch of proof: Just note that the only approximation in the pro-
cess we have described concerns the interpretation of stochastic Nash
equilibria. When Nash equilibria are pure, there is a complete equiv-
alence between M and M̄. �

In the view of Proposition 4, two facts should be highlighted: (i)
Since games may have more than one equilibrium, we should re-
turn in priority deterministic equilibria of the games and (ii) Even
though the above approach may not be exact in all cases, it is pos-
sible to check, after equilibrium policies have been computed in the
reduced LF-MDP, whether these provide equilibrium policies in the
original LF-MDP. It is enough to check that the games which have
been solved for all (t, c, aL) have a deterministic equilibrium.

3.1.5 Connection with state / action abstraction in MDP
and Stochastic Games

The state-space reduction approach that we have described in Section
3.1.1 is very close to state aggregation approaches in MDPs [9, 6,
3, 19] or in stochastic games [17]. We basically identify the case
where state aggregation leads to an optimal solution in a LF-MDP
(extending both MDP and SG cases). What is especially useful here,
is that state aggregation leads to an exponential reduction of the state
space.

More original is the form of followers abstraction in stochastic
games that we propose in Section 3.1.2. State and action spaces ab-
straction have already been proposed in the field of game theory [5, 8]
or in stochastic games [17]. However when action spaces are ab-
stracted, as in [17] (the closest work to ours we have found), only
followers action spaces AF are abstracted10. In the case we consider,
action spaces AF are already small and need not be abstracted. In-
stead, we propose to “lump” players together, which is a way to ab-
stract a game where the joint action space is large, due to the num-
ber of players and not to the size of individual action spaces. To our
knowledge, this is the first proposition in that direction in (stochastic)
game theory, or LF-MDP.

3.2 Structured dynamics of followers

Recall that a transition c → c′ is obtained through the aggregation of
n individual changes of states h → h′. Each transition has probabil-
ity p(h′|h, c, dFh ) and is independent of the other transitions, c and
dFh being given.

We can further decrease complexity when the dynamics is struc-
tured, i.e. when a follower in state h can only transition to a few
possible states, say at most NSucc < k states.

Proposition 5 When, in LF-MDP M̄, followers in any state h
transition to at most NSucc possible states, Computing T̄ requires
O(nk+NSucc |AF |k) time.

Sketch of proof: The number of terms that should be computed for
a given pair (c, dF ) is reduced to

∑
h

(
ch+NSucc
NSucc−1

)
= O(nNSucc). �

4 State aggregation

State aggregation allows us to further decrease the exponent of n in
time complexities and suppress it from space complexities, but there
is no performance guarantee anymore on the returned policies, and
we must resort to experiments to empirically evaluate the merits of
this approach (which we will do in the case study section). It consists

10 The authors considering stochastic games, there is no leader.
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Table 1. LF-MDP objects complexity, with and without suggested simplifications/approximations.

Naive Substitutability Aggregation

State space size |Σ| = O (kn) |ΣL| = O
(
nk

) |ΣL| = O
(
Kk

)
Action space size |AF |n |AF |k |AF |k
Joint state transition |T | = O

(
k2n|AF |n) |T̄ | = O

(
n2k|AF |k) | |T̄ | = O

(
nk+NSucc |AF |k) |T̂ | = O

(
K2k|AF |k)

Single game size |Gt
σ,aL,Δ∗ | = O

(
n|AF |n) |Gt

c,aL,Δ∗ | = O
(
k|AF |k) |Gt

κ,aL,Δ∗ | = O
(
k|AF |k)

Nb games / time step nb = |AF |n|AL| nb = |AF |k|AL| nb = Kk|AL|

in considering a partition of the set {0, . . . , n} into K + 2 intervals,
where K is an integer dividing N : I0 = {0}, IK+1 = {n} and
Ii = { (i−1)n

K
+1, . . . , i.n

K
}, ∀i = 1, . . . ,K. Then, we define aggre-

gate states as tuples of integers (κ1, . . . , κk) ∈ {0, . . . ,K}k. These
correspond to every combinations of sets Iκ1 × . . .× Iκk , such that
there exists a reduced state c ∈ ΣL, ch ∈ Iκh , ∀h = 1, . . . , k. Let
ΣL denote the set of aggregate states. Obviously, |ΣL| = O(Kk),
which is now independent of n.

We define two functions, relating reduced and aggregate states:

• κ(c) ∈ ΣL is the unique aggregate state which is compatible with
the reduced state c ∈ ΣL,

• ĉ(κ) ∈ ΣL is a representative of the aggregate state κ ∈ ΣL,
defined as the compatible reduced state which components ĉh are
the “closest possible” to the centers of intervals Iκh . These can be
computed, e.g. by solving small size integer linear programs (one
for each κ).

Finally, it is possible to generate a LF-MDP on the aggregate state
space. The transition function T̂ : ΣL × (

AF
)k × ΣL → [0, 1] is

defined as

T̂ (κ′|κ, dF ) =
∑

c′,κ(c′)=κ′
T̄ (c′|ĉ(κ), dF ). (17)

Reward functions r̂L and r̂Fh are defined accordingly:
r̂L(κ, aL, dF ) = rL(ĉ(κ), aL, dF ) and r̂Fh (κ, aL, dFh ) =
rL(ĉ(κ), aL, dFh ).

Proposition 6 The time complexity of computing T̂ is in
O(|AF |kKknk).

The proof is obvious, using the form of Equation 17. �
Complexity still depends on n, due to the sum over all c′, but all

other steps are independent on n. Note that since we are interested
in probabilities to transition to aggregate states κ′ and not reduced
states c′, we could estimate these by simulating the transitions. So
doing, the sample size would be a function of |ΣL| and not |ΣL|, and
thus independent on n.

Solution policies of this LF-MDP will assign the same policies to
all reduced states compatible with the same aggregate state, and of
course to the full states compatible with these reduced states. This
may result in a loss of quality of the returned strategies. In Section
5, we illustrate the impact of state aggregation on a disease control
problem.

The contributions of this paper to LF-MDP complexity reduction
are summarized in Table 1.

5 Case study

In order to demonstrate the practical interest of exploiting substi-
tutability, structured dynamics and state aggregation in LF-MDP, we

will focus on a case study concerning a problem of coordination of
farmers to limit the spread of the Porcine Reproductive and Respira-
tory Syndrome (PRRS) within a group of farms [11].

This problem, as many others in animal health management (or
other applications, listed in the introduction) involves some followers
and one leader that has the ability to indirectly control their dynam-
ics. The followers each own one herd that may be infected by an en-
demic disease (PRRS). PRRS is an endemic, non-regulated disease,
meaning that treating infected herds is non-compulsory. However, in
order to limit the spread of the disease, which impacts pig growth
and meat production, farmers associations may propose financial in-
centives, to limit the cost of treatments to farmers.

This is typically a case where the followers directly influence
the dynamics of the system (disease spread) through management,
while the leader (the Association) influences their reward functions
(through incentives). The farmers are assumed to maximize their own
long-term profit, while the association maximizes its own, including
both an infection-spread related reward and incentive costs.

5.1 The LF-MDP model of PRRS spread control

5.1.1 The model

We consider a group of n farmers taking decisions for their own herd
(followers). PRRS is modeled with a compartmental approach, with
five compartments (k = |SF | = 5):

• S: Susceptible (=non-infected).
• Sb: Susceptible with management (biosecurity measure).
• I: Infected by PRRS.
• I0: Infected, with control measure starting. Not fully efficient yet
• IC Infected, controlled (efficient).

Actions are different in each herd state, but at most two actions (’do
nothing’, ’manage’) are available in each state.

These govern the transition probabilities from each state11 (see
Figure 1):

• S: A S herd becomes I (infected) with probability βS . Else, either
stays S (if action=do nothing) or becomes Sb (action=manage).

• Sb: For a Sb herd, only ’manage’ action is available. Transition
probability to I is reduced to νβS .

• I: Transitions are deterministic: to I (do nothing) or to I0 (man-
age).

• I0: Only ’manage’ action is available: transition to IC with prob-
ability ψ, modeling a stochastic sojourn time in state I0.

• IC : Transitions are deterministic: To IC (do nothing) or to S
(manage=depopulation).

11 Self-transition probabilities are omitted, for sake of readability.

R. Sabbadin and A.-F. Viet / Leader-Follower MDP Models with Factored State Space and Many Followers 121



Table 2. Values of parameters in the three sets used for n = 15. In addition, ψ = 0.5, β = (0, 0, 0.08, 0.06, 0.01), βout = 0.005 and LL = red× LF .

Set ν LF cF cL perc red

2001 0.5 (0,0,6,5,4) (4,1,4,2,101) (0,3) 0.5 0.75
824 0.73 (0,0,8.76,5.84,2.92) (8.53,1.46,12.79,2.92,147.46) (0,4.38) 0.26 0.73
131 0.7 (0,0,4.8,5.6,2.8) (7.84,1.4,11.76,2.8,101.4) (0,4.2) 0.7 0.7

Note that while ν and ψ are constants, βS is a function of the state
of all herds. We assume that, the group of herds being tightly linked
(geographically, but also by sales and purchases), βS only depends
on the total numbers of herds in each of the 5 states (equation 18).
This implies the substitutability of the transition model.

βS(c) =
1

n

k∑
h=1

β(h)c(h) + βout (18)

where the β(h) and βout are real-valued parameters.
The reward functions are the following:

rL(σ, aL, aF ) = −cL(aL)−
n∑

i=1

cF (si)q
L(aL, aF

i )− LL(si),

rF (σ, aL, aF
i ) = −Es′i

[
LF (s′i)

]
−

n∑
i=1

cF (si)q
F (aL, aF

i ),

where

• cL is the cost of the leader action,
• LX(si) are the losses of the herd in state si for either the farmer

if X = F or the leader if X = L,
• cF (si)q

L(aL, aF
i ) is the amount of the action cost of a herd in

state si payed by the leader,
• cF (si)q

F (aL, aF
i ) is the amount of the action cost of a si herd

payed by the farmer.

Where qL(aL, aF
i ) and qF (aL, aF

i ) are defined by:

• qL(aL, aF
i ) = perc if aL = 1 and aF

i = 1,
• qL(aL, aF

i ) = 0 else;
• qF (aL, aF

i ) = 1 if aL = 0 and aF
i = 1,

• qF (aL, aF
i ) = 1− perc if aL = 1 and aF

i = 1,
• qF (aL, aF

i ) = 0 else.

It can be easily checked that they are also substitutable (note that
expectation Es′i [·] is taken with respect to a substitutable transition
function).

5.1.2 The experiments

The comparison with the exact model was run in Matlab for H = 10
with n = 12, K ∈ {3, 4, 6} and n = 15, K ∈ {3, 5}. For n = 12
and K = 3, we generated 1000 sets of parameters values with vary-
ing values of costs and losses. For most sets, the leader policy con-
sisted in always doing nothing. For the comparison with the exact
model (using the substitutability assumption), we selected 17 scenar-
ios. For comparison with the case n = 15, due to the computing time
to solve the exact model, we explored only the three sets of parameter
values described in Table 2.

We evaluated the impact of the number of classes, K, on various
model results at the leader level. As far as the followers policies were
concerned, we simply checked whether or not they were determinis-
tic.

S

Sb

IC

I0

I

Do Nothing Manage

S

Sb

IC

I0

I
βS

νβS

ψ

βS

νβS

ψ

11− βS

1

Figure 1. Transitions between follower’s states.

To compare the leader optimal policies computed with the differ-
ent K (noted δK ) with the global optimal policy δ∗, we computed 3
indicators :

• Last Diff : The absolute difference between times of the last
leader management, between the aggregate and global optimal
policies.

• #Diff : Number of time steps for which both policies were not
equal.

• Max Gap: Maximum (over all time steps) proportion of states
for which both policies differ.

Different policies may lead to similar distributions over states at
each time step. So, in order to further evaluate our approximation,
we compared the distributions over states at time step H obtained
when applying δ∗ or δK . To compute these distributions, we have to
choose an initial distribution (time step 1). We considered two ini-
tial distributions : (i) ΓU uniform over all states, and (ii) ΓE uniform
only on “highly infected” states (states where around 40% of follow-
ers are in state S or Sb and around 40% are in state IC ). To compare
the distributions resulting from δK and δ∗, we computed the Bat-
tacharyya distances [1] between them, denoted DB U and DB E
for ΓU and ΓE respectively.

As different policies may be equivalent in terms of values, we
evaluated the impact of the approximation on the objective function.
We computed a distance derived from the root mean square error
(RMSE):

RMSE x =

√ ∑
c∈ΣL

((V K(c)− V ∗(c))2 × Γx).

with x = U or x = E and V K(.) is the value function of policy δK .
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5.2 Experimental results

5.2.1 Empirical complexity reduction

The decrease in state space size using aggregation of course depends
on K and N (Table 3). One should note that state aggregation does
not partition the state space into uniform clusters (Fig. 2). We will
see in the following section that this does not have a dramatic impact
on the performance of the computed policies.

Table 3. Size of the leader states space according to the value of K (|ΣL|
if K = n or |ΣL| else; − if not applicable)

n K = n K = 3 4 5 6 10 25
12 1,820 236 361 - 745 - -
15 3,876 251 - 631 - - -
20 10,626 - 496 806 - 10 -
50 316,251 - - 876 - 6,376 79,101
100 4,598,251 - - 876 - 6,376 114,526

� � �

Figure 2. For n = 12, repartition of the number of global states per
aggregate state for (A) K=3, (B) K=4 and (C) K=6.

5.2.2 Comparison results

Followers’ optimal policies were found deterministic in all param-
eters sets tested. The leader policies varied when K varied. When
considering the time steps where the action ’manage’ was retained
by the leader in at least one state, we had two possible profiles for
the leader policy: management only at one time step (for example for
parameters set 824) or management in several time steps (for exam-
ple the sets 2001 and 131). In the tested sets, these profiles were kept
when changing K and n. In the three tested configurations, the last
management time step was the same for all K, both for n = 12 and
n = 15 (Last Diff = 0). Still, the policies differed in some states
when K varied (#Diff > 0). The proportion of states where the
policies differed also varied (Max Gap between 1.5% and 30% for
the tested sets).

The impact on the final distributions and expected values varied.
For parameters set 824, the impact was null for the distributions and
very low for the values. It can be explained by the fact that the poli-
cies differed in only one time step. For other parameters sets, the final
distributions varied with K, but the variations were low. The impact
of the initial distribution (ΓU or ΓE) on the variation of expected
value with different K was not consistent between different parame-
ters’ sets and number of followers (Fig. 3). Overall, even though this
conclusion should be taken with caution, given the small number of
configurations tested, it seems that the approximation becomes better
when K increases, which seems logical.

6 Concluding remarks and future work

In this article, we have proposed approximation methods to com-
pute solutions to LF-MDP problems. Even though these experiments
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Figure 3. For parameter sets 2001 and 131 (table 2), comparison of the
approximated results to the exact ones for various K and n.

have not been reported in the paper, we observed that the suggested
approximations permitted to solve approximately problems with up
to 100 followers (and K = 5). The number of classes for state ag-
gregation were observed in the three parameter sets to be correlated
to the approximation quality on the case study whatever n, but this
obviously has to be confirmed by further experiments.

Note that, in the proposed approach, the computed equilibria are
equilibria in the reduced LF-MDP, not in the original one. However,
we have a way to check a posteriori (apart in the case of state aggre-
gation), whether all the returned equilibria of games are determinis-
tic. If so, the solution is exact. If not, it is approximate. We leave for
further research the question of approximability of LF-MDP equi-
librium strategies, which is certainly worth considering and extends
that of stochastic Nash equilibrium approximation.

One perspective of this work is to model the heterogeneity of fol-
lowers, which can be done rather straightforwardly by “duplicating”
followers state spaces and modeling followers types by different re-
ward functions. Transitions are allowed between the duplicated state
spaces if and only if followers can change their type over time.The
new problem is still a LF-MDP, with more states, but potentially
more “structure” as well. If followers keep the same “type” all along
the problem, no transition is allowed between the duplicated state
spaces.

As mentioned in the end of Section 4, the dependency on n of
time complexity could be suppressed if simulation-based approaches
were used to approximate T̂ (e.g. Bayesian RL [7]). Bayesian ap-
proaches have also been used in the framework of Partially Observed
MDP (POMDP) [15]. Partial observability of followers states could
be considered as well in LF-MDPs, leading to LF-POMDP models,
mixing dec-POMDP with Bayesian games, in the line of [12], for
example.
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