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Abstract. Item response theory (IRT) is widely used to measure la-
tent abilities of subjects (specially for educational testing) based on
their responses to items with different levels of difficulty. The adap-
tation of IRT has been recently suggested as a novel perspective for a
better understanding of the results of machine learning experiments
and, by extension, other artificial intelligence experiments. For in-
stance, IRT suits classification tasks perfectly, where instances cor-
respond to items and classifiers correspond to subjects. By adopting
IRT, item (i.e., instance) characteristic curves can be estimated us-
ing logistic models, for which several parameters characterise each
dataset instance: difficulty, discrimination and guessing. IRT looks
promising for the analysis of instance hardness, noise, classifier dom-
inances, etc. However, some caveats have been found when trying to
interpret the IRT parameters in a machine learning setting, especially
when we include some artificial classifiers in the pool of classifiers
to be evaluated: the optimal and pessimal classifiers, a random clas-
sifier and the majority and minority classifiers. In this paper we per-
form a series of experiments with a range of datasets and classifica-
tion methods to fully understand how IRT works and what their pa-
rameters really mean in the context of machine learning. This better
understanding will hopefully pave the way to a myriad of potential
applications in machine learning and artificial intelligence.

1 INTRODUCTION

It is no news that most techniques in artificial intelligence, even with
a strong theoretical background, are ultimately evaluated empirically,
by comparing them and other methods against a set of problems,
taken from a benchmark or repository. Aggregated performance met-
rics, such as an average quality measure over a set of problems, or the
use of statistical pairwise comparisons are commonplace. However,
having a greater value of an aggregated metric or more “win pairs”
against another technique only provides summarised information. In
many areas it is important to analyse the particular problems for
which the best techniques usually fail, whereas other simpler tech-
niques can succeed. Is it because the problem is pathological? Or is
it because the techniques have some lacunas?

In this paper we analyse these questions using item response the-
ory (IRT), a group of modelling and statistical tools borrowed from
psychometrics that are designed to provide a precise characterisation
of items and subjects, by analysing their responses [5, 13, 4]. Simi-
larly to IRT, in our context we define the proficiency (or ability) of
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a model or technique as the level of hard instances this technique
is able to solve. For instance, if a classifier solves all the simple in-
stances but none of the difficult ones, the classifier may be worse (in
terms of proficiency) than a classifier that solves most of the simple
ones and some of the difficult ones. We focus on supervised machine
learning and classification in particular, since there are many inter-
esting questions such as instance hardness, noise handling, outliers,
meta-learning, borderline areas, etc., that can find a parallel in IRT
and have a particular understanding under this theory.

IRT shows a dual behaviour in the way that classifier ability and
instance difficulty are estimated at the same time, both depending on
the other classifiers and instances. Instance difficulty, or hardness, is
an important feature of an instance. Actually, in machine learning,
it has been recently demonstrated that incorporating instance hard-
ness into the learning process can significantly increase classification
performance [12, 9]. However, instance hardness gives a very lim-
ited perspective of what is happening with an instance. Apart from
difficulty, a very interesting parameter in IRT is the discrimination
parameter of an instance. In machine learning, as we will see, the
discrimination parameter can be seen as a measure of how effective
each instance is for differentiating between strong or weak classifiers
for a certain dataset. Thus, some instances are only solved by more
proficient classifiers. However, some other difficult instances are not
solved by these classifiers. Is there anything special in these points?
Are some of them really difficult instances while the others being just
noise? Can we detect them using IRT?

Also, looking at the classifiers, we can think about what makes
certain classifier proficient or whether there are more suitable clas-
sifiers for more difficult instances. We can analyse dominant regions
depending on the difficulty parameter or the discrimination parame-
ter. For instance, given a new instance, if we expect or estimate that it
is going to be hard, one classifier may be preferable, but for easy in-
stances another classifier may be more robust. These classifier char-
acteristic curves may be very interesting to analyse machine learning
models.

IRT may be the right tool to analyse all these questions. However,
there are some issues about the use of IRT that need more under-
standing. After a previous preliminary use of IRT in machine learn-
ing only using one classifier technique (random forests) [10], we have
extended the analysis for more datasets and many more models, and
we have found some caveats when trying to locate classifiers and un-
derstand the parameters of the items (difficulty, discrimination and
guessing) and especially the abilities of the classifiers. Solving these
caveats is necessary to clarify the previous questions and make full
sense of IRT in machine learning.

In this paper, we present this novel IRT-based approach with po-
tential applications in machine learning and artificial intelligence. We
analyse the instance-wise performance of a great variety of classifiers
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and determine those cases for which classifiers fail. In a nutshell, this
paper contributes to clarify how IRT works, highlighting the role it
can play in potential machine learning applications.

The rest of the paper is organised as follows. Section 2 discusses
why a more detailed analysis of artificial intelligence results, and
machine learning results in particular, is necessary and why IRT can
be an appropriate tool for this. Section 3 describes the experimental
methodology used in terms of classifier techniques, artificial classi-
fiers and datasets used, as well as the particular estimation methods
for the IRT models. Section 4 focuses on the inferred instance pa-
rameters: whether difficulty really represents instance hardness, the
interpretation of the discrimination parameter (especially when close
to zero or negative) and the relation between the class distribution
and the guessing parameter. Section 5 focuses on the inferred classi-
fier ability, how it relates to ability and the effect of removing the in-
stances with negative discrimination. Section 6 discusses the findings
of the previous sections and gives a global interpretation of what the
IRT parameters mean and how they should be used. Section 7 closes
the paper with the prospective applications, once seen that IRT and
machine learning make sense together.

2 BACKGROUND

It is clear that the better we understand how a technique behaves for
a range of problems the more possibilities we have for an accurate
evaluation, the right selection of the optimal technique for a given
problem and the improvement of the technique themselves. Let us
first analyse why some practices in AI and machine learning may be
benefited by a more detailed analyses, especially in terms of discrim-
ination, and then we will see what IRT may bring.

2.1 Motivation

In any area of artificial intelligence, some problems are more difficult
than others, and some techniques are more capable than others. But
what is the relation between difficulty and ability? Is it a monotonic
one, i.e., better techniques usually get better results on more diffi-
cult problems and usually solve the easier ones? Should we focus
our efforts on developing or improving our techniques such that they
address the more difficult and challenging problems or such that they
are more robust with the easier, and perhaps more common, prob-
lems?

These questions are critical for the progress and evaluation of the
techniques in any AI discipline, from planning to machine transla-
tion. Of course, each discipline has a set of benchmarks and a group
of state-of-the-art techniques, which are used to analyse and compare
any new proposal, either as particular research papers or open com-
petitions. We can rank techniques according to their overall results,
or even do pairwise comparisons and show that method A is better
than B. The results may even say that the difference is statistically
significant. However, what we seldom analyse is how the overall re-
sult for a collection of benchmark problems is distributed. Are these
systems better on the more difficult problems at the cost of failing at
some easy problems? Also, as the discipline progresses, new chal-
lenging problems are included and, sometimes, the easy problems
are removed from the benchmark. The analysis of problem difficulty
or hardness is then very relevant to understand not only whether, but
how, AI methods are improving.

An area where the analysis of difficulty, or hardness, has been in-
vestigated recently is machine learning. Machine learning has a long
tradition of evaluating different techniques with many problems, but

the use of difficulty is not so common. In the area of metalearning
[3], it is common to analyse the features of classifiers and datasets in
order to see which ones go well with a particular dataset. However,
the notion of ‘difficulty’ of a dataset cannot be assigned to accuracy
or cost. For instance, it is easy to get high accuracy for a very im-
balanced binary problem while it is very difficult for a problem with
ten balanced classes. Accuracy or any other common metrics [6] are
not very related to the difficulty of a dataset. There have been some
recent analysis of repositories [15, 8], but the notion of difficulty is
elusive in this context.

There is a more significant analysis of the difficulty or hardness
of instances, given a dataset. In [12], Smith et al. provide an empir-
ical definition of instance hardness based on the average behaviour
of a set of diverse classifiers (e.g., the average error produced by the
pool of classifiers for that instance). This has several potential ap-
plications, as mentioned above, for the detection of where different
classifiers fail and how they can be improved. However, this average
hardness misses important information about instance difficulty as it
might be the case that the instance is difficult for all classifiers homo-
geneously (only 10% of the classifiers get it right with no correlation
to their accuracy) or is difficult especially for most but some classi-
fiers (only 10% of the classifiers get it right but these are the most
competent ones for the dataset). This information is key to under-
stand what the instances really are and how the classifiers are really
behaving. Also, instance hardness alone does not say much about
whether a few instances can be used to tell between good and bad
classifiers, in a model selection situation.

Interestingly, all of these issues have been addressed in the past by
item response theory.

2.2 Item response theory

Item response theory (IRT) [5, 4] considers a set of models that re-
late responses given to items to latent abilities of the respondents.
IRT models have been mainly used in educational testing and psy-
chometric evaluation in which examinees’ ability is measured using
a test with several questions (i.e., items).

In IRT, the probability of a response for an item is a function of
the examinee’s ability (or proficiency) and some item’s parameters.
There are models developed in IRT for different kinds of response,
but we will focus on the dichotomous models. In dichotomous mod-
els the response can be either correct or incorrect. That does not mean
that there are only two possible answers to a question. There might
be more than two, as usually in multiple-option questionnaires.

Let Uij be a binary response of a respondent j to item i, in which
Uij = 1 for a correct response and Uij = 0 otherwise. Let θj be
the ability or proficiency of j. Now, assuming that the result only
depends on the ability and no longer on the particular classifier, we
can express the response as a function of i alone, i.e. Ui. For the basic
3-parameter (3PL) IRT model, the probability of a correct response
given the examinee’s ability is modelled as a logistic function:

P (Ui = 1|θj) = ci +
1− ci

1 + exp(−ai(θj − bi))
(1)

The above model provides for each item its Item Characteristic
Curve (ICC) (see Figure 1 as an example), characterised by the pa-
rameters:

• Difficulty (bi): it is the location parameter of the logistic function
and can be seen as a measure of item difficulty. When ci = 0,
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Figure 1: Example of a 3PL IRT model (in black), with slope a =
2 (discrimination, in red), location parameter b = 3 (difficulty, in
green) and guessing parameter c = 0.1 (chance, in grey).

then P (Ui = 1|bi) = 0.5. It is measured in the same scale of the
ability;

• Discrimination (ai): it indicates the steepness of the function at the
location point. For a high value, a small change in ability can result
in a big change in the item response. Alternatively we can use the
slope at location point, computed as ai(1 − ci)/4 to measure the
discrimination value of the instance;

• Guessing (ci): it represents the probability of a correct response
by a respondent with very low ability (P (Ui = 1| − ∞) = ci).
This is usually associated to a result given by chance.

The basic IRT model can be simplified to two parameters (e.g., as-
suming that ci = 0), or just one parameter (assuming ci = 0 and a
fixed value of ai, e.g. ai = 1).

The ability of an individual is not measured in terms of the num-
ber of correct answers but it is estimated based on his/her responses
to discriminating items with different levels of difficulty. Respon-
dents who tend to correctly answer the most difficulty items will be
assigned to high values of ability. Difficulty items in turn are those
correctly answered only by the most proficient respondents.

Straightforward methods based on maximum-likelihood estima-
tion (MLE) can be used to estimate either the item’s parameters
(when examinees’ abilities are known) or the abilities (when items’
parameters are known). A more difficult, but common, situation is
the estimation when both the items’ parameters and respondents’
abilities are unknown. In this situation, an iterative two-step method
(Birnbaum’s method [2]) can be adopted:

• Step (1) Start with initial values for abilities θj (e.g., random val-
ues or the number of right responses) and estimate the model pa-
rameters;

• Step (2) Adopt the estimated parameters in the previous step as
known values and estimate the abilities θj .

In this method, items’ parameters and abilities are simultaneously
estimated only based on a set of observed responses to items, with
no strong knowledge about the true ability of the respondents.

In our adaptation of IRT, an item in IRT can be identified with a
problem in AI, and an individual (or subject) can be identified with
an AI method, technique or system. In the case of machine learn-
ing, an item can be a dataset (the whole problem) or it can be an
instance (an example in a dataset). While we think that the equating
of items with datasets can be very interesting, we leave this as future

work, with this paper focusing on the analysis of items as instances.
In a very preliminary analysis of the application of IRT to machine
learning [10], we addressed classification problems, and we iden-
tified items with instance and individuals with classifiers. Accord-
ingly, we can talk about instance difficulty, instance discrimination,
instance guessing and instance characteristic curves, but also we can
talk about ‘classifier abilities’.

The previous analysis in [10] was restricted to just one classifier
technique (random forest) varying the number of trees. As a con-
sequence, results were very smooth and expectable, as the higher
the number of trees the higher the ability. We already found some
caveats, as our lack of understanding of the ‘guessing’ factor, which
we wanted to connect to the class distribution. However, we did not
know how IRT would behave for a pool of diverse classifiers and,
most especially, what parameters we could get when we have spe-
cial classifiers, such as a random classifier, a majority classifier or
a perfect classifier. The IRT packages used then and the number of
datasets were also limited, so we had a very restricted view of the
application of IRT.

In this paper we widen our focus and do a more consistent ex-
perimental analysis on a range of different classifiers and datasets,
showing and explaining some unexpected results.

3 METHODOLOGY

We want to design a realistic and reproducible experimental sce-
nario5 where we can compare a wide range of classifiers with a di-
versity of datasets6.

For estimating good IRT models, a reasonably high number of in-
dividuals is needed. Since we equate individuals with instances this
is not an issue if we do not use datasets with a very small number of
examples N (¡100).

However, the most critical issue is obtaining a large population of
techniques. In order to achieve that, we used 128 classifiers arising
from 15 different families (decision trees, rule-based methods, dis-
criminant analysis, Bayesian, neural networks, support vector ma-
chines, boosting, bagging, stacking, random forests, nearest neigh-
bours, partial least squares, principal component regression and lo-
gistic and multinomial regression). In order to obtain 128 classifiers,
but still heterogeneous, we modified their parameters6 to obtain sev-
eral different models per technique. For instance, a pool of classifiers
was produced by Random Forests (RF) trained with different num-
bers of trees. All the classifiers are implemented in R. Some use a
particular package while others use the classifier through the inter-
face provided by the caret7 package. We learned the models adopting
10-fold cross-validation.

Apart from the classifiers generated by machine learning tech-
niques, we also introduced some artificial classifiers:

• Three random classifiers (RndA, RndB, RndC), the three equally
using the prior class probabilities but included to analyse variabil-
ity.

• Majority/minority classifier (Maj, Min), which always return the
majority/minority class of the dataset.

• Two idealistic (not feasible in practice) classifiers, using the test
labels: an optimal/pessimal classifier (Opt, Pess) which always

5 For reproducibility, all the experiments can be found in https:
//github.com/nandomp/IRT_params/blob/master/
Experiments.md.

6 The whole list of classifiers’ parameters, data, plots, configuration files and
code is in https://github.com/nandomp/IRT_params.git.

7 See http://caret.r-forge.r-project.org.
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succeeds/fails respectively.

These seven artificial classifiers are used as baselines, establishing
a continuum from the pessimal to the optimal. The random ones are
in between, plus the minority and majority class.

We have performed a series of experiments using the Cassini8 toy
dataset and a set of eight real datasets from the UCI repository [1].
For space reasons, in the paper we only show the results for the
“Cassini” and the “Heart-Statlog” dataset. “Cassini” is a 3-class bi-
variate toy dataset composed by 200 instances with a 10% of random
noise we put on purpose (see Figure 2), and we use it as an illustrative
dataset. “Heart-Statlog” is a binary dataset which has 270 instances
and 13 attributes containing heart disease data (see Figure 5) and we
use it as a representative dataset.

For all datasets separately we develop the parameter tuning in or-
der to obtain the logistic models and proficiency models. The bi-
nary results from the classifiers are always obtained by using the test
“fold”, therefore never using the train sets to obtain the responses.
In particular, a 3-parameter IRT model (based on logistic functions)
is learned for each instance, fitting the classifiers’ correct response
probability according to their abilities and the guess parameter. We
adopt MLE to estimate all the models’ parameters of all instances
and the classifiers’ ability simultaneously, as usual in IRT. In particu-
lar, for generating the IRT models, we used the ltm[11] R package,
which implements the previously mentioned Birnbaum’s method.

The model parameters characterise the instance difficulty, guess
parameter and discrimination power, as we will analyse in the fol-
lowing section. The ability of a classifier is also estimated by the
MLE method in the IRT package under different contexts (levels of
instance difficulty). As we will see in Section 5, it is related (non-
linearly) to classification accuracy.

4 ANALYSIS OF THE INSTANCE
PARAMETERS

The item parameter that is easiest to understand is difficulty. Because
of the MLE estimation method, the value is not equal but well cor-
related to the percentage of classifiers that predict it correctly. Diffi-
culty can be estimated by other (simpler) methods, such as [12], and
it has no interpretation problems, so let us focus on the discrimina-
tion and the guessing parameters next.

4.1 The discrimination parameter

The discrimination parameter (slope) is a measure of the capability
of an item to differentiate between individuals (classifiers). There-
fore, when applying IRT to evaluate classifiers, the slope of an in-
stance can be used to indicate if the instance is useful to distinguish
between strong or weak classifiers for a problem. With the aim of
better understanding the meaning of this parameter, we first used the
toy Cassini dataset (see Figure 2). In this case, 200 IRT models were
built (one per instance) and 128 values of ability for the set of clas-
sifiers were estimated. Some examples of item characteristic curves9

(ICCs) are presented in Figure 3. What we see is that some instances
are more difficult than others: instance “b” has difficulty 0.9 while
instance “c” has difficulty -2.1. The slopes for the four instances here
are positive but with pretty different slope values (see Table 1).

8 Provided by the mlbench R package (see https://cran.r-project.
org/web/packages/mlbench/).

9 All ICCs for the Cassini and the UCI datasets are in https:
//github.com/nandomp/IRT_params/tree/master/
_guessingParam_
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Figure 2: Visualisation of the Cassini toy dataset. Different colours
represent different classes. Those instances with negative slope are
represented with a black dot inside. ICCs of those instances labelled
with a letter are shown in Figures 3 and 4.
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Figure 3: Examples of ICCs (with positive slope) of the points la-
belled in Figure 2 from “a” to “d”. Classifier abilities are also in-
cluded in the ICCs, plotted at y = 1 if they succeed on the instance,
and at y = 0 otherwise. Artificial classifiers are named. The proba-
bility of correct response for the ability values of the three random
classifiers are plotted with red dashed lines (cut points) usually ap-
pearing together or very close.

Item Guess Difficulty Discrimination

a 0.18204 -1.06159 18.70137
b 0.71252 0.89022 13.67411
c 0.00016 -2.12133 6.81183
d 0.05437 -0.03429 5.10973
e 0 -0.99836 -1.57099
f 0 -2.11275 -1.70781

Table 1: ICC parameters for the plots in Figures 3 and 4
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From the 200 instances, 180 had positive slopes (i.e., positive dis-
crimination values), matching the common assumption of IRT and
the nice ICCs on Figure 4. In these cases, the probability of correct
responses is positively related to the estimated ability of the clas-
sifiers. But negative discrimination values were observed for 20 in-
stances. We can identify them in Figure 2 as those with a black dot
inside. Figure 4 shows two ICCs examples for these cases “e” and
“f”. As the discrimination is negative, this means that these instances
are most frequently well classified by the weakest classifiers. These
cases are anomalous in IRT (usually referred to as “abstruse” or “id-
iosyncratic”’ items). But in the context of machine learning, these are
precisely the instances that may be most useful to identify particular
situations. For example, if two instances 1 and 2 in a binary classifi-
cation problem have exactly the same features but belong to different
classes, then P (U1j = 1|Θj) = 1 − P (U2j = 1|Θj). In this situa-
tion, one of the instances may have been wrongly labelled, which can
result in a negative-slope ICC. Focusing on the Cassini dataset, noisy
instances put on purpose are exactly those that have negative slope.
The same applies when using the Heart-statlog dataset (Figure 5), but
in this case, where no noisy instances are introduced on purpose (but
there might be noise originally), negative slopes usually appear for
instances that are in regions of the instance space dominated by the
other classes.
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Figure 4: Examples of ICCs (negative slope) of the points labelled in
Figure 2 as “e” and “f”. Classifier abilities are plotted in y = 1 if
they succeed, otherwise, in y = 0. Artificial classifiers are named.

By looking at the discrimination parameter for several instances,
we now see that difficulty alone is insufficient to understand what
is going on with an instance, and that the discrimination parameter,
especially when negative, can highlight the key instances in a dataset.

4.2 Understanding the guess parameter

In IRT, the pseudo-guess (or guessing) parameter (characterising the
lower asymptote of the ICCs) tells us how likely the examinees are
to obtain the correct answer by guessing. Namely, even if the exam-
inee does not know anything about the matter (has an ability equal
to −∞), he or she can still have some chances to succeed. For in-
stance, on a multiple choice testing item with four possible answers,
the guessing parameter is 0.25.

However, we now find that, when applying IRT in machine learn-
ing, the guessing parameter has nothing to do with the original mean-
ing for psychometrics. Following the above definition, our intuition
would tell us that the guess parameter should be equal to one divided
by the number of classes. But we see it is not the case when eval-
uating classifiers with datasets. An illustrative example of this can
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Figure 5: Visualisation of the Heart dataset using the first principal
components. Different colours represent different classes. Crosses
indicate the instances with negative slopes. Normal data ellipses are
represented for each group (class) as well as the arrows for the orig-
inal variables (dataset attributes).

be seen again if we go back to Figure 3, which plots some exam-
ples of ICCs for the Cassini dataset (3 classes). We see that the lower
asymptotes of the ICCs take different values which, although helping
the logistic model to be more flexible, are very different from what
one would expect for this dataset (which would depend on the class
distribution). From the rest of experiments with UCI datasets used
we concluded exactly the same —initially surprising— fact.

But, interestingly, if we plot as a cut points (dashed red lines) the
probability of correct response for the ability values of the three ran-
dom classifiers, we get some interesting but disparate values, in this
case 0.18, 0.71, 0.5 and 0.06 on Figure 3. However, we can compute
the average conditional probability of success of these random clas-
sifiers (or all that have ability the same ability, denoted by θc), for all
instances, i.e.,

pSuccess(θc) =

∑
pi(Ui = 1|θc)

N

where c is the classifier and N is the number of instances. The values
of pSuccess(θc) for the three random classifiers are 0.35, 0.36 and
0.36. As the class proportions for this dataset are 0.4, 0.4 and 0.2
and the random classifiers use the prior distribution, we have 0.42 +
0.42+0.22 = 0.36 as expected accuracy, which explains these values.

As a conclusion, the guessing parameter has to be interpreted as an
extra degree of freedom to fit the logistic models, but not linked to the
class distribution. Interestingly, as we have introduced the pessimal
classifier, it is even clearer that linking the guessing parameter to the
number of classes or their distribution does not make sense, as there
can be models, at least in theory (e.g., the pessimal classifier), that
have 0 accuracy even for two classes.

5 ANALYSIS OF ABILITY AND CLASSIFIER
CHARACTERISTIC CURVES

As we mentioned in the introduction, IRT has a dual character in
the way that we get information about the items (instances) but also
about the subjects (classifiers). What information can we extract
about the classifiers using IRT? Directly, IRT estimates a value of
ability θ for each classifier. How is this indicator interpreted? This is
what we see next.
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5.1 Estimated abilities and actual classifier quality

Figures 6 and 7 show the estimated abilities of all classifiers for the
Cassini and Heart-statlog datasets against accuracy (Left) and against
the average probability of success pSuccess(θc) given the ability of
the classifier (Right). In both cases, we see a strong correlation, as
expected, i.e., able classifiers have higher accuracy. It seems that the
correlation is more linear in the case of pSuccess(θc), but basically
left and right plots portray a similar picture.

The interesting bit comes when we look at the extreme classifiers,
such as Pessimal and Optimal. We should expect that they had the
worst and best estimated abilities respectively, but this is not what
we see. Actually, there are many classifiers with higher ability than
Optimal.
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Figure 6: Original Cassini dataset. (Left) Scatter plot showing the
relationship between the ability parameter θ and the classifier accu-
racy. (Right) Scatter plot showing the relationship between the av-
erage probability of success pSuccess(θc) given the ability of the
classifier and their accuracy.
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Figure 7: Original Heart dataset. (Left) Scatter plot showing the rela-
tionship between the ability parameter θ and the classifier accuracy.
Negative values of the discriminant parameter instances greatly af-
fect the estimation of the classifier ability parameter. (Right) Scatter
plot showing the relationship between the average probability of suc-
cess pSuccess(θc) given the ability of the classifier and their accu-
racy.

We have tried to understand this surprising result and we have ob-
served that the instances with a negative value of the discrimination
parameter greatly affect the estimation of the ability parameter of
the classifiers. In order to show this, we are going to recalculate all
the parameters and abilities, but previously removing all instances
with negative discrimination from the dataset. This is what we see in
Figures 8 and 9. Now the Optimal and Pessimal classifiers are actu-
ally the best and worst classifiers respectively. Also, we see that the
accuracies are now much better. In fact, by removing the examples

with negative discrimination, there are classifiers that can get almost
100% accuracy.
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Figure 8: Cassini dataset where those instances with a negative dis-
criminant parameter (a) have been removed. (Left) Scatter plot show-
ing the relationship between the ability parameter θ and the classifier
accuracy. (Right) Scatter plot showing the relationship between the
classifier average probability of success pSuccess(θc) and their ac-
curacy.
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Figure 9: Heart dataset where those instances with a negative discrim-
inant parameter (a) have been removed: (Left) Scatter plot showing
the relationship between the ability parameter θ and the classifier
accuracy. (Right) Scatter plot showing the relationship between the
classifier average probability of success pSuccess(θc) and their ac-
curacy.

The outcome of this observation is that IRT penalises those classi-
fiers that respond correctly to the instances with negative discrimina-
tions, as a good classifier should do worse with items with negative
discrimination. This is consistent with the item parameters. This sug-
gests the common practice in IRT of removing the instances with low
or negative discrimination, leaving only the items that are useful to
evaluate respondents. If we do that for a dataset, we are not sure that
we are removing noise or just odd instances that are well labelled, but
we have an ability value that is more indicative of the quality of the
classifier. In other words, for instances with negative discrimination
parameters, IRT considers that those that succeed may be because
they are less able, either because they overfit, underfit or by chance.

From a machine learning point of view, whether we have to re-
move the instances with negative discrimination is an important
question, but it depends on what we want to do. If we want to learn
models, it is more dubious whether they should be removed (but this
should be analysed for each technique). However, if we want to eval-
uate models, it seems that removing these instances can have the ad-
vantage that ability may be more reliable than accuracy to select the
best classifiers. Before a more extensive analysis is done, we will not
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run into any conclusions, especially because a better way of compar-
ing classifiers is by looking ability as a function of the difficulty and
discrimination of the instances, as we explore next.

5.2 Classifier characteristic curves

Once the different IRT parameters of each instance are estimated
and understood, we propose to define a classifier characteristic curve
(CCC) for each classifier of interest, inspired on the concept of per-
son characteristic curve previously developed in IRT. A CCC is a
plot for the response probability (accuracy) of a particular classifier
as a function of the instance difficulty. Figure 10 presents the CCC
of the classifiers in Table 2 for the Heart dataset using the difficulty
parameter bi as was estimated in the previous experiments with the
population of classifiers. For producing the CCC, we divided the in-
stances in 6 bins (of the same size) according to the difficulty param-
eter. For each bin, we plot on the x-axis the average difficulty of the
instances in the bin and on the y-axis we plot the frequency of cor-
rect responses of the classifier. In this experiment, we excluded the
instances with negative slopes.

ID Classifier Acc

Rnd Random classifier 0.54
fda flexible discriminant analysis 0.83

rpart Recursive partitioning 0.84
JRip Propositional rule learner 0.87
J48 Decision tree 0.89

SVM Support vector machine 0.96
IBK 2-nearest neighbours 0.93
RF Random forest 0.96
NN Neural network 0.97

Table 2: Classifiers of interest (using default parameters) and their
accuracy for the Heart-statlog dataset.The selected classifiers are a
representative sample of the main families of classifiers in machine
learning.
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Figure 10: CCC plots (across bins on the difficulty parameter) of the
classifiers in Table 2 for the Heart dataset (negative discrimination
instances filtered out).

In Figure 10 the classifiers are roughly constant for the first two
bins (easiest instances), corresponding to 34% of the instances con-
sidered. Apart from the random classifier, all get good results for
these easy instances. From the third bin, instances become more dif-
ficult in such a way that it is possible to start distinguishing the classi-
fiers’ abilities and some degrade sooner than others. For instance, J48
had a very good result for easy instances but has some problems with
those of medium difficulty. In the fifth bin (17% of the instances),
fda and rpart obtained the worst response probability (0.81), while
the best classifiers are still the NN and SVM with a response proba-
bility equal to 1. Finally, for the latest bin (17% of the instances), the
really hard instances, RF is the best classifier, followed by NN and
SVM, with response probabilities 0.83, 0.81 and 0.78. The most strik-
ing and interesting case is IBk. From being the best classifier for low

and medium difficulties it becomes the second-worst for high diffi-
culties. This suggests that the notion of difficulty that IRT infers may
be related to Thornton’s separability index, which is defined as the
percentage of the closest examples that are of the same class [7, 14]

We also propose a different CCC plot using the discrimination pa-
rameter instead of difficulty on the x-axis. Figure 10 presents this
variant of CCC for the same classifiers in Table 2 for the Heart
dataset. In this case, we analyse the original non-filtered version be-
cause we are interested in the analysis of negative discriminations.
The construction procedure is similar as in the previous case: col-
lect binary responses and divide the instances in bins ordered by the
discrimination parameter. For each bin, we plot on the x-axis the av-
erage range of the discrimination of the instances in the bin and in
the y-axis we plot the frequency of correct responses (accuracy) of
the classifier.
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Figure 11: CCC plots (across bins on the discrimination parameter)
of the classifiers in Table 2 for the Heart dataset.

The shape of the curves is as surprising as interesting. The results
are very bad for negative discriminations, but there is also a slightly
weak area for very high discriminations (very steep slopes). If we
look first at the negative discriminations, we see that some methods
that are very good for positive-discrimination instances (e.g., SVM)
are very bad for negative-discrimination instance. Actually, it seems
as if SVM errors could be the best predictor for discrimination (and
vice versa). Actually, there is a general pattern that the best mod-
els for positive-discrimination instances are the worst for negative-
discrimination instances. Of course, as expectable, the random model
is the best for the negative-discrimination instances, as this model is
flat.

The most interesting part for classifier evaluation happens at the
right end. It seems that those instances with very high slopes (very
high discriminations) are the ones that can better discriminate be-
tween different techniques. In other words, for medium discrimina-
tions, results are tighter and we would need several instances to tell
one classifier from another, but for high discrimination, only a few
examples may suffice.

6 DISCUSSION

The previous two sections have analysed the item parameters and
the classifier abilities in order to have a better understanding of IRT
when applied to machine learning classification.

When looking at instances, we see that their difficulty can be
caused by several reasons: it can be borderline, it can be surrounded
by examples of a different class (very low separability index), it can
be an outlier, etc. With the discrimination parameter, we at least can
see whether it is difficult because only good methods are able to iden-
tify it (but still solvable), having positive slope, or it is difficult be-
cause no method gets it right, or even good methods fail especially

F. Martínez-Plumed et al. / Making Sense of Item Response Theory in Machine Learning1146



(because they want to find a pattern for it). This suggests that discrim-
ination can be very useful to analyse noise, on one hand, but also to
analyse how expressive classifiers are, and whether they overfit, on
the other hand.

Another thing we have clarified is the guess parameter. This has
to be ruled out as having any connection with the class distribution.
The inclusion of random classifiers is useful to see how difficulty and
ability can be calibrated. For instance, we could scale the difficulties
and abilities values such that they are zero for random classifiers,
which would help interpretability.

When analysing abilities, one of the first surprising results was
that the optimal classifier does not get the highest ability. This is
not a mistake but a way to maintain the consistency between the ex-
pected responses produced by the logistic models for good classifiers
and their observed responses. If an instance has a negative slope, the
expected response of the optimal classifiers for that instance is close
to zero. However, the observed response of the optimal classifier is
always one. So, one way to produce a better fit of the observed re-
sponses for that instance in isolation would be to demote the ability
of the optimal classifier. In this way, the difference between the ex-
pected response (defined by the ICC) and the observed response of
the optimal classifier would not be so large.

Actually, if a classifier is predicting all instances correctly, either
the dataset is very simple, the classifier is overfitting the data or, as
usual in IRT, the classifier is cheating (basically what we are doing
here with the Optimal classifier, having access to the true labels). In
usual circumstances, with imperfect classifiers, noisy datasets, etc., it
makes sense again to demote the optimal classifier, especially consid-
ering that other actually good classifiers also made mistakes for the
noisy instances. So, in this way, ability is a very interesting measure
that portrays a different information than accuracy. Actually, consid-
ering that the optimal classifier should have maximum ability was
a wrong premise when we started the analysis of IRT in machine
learning.

It is important to highlight that IRT evaluates classifiers in terms of
the other classifiers that we include in the pool. This relativeness has
also its positive side, especially if we include a range of diverse clas-
sifiers in the pool according to those found in many machine learning
or data mining suites. Actually, it is for this kind of pool for which
we have to select the best model.

7 CONCLUSION

In this paper we have clarified the use of IRT for an instance-wise
analysis of datasets and classifiers (we left dataset-wise analysis for
future work). We identified several issues of confusion in the inter-
pretation of the parameters (discrimination, guessing, ability) and we
have now fully understood their meaning in the context of classifica-
tion. After this, it is now the time to explore all the potential applica-
tions.

There are three main application areas. The first area is that IRT
could be useful to improve classifier methods. We have seen that the
discrimination parameter could be used to identify those instances
with noise or with particular characteristics, or where the classi-
fiers overfit. This can be done with the training dataset (using cross-
validation) for a pool of common classification techniques (prefer-
ably efficient). Then, several criteria for exclusion of some instances
can be implemented during the learning of more computationally-
demanding techniques, such as ensembles or deep learning tech-
niques. Also, for some incremental methods (or new methods to be
developed) it might be useful to order the examples in some way,

starting for those that are easier and more discriminative, and let the
classifier be refined for other more complex examples afterwards.

The second area is classifier selection during deployment. If there
is any way to anticipate the difficulty of an instance, we can decide
which classifier is preferable for that particular instance, looking at
the classifier characteristic curves. The difficulty of an instance could
be explored by comparing the predictions of several classifiers or by
comparing it with other instances (in the training data) for which we
have previously determined its difficulty.

The third main area is evaluation. Actually, IRT was introduced
for that. One possible direction is the use of IRT to produce more
discriminative datasets, by removing the instances with negative dis-
crimination. It is a quite common practice in machine learning that
new methods are compared using 20 or 30 datasets from a repository,
when it is well known that most of them are not very discriminative.
If we ‘clean’ the datasets in order to remove the instances with neg-
ative discrimination, we can get that the abilities can be more signi-
ficative about the quality of a method. Also, we can compare abilities
between different datasets, which could be normalised to be com-
mensurate and calculate averages for a set of classifiers, something
that for accuracy or other metrics is not advisable, as the magnitudes
can be incommensurate. Finally, the most common application of
IRT is in adaptive testing. Selecting the items that are most discrimi-
native for a particular dataset may minimise the number of instances
that are required to estimate the ability of a new classifier, also by
adapting the difficulty of the items to the classifier as the estima-
tion proceeds. This could be useful, especially in applications where
we can ask for the label of selected instances, and they have a high
(expert) cost. As in IRT, a good estimation of ability using adaptive
testing could be done with about a dozen instances.

Of course, there might be criticisms too for the use of IRT in ma-
chine learning. For instance, the IRT approach can be computation-
ally expensive to fit IRT models for millions of instances, which is
very common now in real applications (even if we can always use
sampling). Of course, using IRT for calculating difficulty alone is an
overkill. The strength of IRT is the derivation of the discrimination
parameters and the interpretation of abilities.

Overall, we hope that this paper encourages other people to anal-
yse where and how IRT can be useful for machine learning. In
this paper, apart from the experimentation with real classifiers and
datasets, we have used artificial datasets and artificial classifiers,
which have brought an excellent opportunity to analyse how IRT
works and clarify their interpretation. We expect that further research
can do this for classification and other supervised machine learning
tasks (e.g., regression, for which other IRT models exists), but also
for weakly supervised machine learning (e.g., reinforcement learn-
ing) or for AI in general (e.g., planners, SAT solvers, etc).
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