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Abstract. Statistical learning theory relies on an assumption that
the joint distributions of observations and labels are the same in train-
ing and testing data. However, this assumption is violated in many
real world problems, such as training a detector of malicious net-
work traffic that can change over time as a result of attacker’s de-
tection evasion efforts. We propose to address this problem by cre-
ating an optimized representation, which significantly increases the
robustness of detectors or classifiers trained under this distributional
shift. The representation is created from bags of samples (e.g. net-
work traffic logs) and is designed to be invariant under shifting and
scaling of the feature values extracted from the logs and under per-
mutation and size changes of the bags. The invariance is achieved
by combining feature histograms with feature self-similarity matri-
ces computed for each bag and significantly reduces the difference
between the training and testing data. The parameters of the repre-
sentation, such as histogram bin boundaries, are learned jointly with
the classifier. We show that the representation is effective for train-
ing a detector of malicious traffic, achieving 90% precision and 67%
recall on samples of previously unseen malware variants.

1 INTRODUCTION

Trained detectors of malicious traffic can become ineffective as a re-
sult of changes of the malware behavior. Formally, this means that
a joint distribution of the observations computed from the malware
samples and their labels differs for training (source) data and unseen
testing (target) data. This can happen as a result of target evolving
after the initial classifier or detector has been trained which is typi-
cally caused by a deliberate detection evasion strategy of an attacker.
In supervised learning, this problem is solved by domain adaptation.
Under the assumption that the source and target distributions do not
change arbitrarily, the goal of the domain adaptation is to leverage the
knowledge in the source domain and transfer it to the target domain.
In this work, we focus on the case where the conditional distribution
of the observations given labels is different, also called a conditional
shift.

The domain adaptation (or knowledge transfer) can be achieved by
adapting the detector using importance weighting such that training
instances from the source distribution match the target distribution
[16]. Another approach is to transform the training instances to the
domain of the testing data or to create a new data representation with
the same joint distribution of observations and labels [2]. The chal-
lenging part is to design an effective transformation that transfers the
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knowledge from the source domain and improves the robustness of
the detector on the target domain.

We present a new optimized representation of network traffic that
enables domain adaptation under conditional shift. The representa-
tion is computed for bags of samples, each of which consists of fea-
tures (observations) computed from network traffic logs. The bags
are constructed for each user and contain all network communica-
tion with a particular hostname. The representation is designed to
be invariant under shifting and scaling of the feature values and un-
der permutation and size changes of the bags. This is achieved by
combining bag feature histograms with self similarity matrices. Un-
like previous approaches [1], the parameters of the representation are
learned along with the classifier decision rule in a joint optimization
procedure.

The proposed representation is used when training a classifier to
detect malicious HTTP communication in network traffic. We will
show that the classifier trained on malware samples from one behav-
ioral category can successfully detect new samples from a different
category. This way, the knowledge of the malware behavior is cor-
rectly transferred to the domain of new category which improves the
generalization of the classifier on unseen data. Compared to the base-
line flow-based representation [7, 9, 14] or widely-used reputation-
based security device, the proposed approach shows considerable im-
provements and correctly classifies new types of network threats that
were not part of the training data.

2 DOMAIN ADAPTATION FOR NETWORK
TRAFFIC

The paper proposes a representation of network communication that
is invariant against malware modifications attackers typically im-
plement to evade the detection systems. Formally, each sample is
represented as an n-dimensional feature vector x ∈ R

n. Sam-
ples are grouped into bags, with every bag represented as a matrix
X = (x1, . . . ,xm) ∈ R

n×m, where m is the number of samples
in the bag and n is the number of features. A single malware cate-
gory yi ∈ Y can be assigned to each bag. The representation is used
to train a classifier to label the categories as positive (malicious) or
negative (legitimate). The categories found in the training data can
be different from categories in the testing data. The classifier train-
ing is complicated by the fact that the sample distribution typically
evolves in time, so the probability distribution of the training data
differs from the probability distribution of the test data, i.e. there is a
conditional shift [17]:

PL(X|yj) �= PT (X|yj), ∀yj ∈ Y, (1)

where given category yj , PL(X|yj) and PT (X|yj) is the probabil-
ity distribution on training and testing bags, respectively.
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The purpose of the domain adaptation [3] is to apply knowledge
acquired from the training (source) domain into test (target) domain.
The relation between PL(X|yi) and PT (X|yi) is not arbitrary, oth-
erwise it would not be possible to transfer any knowledge. Therefore
there is a transformation τ , which transforms the feature values of the
bags onto a representation, in which PL(τ(X)|yi) ≈ PT (τ(X)|yi).
The goal is to find this new representation to classify individual bags
represented as X into categories Y .

Numerous methods for transfer learning have been proposed
(since the traditional machine learning methods cannot be used effec-
tively in this case), including kernel mean matching [8], kernel learn-
ing approaches [5], maximum mean discrepancy [10], or boosting
[4]. These methods try to solve a general data transfer with relaxed
conditions on the similarity of the distributions during the transfer.
The downside of these methods is the necessity to specify the target
loss function and availability of large amount of labeled data.

This paper proposes an effective invariant representation that
solves the classification problem with a conditional shift (see Equa-
tion 1). Once the feature values are transformed, they do not rely on
the original distribution and they are not influenced by the shift. The
parameters of the representation are learned automatically from the
data together with the classifier as a joint optimization process. The
advantage of this approach is that the parameters are optimally cho-
sen during training to achieve the best classification efficacy for the
given classifier, data, and representation.

3 BAG INVARIANT REPRESENTATION

As stated in Section 2, the probability distribution of bags from the
training set can be different from the test set. In the first step, the
representation of bags is transformed to be invariant under scal-
ing of the feature values. The traditional representation of a bag
that consists of a set of m samples {x1, . . . ,xm} can be written
as X = (x1, . . . ,xm)T , where xi = (xi1, . . . , xin) and xlk de-
notes k-th feature value of l-th sample. This form of representation
of samples and bags is widely used in the research community, as it is
straightforward to use and easy to compute. However, in the network
security domain, the dynamics of the network environment causes
changes in the feature values and the shift becomes more prominent.
As a result, the performance of the classification algorithms using the
traditional representation is decreased.

In the first step, the representation is improved by making the ma-
trix X to be invariant under scaling of the feature values. Scale in-

variance guarantees that even if some original feature values of all
samples in a bag are multiplied by a common factor, the values in the
new representation remain unchanged. To guarantee the scale invari-
ance, the matrix X is scaled column-wise onto the interval [0, 1].

In the second step, the representation is transformed to be invariant
against shifting. Shift invariance guarantees that even if some orig-
inal feature values of all samples in a bag are increased/decreased
by a given amount, the values in the new representation remain un-
changed. To ensure shift invariance, we create for each feature a self-
similarity matrix. Self-similarity matrix is a symmetric matrix, where
rows and columns represent individual samples and (i, j)-th ele-
ment corresponds to the distance between i-th and j-th sample. Self-
similarity matrix has been already used thanks to its properties in sev-
eral applications (e.g. in object recognition [11] or music recording
[15]). However, only a single self-similarity matrix for each bag has
been used in these approaches. This paper proposes to compute a set
of self-similarity matrices, one for every feature. More specifically,
a per-feature set of self-similarity matrices S = {S1, S2, . . . , Sn}

is computed for each bag. The (i, j)-th element of Sk is a distance
between k-th feature value of i-th and j-th sample. The matrices are
further normalized by local feature scaling described above to pro-
duce a set of matrices S̃.

The shift invariance makes the representation robust to the changes
where the feature values are modified by adding or subtracting a fixed
value. For example, the length of a malicious URL would change by
including an additional subdirectory in the URL path. Or, the number
of transfered bytes would increase when an additional data structure
is included in the communication exchange.

Representing bags with scaled matrices {X̃} and sets of locally-
scaled self-similarity matrices {S̃} achieves the scale and shift in-
variance. Size invariance ensures that the representation is invariant
against the size of the bag. In highly dynamic environments (such as
network traffic), the samples (e.g. individual web requests) may oc-
cur in a variable ordering. Permutation invariance ensures that the
representation should also be invariant against any reordering of rows
and columns of the matrices. The final step of the proposed transfor-
mation is the transition from the scaled matrices X̃ , S̃ to normalized
histograms. For this purpose, we define for each bag:

zX
k := vector of values from k-th column of matrix X̃

zS
k :=column-wise representation of upper triangular

matrix created from matrix S̃k ∈ S̃.
This means that zX

k ∈ R
m is a vector created from values of k-th

feature of X̃ , while zS
k ∈ R

r, r = (m−1)·m
2

is a vector that consists
of all values of upper triangular matrix created from matrix S̃k. Since
S̃k is a symmetric matrix with zeros along the main diagonal, zS

k

contains only values from upper triangular matrix of S̃k.
A normalized histogram of vector z = (z1, . . . , zd) ∈ R

d

is a function φ : R
d × R

b+1 → R
b parametrized by edges

of b bins θ = (θ0, . . . , θb) ∈ R
b+1 such that φ(z;θ) =

(φ(z; θ0, θ1), . . . , φ(z; θb−1, θb)) where

φ(z, θi, θi+1) =
1

d

d∑
j=1

[[zj ∈ [θi−1, θi)]]

is the value of the i-th bin corresponding to a portion of components
of z falling to the interval [θi−1, θi).

Each column k of matrix X̃ (i.e. all bag values of k-th feature)
is transformed into a histogram φ(zX

k ,θX
k ) with predefined num-

ber of b bins and θX
k bin edges. Such histograms created from the

columns of matrix X̃ will be denoted as feature values histograms,
because they carry information about the distribution of bag feature
values. On the other hand, histogram φ(zS

k ,θ
S
k ) created from values

of self-similarity matrix S̃j ∈ S̃ will be called feature differences
histograms, as they capture inner feature variability within bag sam-
ples.

Overall, each bag is represented as a concatenated feature map
φ(X̃; S̃;θ) : Rn×(m+r) → R

2·n·b as follows:(
φ(zX

1 ,θX
1 ), . . . ,φ(zX

n ,θX
n ),φ(zS

1 ,θ
S
1 ), . . . ,φ(z

S
n ,θ

S
n)
)

(2)

where n is the number of the original flow-based features, m is the
number of flows in the bag, and b is the number of bins.

4 LEARNING OPTIMAL HISTOGRAM
REPRESENTATION

The bag representation φ(X̃; S̃;θ) proposed in Section 3 has the in-
variant properties, however it heavily depends on the number of bins
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b and their edges θ defining the width of the histogram bins. These
parameters that were manually predefined in Section 3 influence the
classification performance. To choose the parameters b and θ opti-
mally, we propose to learn them automatically from the training data
such that the classification separability between positive and negative
samples is maximized.

When creating histograms in Section 3, the input instances are
vectors zX

k and zS
k , where k ∈ {1, . . . , n}. The algorithm trans-

forms the input instances into a concatenated histogram φ(X̃; S̃;θ).
To keep the notation simple and concise, we will denote the in-
put instances simply as z = (z1, . . . , zn) ∈ R

n×m (instead of
z = (zX

1 , . . . , zX
n , zS

1 , . . . , z
S
n)), which is a sequence of n vectors

each of dimension m.
The input instance z is represented via a feature map

φ : Rn×m → R
n·b defined as a concatenation of the normal-

ized histograms of all vectors in that sequence, that is, φ(z;θ) =
(φ(z1;θ1), . . . ,θ(zn;θn)), where θ = (θ1, . . . ,θn) denotes bin
edges of all normalized histograms stacked to a single vector.

We aim at designing a classifier h : Rn×m ×R
n+1 ×R

n(b+1) →
{−1,+1} working on top of the histogram representation, that is

h(z;w, w0,θ) = sign(〈φ(z,θ),w〉+ w0)

= sign

(
n∑

i=1

b∑
j=1

φ(zi, θi,j−1, θi,j)wi,j + w0

)
. (3)

The classifier (3) is linear in the parameters (w, w0) but non-linear
in θ and z. We are going to show how to learn parameters (w, w0)
and implicitly also θ via convex optimization.

Assume we are given a training set of examples
{(z1, y1), . . . , (zm, ym)} ∈ (Rn×m × {+1,−1})m. We fix
the representation φ such that the number of bins b is sufficiently
large and the bin edges θ are equally spaced. We find the weights
(w, w0) by solving

min
w∈Rb·p,w0∈R

[
γ

n∑
i=1

b−1∑
j=1

|wi,j − wi,j+1|

+
1

m

m∑
i=1

max
{
0, 1− yi〈φ(zi;θ),w〉}

]
. (4)

The objective is a sum of two convex terms. The second term is the
standard hinge-loss surrogate of the training classification error. The
first term is a regularization encouraging weights of neighboring bins
to be similar. If it happens that j-th and j + 1 bin of the i-the his-
togram have the same weight, wi,j = wi,j+1 = w, then these bins
can be effectively merged to a single bin because

wi,jφ(zi; θi,j−1, θi,j) + wi,j+1φ(zi; θi,j , θi,j+1)

= 2wφ(zi; θi,j−1, θi,j+1) . (5)

The trade-off constant γ > 0 can be used to control the number
of merged bins. A large value of γ will result in massive merging
and consequently in a small number of resulting bins. Hence the ob-
jective of the problem (4) is to minimize the training error and to
simultaneously control the number of resulting bins. The number of
bins influences the expressive power of the classifier and thus also
the generalization of the classifier. The optimal setting of λ is found
by tuning its value on a validation set.

Once the problem (4) is solved, we use the resulting weights w∗

to construct a new set of bin edges θ∗ such that we merge the

original bins if the neighboring weights have the same sign (i.e. if
w∗

i,jw
∗
i,j+1 > 0). This implies that the new bin edges θ∗ are a sub-

set of the original bin edges θ, however, their number can be sig-
nificantly reduced (depending on γ) and they have different widths
unlike the original bins. Having the new bins defined, we learn a new
set of weights by the standard SVM algorithm

min
w∈Rn,w0∈R

[
λ

2
‖w‖2 + 1

m

m∑
i=1

max
{
0, 1− yi〈φ(zi;θ∗),w〉}

]
.

Note that we could add the quadratic regularizer λ
2
‖w‖2 to the

objective of (4) and learn the weights and the representation in a
single stage. However, this would require tuning two regularization
parameters (λ and γ) simultaneously which would be order of mag-
nitude more expensive than tuning them separately in the two stage
approach.

5 EXPERIMENTAL EVALUATION

The proposed approach was applied to classify unseen malware bags.
We will show that the combination of learning the invariant repre-
sentation and the classifier from the data, as described in Section 4,
achieves significantly better efficacy results when compared to the
baseline.

5.1 Specification of the Datasets

This section provides a detailed description of the datasets, labeled
malware samples, and features used in the experimental evaluation.
Malware samples were obtained from several months (January - July
2015) of real network traffic of 80 international companies in form
of proxy logs [13]. Summary of the datasets used in the evaluation is
described in Table 1.

The logs contain HTTP and HTTPS flows, where one flow is one
connection defined as a group of packets from a single host and
source port with a single server IP address, port, and protocol. As
flows from the proxy logs are bidirectional, both directions of a com-
munication are included in each flow. The malware samples were
obtained from findings of several network security devices based on
signatures (Cisco Cloud Web Security), blacklists (Shadowserver3),
feeds (Collective Intelligence Framework CIF [6]), and static and be-
havioral analysis (Cisco Cloud Web Security). In many cases, human
experts were involved to label novel previously undetected threats.
Findings from VirusTotal4 server were also used.

In the following, malware samples will be referred as positive

bags, where one positive bag is a set of flows (connections) from
proxy records with the same source host towards the same destina-
tion hostname. In other words, each bag contains the whole client-
hostname communication for a given period of time. The bags not
labeled as malicious are considered as legitimate/negative. Each bag
should contain at least 5 flows to be able to compute a meaning-
ful histogram representation from the input flows. Training dataset
contains 5k malicious (8 malware families) and 27k legitimate bags,
while testing dataset is consist of 2k malicious (
 32 malware fam-
ilies) and 241k legitimate bags (more than 15 million flows).

Each flow consists of the following fields: user name, source IP
address, destination IP address, source port, destination port, proto-
col, number of bytes transferred from client to server and from server

3 www.shadowserver.org
4 www.virustotal.com
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to client, flow duration, timestamp, user agent, URL, referer, MIME-
Type, and HTTP status. The most informative field is the URL, which
can be decomposed further into 7 parts as illustrated in Figure 1.
From the flow fields mentioned above, we extracted 115 flow-based
features listed in Table 2. Features from the right column are applied
on all URL parts, including the URL itself and a referer.

Category Flows Bags
Training Positives 132,756 5,011
Click-fraud mw 12,091 819
DGA malware 8,629 397
Dridex 8,402 264
IntallCore 17,317 1,332
Monetization 3,107 135
Mudrop 37,142 701
Poweliks 11,648 132
Zeus 34,420 1,275
Testing Positives 43,380 2,090
Training Negatives 862,478 26,825
Testing Negatives 15,379,466 240,549

Table 1: Number of flows and bags of malware categories and legit-
imate background traffic used for training and testing the proposed
representation and SVM classifier.

5.2 Malicious Samples

More then 32 different malicious categories were found in the eval-
uation datasets. Note than most of the novel threats (typically not
detected by most of existing devices) were found and confirmed
manually and are placed into one malicious category called other
categories. To illustrate the complexity of the classification problem
caused by the large amount of malware families and their variability,
a brief description of some categories is provided:

• Asterope – Threat related to Asterope click-fraud botnet. Aster-
ope is a Trojan bot malware which performs click-fraud by imi-
tating the action of a user clicking on an advertisement. The bot
communicates with the command-and-control server using HTTP
from which it receives the next website to visit.

• Click-fraud, malvertising-related botnet – The main distribu-
tion channel for this threat is fraudulent software such as anti-
virus, browser plugins, and software updates. The infection typ-
ically appears as a browser plugin that hijacks web browsers. It
may then establish a command-and-control channel, track user ac-
tivity, have rootkit capability, and perform click-fraud through the
automatic loading and clicking of unsolicited advertisements. The
attacker may obtain information about the infected device and at-
tempt to further exploit the device with additional threats.

• DGA – Threat that uses domain generation algorithms (DGA) and
Fast-Flux to establish its command-and-control communication.
Fast-Flux is a DNS technique used by botnets to hide malicious
devices behind a command-and-control infrastructure of compro-
mised hosts. These hosts act as proxies that register and de-register
their IP addresses. By using a short Time To Live (TTL) value, the
hostname to IP address mapping for devices in the requested do-
main name space will change rapidly. This results in a constantly
changing list of destination IP addresses for a single DNS name
and allows the attacker to distribute information about the mali-
cious devices.
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Figure 1: URL decomposition into seven parts.

• Dridex – Threat related to Dridex banking trojan. Dridex is typi-
cally spread through spam campaigns and its main goal is to ob-
tain confidential information from the user about his or her on-
line banking and other payment systems. The trojan communi-
cates with the command-and-control server using HTTP, P2P, or
I2P protocols.

• Monetization – Malware monetization activity involving fake
blog sites that serve as front ends for click-fraud.

• Poweliks – Threat related to the Poweliks Trojan which down-
loads other malware to the infected device and can steal informa-
tion. The threat is persistent and uses several mechanisms to hide
itself.

• Zeus – Threat related to the Zeus Trojan horse malware family
which is persistent, may have rootkit capability to hide its pres-
ence, and employs various command-and-control mechanisms.
Zeus malware is often used to track user activity and steal infor-
mation by man-in-the-browser keystroke logging and form grab-
bing. Zeus malware can also be used to install CryptoLocker ran-
somware to steal user data and hold data hostage.

• Others categories – Other categories include Bedep, InstallCore,
Mudrop, MultiPlug, Rerdom, Sality, Vawtrack, Vittalia, etc.

Features applied on URL, path, query, filename
length
digit ratio
lower case ratio
upper case ratio
ratio of digits
vowel changes ratio
ratio of a character with max occurrence
has a special character
max length of consonant stream
max length of vowel stream
max length of digit stream
number of non-base64 characters
has repetition of parameters
starts with number
Other Features
number of bytes from client to server
number of bytes from server to client
length of referer
length of file extension
number of parameters in query
number of ’/’ in path
number of ’/’ in query
number of ’/’ in referer
is encrypted

Table 2: List of selected flow-based features extracted from proxy
logs. We consider these features as baseline (as some features were
used in previously published work), and compare the baseline with
the proposed representation.

The summary of the training and testing set is shown in Table 1.
Positive bags from 8 categories with the highest number of bags were
added to the training set, while the rest of the malware samples from
the other categories (including novel threats) were included in the
testing set. This means that training and testing data are composed of
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Figure 2: Graphical illustration of a baseline representation of two
legitimate and five malicious bags. Each bag is represented with 10
flow-based feature vectors (rows). You can see that feature values of
legitimate vectors have high range of values (represented by colors),
which complicates the training of classifiers. However, they have
also significantly higher variability of feature values than malicious
bags, which cannot be utilized from flow-based representation.

Figure 3: Illustration of the proposed invariant representation of bags.
First two legitimate bags show high variability of feature values and
can be easily separated from malicious bags. On the other hand, fea-
ture values of malicious bags describe the inner similarity of flows
or URLs within each bag. In contrast to legitimate bags, malicious
bags have a lot of common feature values equal to 0 and 1, which
improves their separability.

completely different malware bags from different malware families.
This makes the classification problem much harder, as the classifier
is trained on 8 malware categories and then evaluated on malicious
traffic of different categories and behaviors unseen in the training
set. This scenario simulates the fact that new types of threats are cre-
ated to evade detection. Anomaly detection system introduced in [12]
automatically removes 38% of all malicious flows from the testing
set, as they have empty URL query string. Training a classifier for
each category separately is an easier task, however such classifiers
are typically over-fitted to a single category and cannot detect further
variations without retraining. On the other hand, training a classifier
from multiple categories is more suitable for dynamic or polymor-
phic changes of new malware.

Negative bags were acquired from 10 hours of http network traffic
of two companies. Negative bags from the first company were used
for training, while bags from the second company were used for test-
ing. Note that malicious bags found in the traffic were removed from
the set of negative bags.

5.3 Evaluation on Real Network Traffic

This section shows the benefits of the proposed approach of learn-
ing the invariant representation for two-class classification problem
in network security. Feature vectors described in Section 5.1 corre-
spond to input feature vectors {x1, . . . ,xm} defined in Section 2.
These vectors are transformed into the proposed representation of
histograms φ(X̃; S̃;θ), as described in Section 3. We have evaluated
two types of invariant representations. One with predefined number
of equidistant bins (e.g. 16, 32, etc.) computed as described in Sec-
tion 3, and one when the representation is learned together with the
classifier to maximize the separability between malicious and legiti-
mate traffic (combination of Section 3 and 4). For the representation
learning, we used 256 bins as initial (and most detailed) partitioning
of the histograms. During the learning phase, the bins were merged
together, creating 12.7 bins per histogram on average.

Both approaches are compared with a baseline flow-based repre-
sentation used in previously published work, where each sample cor-
responds to a feature vector computed from one flow. To provide

a fair comparison of all representations, positive flow-based feature
vectors are converted to positive bags. A bag is considered as positive
if at least one flow from the bag is classified as positive. Maximum
number of flows for each bag was 100, which ensures that the compu-
tational complexity is controlled and does not exceed the predefined
limits.

First, we analyze the difference between baseline flow-based and
the proposed invariant representation. Ten flow-based feature vectors
of two legitimate and five malicious bags are displayed in Figure 2.
Each row represents one flow-based feature vector. You can see that
legitimate bags have higher diversity of flow-based feature values,
which is a result of higher diversity of flows within a bag. This diver-
sity makes it difficult for a flow-based classifier to learn more com-
plex malicious behaviors, as they are not well separated from the
legitimate traffic. On the other hand, feature values within malicious
bags are more consistent, resulting in more bars with uniform color.
This key property, which is shared across malware categories, is not
visible from the flow-based feature point of view. It is visible only at
the level of bags.

Figure 3 shows how the same positive and negative samples look
in the proposed representation. Zero values are depicted with dark
blue color, while maximum values (equal to 1) are depicted with yel-
low bars. Instead of ten flow-based feature vectors, each bag is rep-
resented with a single vector describing the inner dynamics of flow-
based feature values within each bag. Malicious bags have a lot of
values equal to zero as opposed to legitimate bags, which increases
the separability of the two classes. Moreover, feature values equal
to one are common for most of malicious bags across categories,
which increases the descriptive value and robustness of the proposed
representation. Such representation is more suitable for classification
of frequently-changing malicious behaviors, as will be demonstrated
further in this section.

Two-dimensional projection of the feature vectors for the flow-
based and the proposed representation is illustrated in Figures 4
and 5 respectively. Bags from 32 malicious categories are displayed
with red circles, while the legitimate bags are denoted with green
circles. The projections show that the flow-based representation is
suitable for training classifiers specialized on a single malware cat-
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Figure 4: Projection of feature vectors of the baseline flow-based
representation into two dimensions using t-SNE transformation.
Due to high variability of flow-based feature values, legitimate
(green) and malicious (red) samples are scattered without any
clear separation. The results show that the flow-based represen-
tation is suitable for training classifiers specialized on a single
malware category, which often leads to classifiers with high pre-
cision and low recall.
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Figure 5: Projection of feature vectors of the proposed invari-
ant representation into two dimensions using t-SNE (t-distributed
Stochastic Neighbor Embedding) transformation. Thanks to the
invariant properties, malicious bags from various categories are
grouped together and are separated from the majority of legiti-
mate samples. Classifiers trained from this representation will be
more robust to any changes or new modifications of future mal-
ware samples.
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Figure 6: Visualization of the proposed method of learning the invariant representation on 2-dimensional synthetic data. Figures in the upper
row show the decision boundaries of two class classifier learned from the bins for three different values of parameter λ (0.0001, 0.01, 0.1) which
controls the number of emerging bins (the corresponding weights are shown in the bottom row). With increasing λ the data are represented
with less bins and the boundary becomes smoother and less over-fitted to the training data.
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Figure 7: ROC curves of SVM classifier on test data for five types of
representations (logarithmic scale). Flow-based representation shows
very unsatisfactory results. The combination of feature values with
feature differences histogram (bin combined) leads to significantly
better efficacy results. The best results are obtained when the param-
eters are learned automatically from the data (optimized bag com-
bined).

egory. In case of the proposed representation, malicious bags from
various categories are grouped together and far from the legitimate
traffic, which means that the classifiers based on this representation
will have higher recall and comparable precision with the flow-based
classifiers.

Next, we will show the properties of the proposed method of learn-
ing the representation to maximize the separation between positive
and negative samples (see Section 4 for details). Figure 6 visualizes
the proposed method on synthetic 2-dimensional input data. The in-
put 2D point (x, y) ∈ R

2 is represented by 4-dimensional feature
vector (x2, y2, x + y, x − y). Each of the 4 features is then repre-
sented by a histogram with 100 bins (i.e. each feature is represented
by 100 dimensional binary vector will all zeros but a single one cor-
responding to the active bin). Figures in the top row show the deci-
sion boundaries of two-class classifiers learned from data. The bot-
tom row shows the weights of the linear classifier corresponding to
the bins (in total 400 weights resulting from 100 bins for each out
of 4 features). The columns correspond to the results obtained for
different setting of the parameter λ which controls the number of
emerging bins and thus also the complexity of the decision bound-
ary. With increasing λ the data are represented with less bins and
the boundary becomes smoother. Figure 6 also shows the principle
of the proposed optimization process. The bins of the representation
are learned in such a way that it is much easier for the classifier to
separate negative and positive samples and at the same time control
the complexity of the classifier.

Since the bins are equidistant and predefined at the beginning, the
weights and the resulting histogram has complicated structure, lead-
ing most probably to complex boundary and over-fitted results (as
shown in Figure 6 on the left hand side). As the bins are merged, the
weights show a clear structure and the derived histogram has signifi-
cantly less bins. The decision boundary is in this case smoother and
the classifier trained from this representation will be more robust.

The results of the SVM classifier on testing data are depicted in
Figure 7. Flow-based representation has worst results, mainly due to
the fact that the classifier was based only on the values of flow-based
features that are not robust across different malware categories. The
SVM classifier based on the invariant bag representation (bag mean,
beag variance, bag combined) performed significantly better. How-
ever, these results are furhter outperformed when using the proposed
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Figure 8: Precision-recall curve of SVM classifier trained on the pro-
posed representation with different number of histogram bins for
each feature. The efficacy of the classifiers improves as the number
of histogram bins increases (creating more detailed representation),
however all classifiers are outperformed by the classifier, where the
parameters are learned automatically from the data (optimized bag
combined).

combination of the invariant representation with automatically opti-
mized parameters according to Section 4.

Figure 8 compares the efficacy results of classifiers based on the
proposed representation with predefined number of bins per feature
(8, 16, 64, 128, and 256 bins) with the same representation, but when
the parameters are learned from the training data (Section 4). You can
see that increasing the number of bins in the histograms improves the
precision-recall curve of the classifier. Finally, all classifiers trained
from histograms with equidistant bins are outperformed by the pro-
posed combination of learning the classifier and the representation
parameters alltogether, achieving 90% precision and 67% recall on
malware samples of previously unseen variants.

Overall, the results show the importance of combining both types
of histograms introduced in Section 3 together, allowing the repre-
sentation to be more descriptive and precise without sacrificing re-
call. But most importantly, when the parameters of the representation
are trained to maximize the separability between malicious and legit-
imate samples, the resulting classifier performs in order of a magni-
tude better than a classifier with manually predefined parameters.

6 CONCLUSION

We proposed a robust representation suitable for classifying evolving
malware behaviors. It represents sets of connections as bags based
on the combination of invariant histograms of feature values and fea-
ture differences. The representation is designed to be invariant un-
der shifting and scaling of the feature values and under permuta-
tion and size changes of the bags. The proposed optimization method
learns the parameters automatically from the data. It solves the do-
main adaptation problem in a supervised learning, where the training
and testing datasets have different probability distributions.

The proposed representation was evaluated on real HTTP network
traffic with more than 43k malicious samples and more than 15M
samples overall. The comparison with a baseline approach showed
an order of magnitude better classification results in favor of the pro-
posed approach. The proposed classifier trained on the optimized
representation achieved 90% precision and detected 67% (29k) of
malware samples of previously unseen variants.
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