
Clique-Width and Directed Width Measures for
Answer-Set Programming

Bernhard Bliem and Sebastian Ordyniak and Stefan Woltran1

Abstract. Disjunctive Answer Set Programming (ASP) is a pow-
erful declarative programming paradigm whose main decision prob-
lems are located on the second level of the polynomial hierarchy.
Identifying tractable fragments and developing efficient algorithms
for such fragments are thus important objectives in order to com-
plement the sophisticated ASP systems available to date. Hard prob-
lems can become tractable if some problem parameter is bounded
by a fixed constant; such problems are then called fixed-parameter
tractable (FPT). While several FPT results for ASP exist, parameters
that relate to directed or signed graphs representing the program at
hand have been neglected so far. In this paper, we first give some
negative observations showing that directed width measures on the
dependency graph of a program do not lead to FPT results. We then
consider the graph parameter of signed clique-width and present a
novel dynamic programming algorithm that is FPT w.r.t. this param-
eter. Clique-width is more general than the well-known treewidth,
and, to the best of our knowledge, ours is the first FPT algorithm for
bounded clique-width for reasoning problems beyond SAT.

1 Introduction

Disjunctive Answer Set Programming (ASP) [10, 29, 44] is an active
field of AI providing a declarative formalism for solving hard com-
putational problems. Thanks to the high sophistication of modern
solvers [28], ASP was successfully used in several applications, in-
cluding product configuration [52], decision support for space shuttle
flight controllers [2], team scheduling [49], and bio-informatics [33].

Since the main decision problems of propositional ASP are located
at the second level of the polynomial hierarchy [24, 54], the quest for
easier fragments are important research contributions that could lead
to improvements in ASP systems. An interesting approach to deal-
ing with intractable problems comes from parameterized complexity
theory [22] and is based on the fact that many hard problems become
polynomial-time tractable if some problem parameter is bounded by
a fixed constant. If the order of the polynomial bound on the run-
time is independent of the parameter, one speaks of fixed-parameter
tractability (FPT). Results in this direction for the ASP domain in-
clude [43] (parameter: size of answer sets), [42] (number of cycles),
[5] (length of longest cycles), [4] (number of non-Horn rules), and
[26] (backdoors). Also related is the parameterized complexity anal-
ysis of reasoning under subset-minimal models, see, e.g., [41].

As many prominent representations of logic programs are given
in terms of directed graphs (consider, e.g., the dependency graph),
it is natural to investigate parameters for ASP that apply to directed
graphs. Over the past two decades, various width measures for di-
rected graphs have been introduced [37, 3, 6, 35, 50]. These are

1 TU Wien, Vienna, Austria.

typically smaller than, e.g., the popular parameter of treewidth [7].
In particular, all these measures are zero on directed acyclic graphs
(DAGs), but the treewidth of DAGs can be arbitrarily high. More-
over, since these measures are based on some notion of “closeness”
to acyclicity and the complexity of ASP is closely related to the
“cyclicity” of the rules in a program, such measures seem promising
for obtaining efficient algorithms for ASP. Prominent applications of
directed width measures include the k-Disjoint Path Problem [37],
query evaluation in graph databases [1], and model checking [9].

Another graph parameter for capturing the structural complexity
of a graph is clique-width [15, 16, 18]. It applies to directed and undi-
rected graphs, and in its general form (known as signed clique-width)
to edge-labeled graphs. It is defined via graph construction where
only a limited number of vertex labels is available; vertices that share
the same label at a certain point of the construction process must be
treated uniformly in subsequent steps. Constructions can be given by
expressions in a graph grammar (so-called cwd-expressions) and the
minimal number of labels required for constructing a graph G is the
clique-width of G. While clique-width is in a certain way orthogonal
to other directed width measures, it is more general than treewidth;
there are classes of graphs with constant clique-width but arbitrar-
ily high treewidth (e.g., complete graphs). In contrast, graphs with
bounded treewidth also have bounded clique-width [12, 18].

By means of a meta-theorem due to Courcelle, Makowsky, and
Rotics [17], one can solve any graph problem that can be expressed
in Monadic Second-Order Logic with quantification on vertex sets
(MSO1) in linear time for graphs of bounded clique-width. This re-
sult is similar to Courcelle’s theorem [13, 14] for graphs of bounded
treewidth, which has been used for the FPT result for ASP w.r.t.
treewidth [31]. There, the incidence graph of a program is used as
an underlying graph structure (i.e., the graph containing a vertex for
each atom a and rule r of the program, with an edge between a and
r whenever a appears in r). Since the formula given in [31] is in
MSO1, the FPT result for ASP applies also to signed clique-width.

Clique-width is NP-hard to compute [25], which might be consid-
ered as an obstacle toward practical applications. However, one can
check in polynomial time whether the width of a graph is bounded by
a fixed k [47, 40]. (These algorithms involve an additive approxima-
tion error that is bounded in terms of k). Recently, SAT solvers have
been used to obtain sequences of vertex partitions that correspond
to cwd-expressions [34] for a given graph. For some applications, it
might not even be necessary to compute clique-width and the under-
lying cwd-expression: As mentioned in [27, Section 1.4], applica-
tions from the area of verification are supposed to already come with
such an expression. Moreover, it might even be possible to partially
obtain cwd-expressions during the grounding process of ASP.

This all calls for dedicated algorithms for solving ASP for pro-

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1105

1105

grams of bounded clique-width. In contrast to treewidth where the
FPT result from [31] has been used for designing [36] and imple-
menting [45] a dynamic programming algorithm, to the best of our
knowledge there are no algorithms yet that explicitly exploit the
fixed-parameter tractability of ASP on bounded clique-width. In fact,
we are not aware of any FPT algorithm for bounded clique-width for
a reasoning problem located on the second level of the polynomial
hierarchy (except [23] from the area of abstract argumentation).

The main contributions of this paper are as follows. First, we show
some negative results for several directed width measures, indicating
that the structure of the dependency graph and of various natural di-
rected versions of the signed incidence graph does not adequately
measure the complexity of evaluating the corresponding program.

Second, concerning signed clique-width, we give a novel dynamic
programming algorithm that runs in polynomial time for programs
where this parameter is bounded on their incidence graphs. We do
so by suitably generalizing the seminal approach of [27] for the SAT
problem. We also give a preliminary analysis how many signs are
required in order to obtain FPT.

2 Preliminaries

Graphs. We use standard graph terminology, see for instance the
handbook [21]. All our graphs are simple. An undirected graph G is a
tuple (V,E), where V or V (G) is the vertex set and E or E(G) is the
edge set. For a subset V ′ ⊆ V (G), we denote by G[V ′], the induced
subgraph of G induced by the vertices in V ′, i.e., G[V ′] has vertices
V ′ and edges { {u, v} ∈ E(G) | u, v ∈ V ′ }. We also denote by
G \ V ′ the graph G[V (G) \ V ′]. Similarly to undirected graphs,
a digraph D is a tuple (V,A), where V or V (D) is the vertex set
and A or A(D) is the arc set. A strongly connected component of a
digraph D is a maximal subgraph Z of D that is strongly connected,
i.e., Z contains a directed path between each pair of vertices in Z.
We denote by UND(D) the symmetric closure of D, i.e., the graph
with vertex set V (D) and arc set { (u, v), (v, u) | (u, v) ∈ A(D) }.
Finally, for a directed graph D, we denote by DI(G), the undirected
graph with vertex set V (G) and edge set { {u, v} | (u, v) ∈ A(D) }.

Parameterized Complexity. In parameterized algorithmics [22]
the runtime of an algorithm is studied with respect to a parameter
k ∈ N and input size n. The most favorable class is FPT (fixed-
parameter tractable) which contains all problems that can be de-
cided by an algorithm running in time f(k) · nO(1), where f is a
computable function. We also call such an algorithm fixed-parameter
tractable, or FPT for short. Formally, a parameterized problem is a
subset of Σ∗ × N, where Σ is the input alphabet. Let L1 ⊆ Σ∗

1 × N

and L2 ⊆ Σ∗
2 × N be two parameterized problems. A parame-

terized reduction (or FPT-reduction) from L1 to L2 is a mapping
P : Σ∗

1 ×N→ Σ∗
2 ×N such that: (1) (x, k) ∈ L1 iff P (x, k) ∈ L2,

(2) the mapping can be computed by an FPT-algorithm w.r.t. param-
eter k, and (3) there is a computable function g such that k′ ≤ g(k),
where (x′, k′) = P (x, k). The class W[1] captures parameterized in-
tractability and contains all problems that are FPT-reducible to PAR-
TITIONED CLIQUE when parameterized by the size of the solution.
Showing W[1]-hardness for a problem rules out the existence of an
FPT-algorithm under the usual assumption FPT �= W[1].

Answer Set Programming. A program Π consists of a set A(Π)
of propositional atoms and a setR(Π) of rules of the form

a1 ∨ · · · ∨ al ← al+1, . . . , am,¬am+1, . . . ,¬an,

undirected cycle-rank

treedepth

pathwidth

treewidth

cycle-rank

directed pathwidth

DAG-width Kelly-width

directed treewidth

D-width

Figure 1. Propagation of hardness results for the considered width
measures. An arc (A,B) indicates that any hardness result parameterized by

measure A implies a corresponding hardness result parameterized by B.

where n ≥ m ≥ l and ai ∈ A(Π) for 1 ≤ i ≤ n. Each rule
r ∈ R(Π) consists of a head h(r) = {a1, . . . , al} and a body given
by p(r) = {al+1, . . . , am} and n(r) = {am+1, . . . , an}. A set
M ⊆ A(Π) is a called a model of r if p(r) ⊆M and n(r)∩M = ∅
imply h(r) ∩M �= ∅. We denote the set of models of r by Mods(r)
and the models of Π are given by Mods(Π) =

⋂
r∈R(Π) Mods(r).

The reduct ΠI of a program Π with respect to a set of atoms
I ⊆ A(Π) is the program ΠI with A(ΠI) = A(Π) and R(ΠI) ={
r+ | r ∈ R(Π), n(r) ∩ I = ∅)}, where r+ denotes rule r without

negative body, i.e., h(r+) = h(r), p(r+) = p(r), and n(r+) = ∅.
Following [29], M ⊆ A(Π) is an answer set of Π if M ∈ Mods(Π)
and for no N � M , we have N ∈ Mods(ΠM). In what follows, we
consider the problem of ASP consistency, i.e., the problem of decid-
ing whether a given program has at least one answer set. As shown
by Eiter and Gottlob, this problem is ΣP

2 -complete [24].

Graphical Representations of ASP. Let Π be a program. The
dependency graph of Π, denoted by DEP(Π), is the directed graph
with vertex set A(Π) and that contains an arc (x, y) if there is a rule
r ∈ R(Π) such that either x ∈ h(r) and y ∈ p(r) ∪ n(r) or x, y ∈
h(r) [26]. Note that there are other notions of dependency graphs
used in the literature, most of them, however, are given as subgraphs
of DEP(Π). As we will see later, our definition of dependency graphs
allows us to draw immediate conclusions for such other notions.

The incidence graph of Π, denoted by INC(Π), is the undirected
graph with vertices A(Π) ∪ R(Π) that contains an edge between
a rule vertex r ∈ R(Π) and a atom vertex a ∈ A(Π) whenever
a ∈ h(r) ∪ p(r) ∪ n(r). The signed incidence graph of Π, denoted
by SINC(Π), is the graph INC(Π), where addionally every edge of
INC(Π) between an atom a and a rule r is annotated with a label
from {h, p, n} depending on whether a occurs in h(r), p(r), or n(r).

3 Directed Width Measures

Since many representations of ASP programs are in terms of directed
graphs, it is natural to consider parameters for ASP that are tailor-
made for directed graphs. Over the past two decades various width
measures for directed graphs have been introduced, which are better
suited for directed graphs than treewidth, on which they are based.
The most prominent of those are directed treewidth [37], directed
pathwidth [3], DAG-width [6], Kelly-width [35], and D-width [50]
(see also [20]). Since these width measures are usually smaller on di-
rected graphs than treewidth, it is worth considering them for prob-
lems that have already been shown to be fixed-parameter tractable
parameterized by treewidth. In particular, all of these measures are
zero on directed acyclic graphs (DAGs), but the treewidth of DAGs

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming1106

can be arbitrary high.
In this section, we give results for directed width measures when

applied to dependency graphs as defined in Section 2. To state our
results in the most general manner, we will employ the parameter
cycle-rank [11]. Since the cycle-rank is always greater or equal to
any of the above mentioned directed width measures [32, 38], any
(parameterized) hardness result obtained for cycle-rank carries over
to the aforementioned width measures for directed graphs.

Definition 1. Let D = (V,A) be a directed graph. The cycle-rank
of D, denoted by cr(D), is inductively defined as follows: if D is
acyclic, then cr(D) = 0. Moreover, if D is strongly connected, then
cr(D) = 1+minv∈V cr(D \{v}). Otherwise the cycle-rank of D is
the maximum cycle-rank of any strongly connected component of D.

We will also consider a natural “undirected version” of the cycle-
rank for directed graphs, i.e., we define the undirected cycle-rank
of a directed graph D, denoted by cr↔(D), to be the cycle-rank
of UND(D). It is also well known (see, e.g., [30]) that the cycle-
rank of UND(D) is equal to the treedepth of DI(D), i.e., the un-
derlying undirected graph of D, and that the treedepth is always an
upper bound for the pathwidth and the treewidth of an undirected
graph [8]. Putting these facts together implies that any hardness re-
sult obtained for the undirected cycle-rank implies hardness for path-
width, treewidth, treedepth as well as the aforementioned directed
width measures. See also Figure 1 for an illustration how hardness
results for the considered width measures propagate.

Finally, we would like to remark that both the cycle-rank and the
undirected cycle-rank are easily seen to be closed under taking sub-
graphs, i.e., the (undirected) cycle-rank of a graph is always larger or
equal to the (undirected) cycle-rank of every subgraph of the graph.

Hardness Results

We show that ASP consistency remains as hard as in the general
setting even for instances that have a dependency graph of constant
width in terms of any of the directed width measures introduced.

For our hardness results, we employ the reduction given in [24]
showing that ASP consistency is ΣP

2 -hard in general. The reduction
is given from the validity problem for quantified Boolean formulas
(QBF) of the form: Φ := ∃x1 · · · ∃xn∀y1 · · · ∀ym ∨r

j=1 Dj where
each Dj is a conjunction of at most three literals over the variables
x1, . . . , xn and y1, . . . , ym. We will denote the set of all QBF for-
mulas of the above form in the following by QBFDNF

2,∃ .
Given Φ ∈ QBFDNF

2,∃ , a program Π(Φ) is constructed as follows.
The atoms of Π(Φ) are x1, v1, . . . , xn, vn, y1, z1, . . . , ym, zm, and
w and Π(Φ) contains the following rules:

• for every i with 1 ≤ i ≤ n, the rule xi ∨ vi ←,
• for every i with 1 ≤ i ≤ m, the rules yi∨zi ←, yi ← w, zi ← w,

and w ← yi, zi,
• for every j with 1 ≤ j ≤ r, the rule w ←

σ(Lj,1), σ(Lj,2), σ(Lj,3), where Lj,l (for l ∈ {1, 2, 3}) is the
l-th literal that occurs in Dj (if |Dj | < 3, the respective parts
are omitted) and the function σ is defined by setting σ(L) to vi if
L = ¬xi, to zi if L = ¬yi, and to L otherwise.

• the rule← ¬w (i.e., with an empty disjunction in the head).

It has been shown [24, Theorem 38] that a QBFDNF
2,∃ formula Φ is valid

iff Π(Φ) has an answer set. As checking validity of QBFDNF
2,∃ formulas

is ΣP
2 -complete [53], this reduction shows that ASP is ΣP

2 -hard.

Lemma 1. Let Φ be a QBFDNF
2,∃ , then cr↔(DEP(Π(Φ))) ≤ 2.

x1 v1

x2 v2

y1 z1

y2 z2

w

Figure 2. The symmetric closure of the dependency graph of the program
Π(Φ) for the formula Φ := ∃x1∃x2∀y1∀y2(x1 ∧ ¬y2) ∨ (¬x2 ∧ y2).

Here Π(Φ) contains the rules xi ∨ vi ←, yi ∨ zi ←, yi ← w, zi ← w, for
every i ∈ {1, 2} and the rules w ← x1, z2, w ← v2, y2.

Proof. Figure 2 illustrates the symmetric closure of DEP(Π(Φ)) for
a simple QBFDNF

2,∃ formula Φ. As this example illustrates, the only
arcs in UND(DEP(Π(Φ))) not incident to w are the arcs incident
to xi and vi and the arcs incident to yj and zj , for 1 ≤ i ≤ n
and 1 ≤ j ≤ m. Hence, after removing w from UND(DEP(Π(Φ))),
every strongly connected component of the remaining graph contains
at most two vertices and each of those has hence cycle-rank at most
one. It follows that the cycle-rank of UND(DEP(Π(Φ))) and hence
the undirected cycle-rank of DEP(Π(Φ)) is at most two.

Together with our considerations from above, we obtain:

Theorem 1. ASP consistency is ΣP
2 -complete even for instances

whose dependency graph has width at most two for any of the fol-
lowing width measures: undirected cycle-rank, pathwidth, treewidth,
treedepth, cycle-rank, directed treewidth, directed pathwidth, DAG-
width, Kelly-width, and D-width.

Observe that because the undirected cycle-rank is closed under
taking subgraphs and we chose the “richest” variant of the depen-
dency graph, the above result carries over to the other notions of
dependency graphs of ASP programs considered in the literature.

The above result draws a very negative picture of the complex-
ity of ASP w.r.t. restrictions on the dependency graph. In particular,
not even structural restrictions of the dependency graph by the usu-
ally very successful parameter treewidth can be employed for ASP.
This is in contrast to our second graphical representation of ASP, the
incidence graph, for which it is known that ASP is fixed-parameter
tractable parameterized by the treewidth [36]. It is hence natural to
ask whether the same still holds under restrictions provided by one
of the directed width measures under consideration. We first need to
discuss how to obtain a directed version of the usually undirected in-
cidence graph. For this, observe that the incidence graph, unlike the
signed incidence graph, provides merely an incomplete model of the
underlying ASP instance. Namely, it misses the information about
how atoms occur in rules, i.e., whether they occur in the head, in
the positive body, or in the negative body of a rule. A directed ver-
sion of the incidence graph should therefore use the additional ex-
pressiveness provided by the direction of the arcs to incorporate the
information given by the labels of the signed incidence graph. For in-
stance, a natural directed version of the incidence graph could orient
the edges depending on whether an atom occurs in the head or in the
body of a rule. Clearly, there are many ways to orient the edges and
it is not a priori clear which of those orientations leads to a directed
version of the incidence graph that is best suited for an application of
the directed width measures. Every orientation should, however, be
consistent with the labels of the signed incidence graph, i.e., when-
ever two atoms are connected to a rule via edges having the same

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming 1107

label, their arcs should be oriented in the same way. We call such an
orientation of the incidence graph a homogeneous orientation.

Lemma 2. Let Φ be a QBFDNF
2,∃ , then the cycle-rank of any homoge-

neous orientation of the incidence graph of Π(Φ) is at most one.

Proof. Let D be a homogeneous orientation of INC(Π(Φ)) and let
G = SINC(Π(Φ). First observe that in G \ {w} every rule vertex
is either only incident to edges with label h or to edges of label p.
Hence, as D is a homogeneous orientation, we obtain that every rule
vertex of D\{w} is either a source vertex (i.e., having only outgoing
arcs) or a sink vertex (i.e., having only incoming arcs). So D \ {w}
cannot contain a cycle through a rule vertex. However, since there
are no arcs between atom vertices in D, we obtain that D \ {w} is
acyclic, which shows that the cycle-rank of D is at most one.

We can thus state the following result:

Theorem 2. ASP consistency is ΣP
2 -complete even for instances

whose directed incidence graph has width at most one for any of the
following width measures: cycle-rank, directed treewidth, directed
pathwidth, DAG-width, Kelly-width, and D-width.

4 Clique-Width

The results in [31] imply that bounding the clique-width of the signed
incidence graph of a program leads to tractability.

Proposition 1. For a program Π such that the clique-width of its
signed incidence graph is bounded by a constant, we can decide in
linear time whether Π has an answer set.

This result has been established via a formulation of ASP con-
sistency as an MSO1 formula. Formulating a problem in this logic
automatically gives us an FPT algorithm. However, such algorithms
are primarily of theoretical interest due to huge constant factors, and
for actually solving problems, it is preferable to explicitly design dy-
namic programming algorithms [19].

Since our main tractability result considers the clique-width of an
edge-labeled graph, i.e., the signed incidence graph, we will intro-
duce clique-width for edge-labeled graphs. This definition also ap-
plies to graphs without edge-labels by considering all edges to be
labeled with the same label. A k-graph, for k > 0, is a graph whose
vertices are labeled by integers from {1, . . . , k} =: [k]. Addition-
ally, we also allow for the edges of a k-graph to be labeled by some
arbitrary but finite set of labels (in our case the labels will corre-
spond to the signs of the signed incidence graph). The labeling of the
vertices of a graph G = (V,E) is formally denoted by a function
L : V → [k]. We consider an arbitrary graph as a k-graph with all
vertices labeled by 1. We call the k-graph consisting of exactly one
vertex v (say, labeled by i ∈ [k]) an initial k-graph and denote it
by i(v).

Graphs can be constructed from initial k-graphs by means of re-
peated application of the following three operations:

• Disjoint union (denoted by ⊕);
• Relabeling: changing all labels i to j (denoted by ρi→j);
• Edge insertion: connecting all vertices labeled by i with all ver-

tices labeled by j via an edge with label � (denoted by η�
i,j); i �= j;

already existing edges are not doubled.

A construction of a k-graph G using the above operations can be rep-
resented by an algebraic term composed of i(v), ⊕, ρi→j , and η�

i,j ,

ηn
3,2 ⊕

ρ3→2 ηp
1,3 ⊕

ηh
1,2 ⊕

1(x)

2(r)
3(s)

3(y)

r

x

y

s

h p

n n

Figure 3. A parse tree (top) of a 3-expression for SINC(Π) (bottom),
where Π is the program consisting of the rules x← ¬y and← x,¬y

(i, j ∈ [k], and v a vertex). Such a term is then called a cwd-expres-
sion defining G. For any cwd-expression σ, we use Lσ : V → [k]
to denote the labeling of the graph defined by σ. A k-expression is a
cwd-expression in which at most k different labels occur. The set of
all k-expressions is denoted by CWk.

As an example consider the complete bipartite graph Kn,n with
bipartition A = {a1, . . . , an} and B = {b1, . . . , bn} and assume
that all edges of Kn,n are labeled with the label �. A cwd-expres-
sion of Kn,n using at most two labels is given by the following
steps: (1) introduce all vertices in A using label 1, (2) introduce
all vertices in B using label 2, (3) take the disjoint union of all
these vertices, and (4) add all edges between vertices with label 1
and vertices with label 2, i.e., such a cwd-expression is given by
η�
1,2(1(a1)⊕· · ·⊕1(an)⊕2(b1)⊕· · ·⊕2(bn)). As a second exam-

ple consider the complete graph Kn on n vertices, where all edges
are labeled with label �. A cwd-expression for Kn using at most two
labels can be obtained by the following iterative process: Given a
cwd-expression σn−1 for Kn−1, where every vertex is labeled with
label 1, one takes the disjoint union of σn−1 and 2(v) (where v is
the vertex only contained in Kn but not in Kn−1), adds all edges
between vertices with label 1 and vertices with label 2, and then re-
labels label 2 to label 1. Formally, the cwd-expression σn for Kn is
given by (ρ2→1(η

�
1,2(σn−1 ⊕ 2(v2))).

Definition 2. The clique-width of a graph G, cwd(G), is the smallest
integer k such that G can be defined by a k-expression.

Our discussion above thus witnesses that complete (bipartite)
graphs have clique-width 2. Furthermore, co-graphs also have clique-
width 2 (co-graphs are exactly given by the graphs which do not con-
tain an induced P4) and trees have clique-width 3.

We have already introduced the notion of incidence graphs (resp.
signed incidence graphs) of a program in Section 2. We thus can use
cwd-expressions to represent programs.

Example 1. Let Π be the program with A(Π) = {x, y} and
R(Π) = {r, s}, where r is the rule x ← ¬y and s is the rule ←
x,¬y. Its signed incidence graph SINC(Π) can be constructed by the

3-expression ηn
3,2

(
ρ3→2

(
ηp
1,3(η

h
1,2(1(x)⊕ 2(r))⊕ 3(s))

)⊕ 3(y)
)

,
as depicted in Figure 3.

Since every k-expression of the signed incidence graph can be
transformed into a k-expression of the unsigned incidence graph (by
replacing all operations of the form η�

i,j with ηα
i,j , where α is new

label), it holds that cwd(INC(Π)) ≤ cwd(SINC(Π)).

Proposition 2. Let Π be a program. It holds that cwd(INC(Π)) ≤
cwd(SINC(Π)), and there is a class C of programs such that, for
each Π ∈ C, cwd(INC(Π)) = 2 but cwd(SINC(Π)) is unbounded.

For showing the second statement of the above proposition, con-
sider a program Πn that has n2 atoms and n2 rules (for some n ∈ N),

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming1108

such that every atom occurs in every rule of Πn. Because the inci-
dence graph is a complete bipartite graph it has clique-width two and
moreover it contains a grid G of size n × n as a subgraph. Assume
that Πn is defined in such a way that an atom a occurring in a rule r
is in the head of r if the edge between a and r occurs in the grid G
and otherwise a is in the (positive) body of r. Then, the clique-width
of SINC(Πn) is at least the clique-width of the n× n grid G, which
grows with n [39]. Hence, the class C containing Πn for every n ∈ N

shows the second statement of the above proposition.

4.1 Algorithms

In this section, we provide our dynamic programming algorithms for
deciding existence of an answer set. We start with the classical se-
mantics for programs, where it is sufficient to just slightly adapt (a
simplified version of) the algorithm for SAT by [27]. For answer-set
semantics, we then extend this algorithm in order to deal with the
intrinsic higher complexity of this semantics.

Both algorithms follow the same basic principles by making use of
a k-expression σ defining a program Π via its signed incidence graph
in the following way: We assign certain objects to each subexpression
of σ and manipulate these objects in a bottom-up traversal of the
parse tree of the k-expression such that the objects in the root of
the parse tree then provide the necessary information to decide the
problem under consideration. The size of these objects is bounded in
terms of k (and independent of the size of Π) and the number of such
objects required is linear in the size of Π. Most importantly, we will
show that these objects can also be efficiently computed for bounded
k. Thus, we will obtain the desired linear running time.

4.1.1 Classical Semantics

Definition 3. A tuple Q = (T, F, U) with T, F, U ⊆ [k] is called
a k-triple, and we refer to its parts using QT = T , QF = F , and
QU = U . The set of all k-triples is given byQk.

The intuition of a triple (T, F, U) is to characterize a set of inter-
pretations I in the following way:

• For each i ∈ T , at least one atom with label i is true in I;
• for each i ∈ F , at least one atom with label i is false in I;
• for each i ∈ U , there is at least one rule with label i that is “not

satisfied yet”.

Formally, the “semantics” of a k-triple Q with respect to a given
program Π is given as follows.

Definition 4. Let Q ∈ Qk and Π be a program whose signed inci-
dence graph (V,E) is labeled by L : V → [k]. A Π-interpretation of
Q is a set I ⊆ A(Π) that satisfies

QT = {L(a) | a ∈ I},
QF = {L(a) | a ∈ A(Π) \ I}, and

QU = {L(r) | r ∈ R(Π), I /∈ Mods(r)}.
Example 2. Consider again program Π from Example 1 and the 3-
expression σ from Figure 3. Let Q be the 3-triple ({1}, {3}, {2}).
Observe that {x} is a Π-interpretation of Q: It sets x to true and y
to false, and Lσ(x) ∈ QT and Lσ(y) ∈ QF hold as required; the
rule s is not satisfied by {x}, and indeedLσ(s) ∈ QU . We can easily
verify that no other subset of A(Π) is a Π-interpretation of Q: Each
Π-interpretation of Q must set x to true and y to false, as these are
the only atoms labeled with 1 and 3, respectively.

We use the following notation for k-triples Q, Q′, and set S ⊆ [k].

• Q⊕Q′ = (QT ∪Q′
T , QF ∪Q′

F , QU ∪Q′
U)

• Qi→j = (Qi→j
T , Qi→j

F , Qi→j
U) where for S ⊆ [k],

Si→j = S \ {i} ∪ {j} if i ∈ S and Si→j = S otherwise.

• QS,i,j = (QT , QF , QU \ {j}) if i ∈ S; QS,i,j = Q otherwise.

Using these abbreviations, we define our dynamic program-
ming algorithm: We assign to each subexpression σ of a given k-
expression a set of triples by recursively defining a function f , which
associates to σ a set of k-triples as follows.

Definition 5. The function f : CWk → 2Qk is recursively defined
along the structure of k-expressions as follows.

• f(i(v)) =

{{({i}, ∅, ∅), (∅, {i}, ∅)} if v is an atom node{(∅, ∅, {i})} if v is a rule node
• f(σ1 ⊕ σ2) = {Q⊕Q′ | Q ∈ f(σ1), Q

′ ∈ f(σ2)}
• f(ρi→j(σ)) = {Qi→j | Q ∈ f(σ)}
• f(ηh

i,j(σ)) = f(ηn
i,j(σ)) = {QQT ,i,j | Q ∈ f(σ)}

• f(ηp
i,j(σ)) = {QQF ,i,j | Q ∈ f(σ)}

Example 3. Consider again program Π from Example 1 and the
3-expression depicted in Figure 3. To break down the structure of
σ, let σ1, . . . , σ6 be subexpressions of σ such that σ = ηn

3,2(σ1),
σ1 = σ2 ⊕ 3(y), σ2 = ρ3→2(σ3), σ3 = ηp

1,3(σ4), σ4 = σ5 ⊕ 3(s),
σ5 = ηh

1,2(σ6) and σ6 = 1(x) ⊕ 2(r). We get f(1(x)) ={
({1}, ∅, ∅), (∅, {1}, ∅)} and f(2(r)) =

{
(∅, ∅, {2})}. These sets

are then combined to f(σ6) =
{
({1}, ∅, {2}), (∅, {1}, {2})}. The

program defined by σ6 consists of atom x and rule r, but x does
not occur in r yet. Accordingly, the k-triple ({1}, ∅, {2}) models the
situation where x is set to true, which does not satisfy r (since the
head and body of r are still empty), hence the label of r is in the last
component; the 3-triple (∅, {1}, {2}) represents x being set to false,
which does not satisfy r either. Next, σ5 causes all atoms with label 1
(i.e., just x) to be inserted into the head of all rules with label 2 (i.e.,
just r), and we get f(σ5) =

{
({1}, ∅, ∅), (∅, {1}, {2})}. We obtain

the first element ({1}, ∅, ∅) = QQT ,1,2 from Q = ({1}, ∅, {2}) by
removing the label 2 from QU because 1 ∈ QT . The idea is that
the heads of all rules labeled with 2 now contain all atoms labeled
with 1, so these rules become satisfied by every interpretation that
sets some atom labeled with 1 to true. Next, σ4 adds the rule s with
label 3 and we get f(σ4) =

{
({1}, ∅, {3}), (∅, {1}, {2, 3})}. The

edge added by σ3 adds all atoms with label 1 (i.e., just x) into the
positive body of all rules with label 3 (i.e., just s), which results in
f(σ3) =

{
({1}, ∅, {3}), (∅, {1}, {2})}. Observe that the last com-

ponent of the second element no longer contains 3, i.e., setting x
to false makes s true. Now the label 3 is renamed to 2, and we
get f(σ2) =

{
({1}, ∅, {2}), (∅, {1}, {2})}. Note that now r and

s are no longer distinguishable since they now share the same la-
bel. Hence all operations that add edges to r will also add edges
to s and vice versa. In σ1, atom y is added with label 3 and we
get four 3-triples in f(σ1): From ({1}, ∅, {2}) in f(σ2) we ob-
tain ({1, 3}, ∅, {2}) and ({1}, {3}, {2}), and from (∅, {1}, {2}) in
f(σ2) we get ({3}, {1}, {2}) and (∅, {1, 3}, {2}). In σ, we add a
negative edge from all atoms labeled with 3 (i.e., just y) to all rules
labeled with 2 (both r and s). From ({1, 3}, ∅, {2}) in f(σ1) we now
get ({1, 3}, ∅, ∅), from ({3}, {1}, {2}) we get ({3}, {1}, ∅), and the
3-triples ({1}, {3}, {2}) and (∅, {1, 3}, {2}) from f(σ1) occur un-
modified in f(σ). As we will prove shortly, for each k-triple Q in

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming 1109

f(σ), there is a Π-interpretation of Q. So if there is a k-triple Q in
f(σ) such that QU = ∅, then Π has a classical model due to the
definition of QU . For instance, ({1, 3}, ∅, ∅) has a Π-interpretation
{x, y}, which is obviously a model of Π.

We now prove correctness of our algorithm:

Lemma 3. Let Π be a program and θ be a k-expression for
SINC(Π). For every set I ⊆ A(Π), there is a k-triple Q ∈ f(θ) such
that I is a Π-interpretation of Q, and for every k-triple Q ∈ f(θ)
there is a set I ⊆ A(Π) such that I is a Π-interpretation of Q.

Proof. We prove the first statement by induction on the structure of
a k-expression θ defining Π. Let σ be a subexpression of θ, let Πσ

denote the program defined by σ, and let I ⊆ A(Πσ).

If σ = i(r), for r ∈ R(Π), then A(Πσ) = ∅, so I = ∅. More-
over, R(Πσ) consists of an unsatisfiable rule (its head and body are
empty). Hence I is a Πσ-interpretation of (∅, ∅, {i}) in f(σ).

If σ = i(a), for a ∈ A(Π), then A(Πσ) = {a} and R(Πσ) = ∅.
If I = ∅, then I is a Πσ-interpretation of the k-triple (∅, {i}, ∅) in
f(σ). Otherwise I = {a} and I is a Πσ-interpretation of the k-triple
({i}, ∅, ∅) in f(σ).

If σ = σ1 ⊕ σ2, let i ∈ {1, 2}, Πi = Πσi and Ii = I ∩ A(Πi). By
definition of Πi, it holds that A(Π) = A(Π1) ∪ A(Π2), R(Π) =
R(Π1)∪R(Π2) and I = I1∪I2. By induction hypothesis, Ii is a Πi-
interpretation of some k-triple Qi in f(σi). By definition of f , there
is a k-triple Q in f(σ) with QT = Q1T ∪Q2T , QF = Q1F ∪Q2F

and QU = Q1U ∪ Q2U . This allows us to easily verify that I is a
Πσ-interpretation of Q by checking the conditions in Definition 4.

If σ = ρi→j(σ
′), then Πσ = Πσ′ and, by induction hypothesis, I

is a Πσ′ -interpretation of some k-triple Q in f(σ′). By definition of
f , the k-triple Qi→j in f(σ) is the result of replacing i by j in each
of QT , QF and QU . Hence we can easily verify that I satisfies all
conditions for being a Πσ-interpretation of Qi→j .

If σ = η�
i,j(σ

′), for � ∈ {h, n}, then A(Πσ) = A(Πσ′). Hence, by
induction hypothesis, I is a Πσ′ -interpretation of some k-triple Q′ in
f(σ′). We use Q to denote the k-triple Q′Q′

T ,i,j , which is in f(σ).
Since QT = Q′

T , QF = Q′
F and Lσ = Lσ′ , I satisfies the first two

conditions for being a Πσ-interpretation of Q. It remains to check
the third condition.

For every j′ ∈ [k] \ {j} it holds that j′ ∈ QU if and only if
j′ ∈ Q′

U . By induction hypothesis, the latter is the case if and only
if there is a rule r′ ∈ R(Πσ′) such that Lσ′(r′) = j′ and I /∈
Mods(r′). This is equivalent to the existence of a rule r ∈ R(Πσ)
such that Lσ(r) = j′, h(r) = h(r′), p(r) = p(r′), n(r) = n(r′)
and I /∈ Mods(r), since SINC(Πσ) only differs from SINC(Πσ′)
by additional edges that are not incident to r due to j′ �= j.

It remains to check that j ∈ QU if and only if there is a rule
r ∈ R(Πσ) such that Lσ(r) = j and I /∈ Mods(r). First suppose
toward a contradiction that j ∈ QU while I is a model of every rule
r ∈ R(Πσ) such that Lσ(r) = j. Since QU ⊆ Q′

U , also j ∈ Q′
U

and by induction hypothesis there is a rule r′ ∈ R(Πσ′) such that
Lσ′(r′) = j and I is not a model of r′. There is a corresponding rule
r ∈ R(Πσ), for which Lσ(r) = j, h(r′) ⊆ h(r), n(r′) ⊆ n(r) and
p(r′) = p(r) hold. Since I is a model of r but not of r′, I contains
some atom labeled with i (by both Lσ′ and Lσ) because all atoms
in h(r) \ h(r′) and n(r) \ n(r′) are labeled with i. By induction
hypothesis, this implies i ∈ Q′

T , which leads to the contradiction
j /∈ QU by construction of f .

Finally, suppose toward a contradiction that j /∈ QU and there is
a rule r ∈ R(Πσ) such that Lσ(r) = j and I /∈ Mods(r). The rule
r′ corresponding to r in Πσ′ with Lσ′(r′) = j is not satisfied by
I either, since h(r′) ⊆ h(r), n(r′) ⊆ n(r) and p(r′) = p(r). By
induction hypothesis, this entails j ∈ Q′

U . Due to j /∈ QU , it holds
that i ∈ Q′

T , so there is an a ∈ I with Lσ′(a) = Lσ(a) = i. Due to
the new edge from a to r, either a ∈ h(r) or a ∈ n(r). This yields
the contradiction that I is a model of r. The case σ = ηp

i,j(σ
′) is

symmetric. The proof of the second statement is similar.

We can now state our FPT result for classical models:

Theorem 3. Let k be an integer and Π be a program. Given a k-
expression for the signed incidence graph of Π, we can decide in
linear time whether Π has a model.

Proof. Let k be a constant, Π be a program and σ be a k-expression
of SINC(Π). We show that there is a model of Π if and only if there
is a k-triple Q in f(σ) with QU = ∅: If Π has a model I , then I is a
Π-interpretation of a k-triple Q in f(σ), by Lemma 3, and QU = ∅
by Definition 4. Conversely, if there is a k-triple Q in f(σ) with
QU = ∅, then there is a Π-interpretation I of Q, by Lemma 3, and
QU = ∅ implies that I is a model of Π by Definition 4. Finally, it is
easy to see that f(σ) can be computed in linear time.

4.1.2 Answer-Set Semantics

For full disjunctive ASP we need a more involved data structure.

Definition 6. A pair (Q,Γ) with with Q ∈ Qk and Γ ⊆ Qk is called
a k-pair. The set of all k-pairs is given by Pk.

Given a k-pair (Q,Γ), the purpose of Q is, as for classical se-
mantics, to represent Π-interpretations I (that in the end correspond
to models). Every k-triple in Γ represents sets J of atoms such that
J ⊂ I . If, in the end, there is such a set J that still satisfies every rule
in the reduct w.r.t. I , then we conclude that I is not an answer set.

Definition 7. Let Q ∈ Qk, let Π be a program whose signed
incidence graph (V,E) is labeled by L : V → [k], and let
I ⊆ A(Π). A ΠI -interpretation of Q is a set J ⊆ A(Π) such that
QT = {L(a) | a ∈ J}, QF = {L(a) | a ∈ A(Π) \ J}, and
QU = {L(r) | r ∈ R(Π), n(r) ∩ I = ∅, J /∈ Mods(r+)}.

We can now define our dynamic programming algorithm for ASP:

Definition 8. The function g : CWk → 2Pk is recursively defined
along the structure of k-expressions as follows.

• g(i(v)) =
{(

({i}, ∅, ∅), {(∅, {i}, ∅)}), (
(∅, {i}, ∅), ∅)}

if v is at atom node
• g(i(v)) =

{(
(∅, ∅, {i}), ∅)} if v is a rule node

• g(σ1 ⊕ σ2) = {
(
Q1 ⊕Q2, RQ1,Q2,Γ1,Γ2 | (Qi,Γi) ∈ g(σi)

)},
where RQ1,Q2,Γ1,Γ2 =

{
S1 ⊕ S2 | Si ∈ Γi

} ∪ {
Q1 ⊕ S | S ∈

Γ2

} ∪ {
S ⊕Q2 | S ∈ Γ1

})
• g(ρi→j(σ)) = {

(
(Qi→j , {Ri→j | R ∈ Γ}) | (Q,Γ) ∈ g(σ)}

• g(ηh
i,j(σ)) = {

(
QQT ,i,j , {RRT ,i,j | R ∈ Γ}) | (Q,Γ) ∈ g(σ)}

• g(ηp
i,j(σ)) = {

(
QQF ,i,j , {RRF ,i,j | R ∈ Γ}) | (Q,Γ) ∈ g(σ)}

• g(ηn
i,j(σ)) = {

(
QQT ,i,j , {RQT ,i,j | R ∈ Γ}) | (Q,Γ) ∈ g(σ)}

Note the use of QT in RQT ,i,j in the definition of g(ηn
i,j(σ)):

Whenever an interpretation I represented by Q sets an atom from
the negative body of a rule r to true, the rule r has no counterpart in
the reduct w.r.t. I , so, for each subset J of I , we remove r from the
set of rules whose counterpart in the reduct is not yet satisfied by J .

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming1110

Example 4. Let Π be the program consisting of a single rule← ¬x,
which we denote by r, and let σ = ηn

1,2(1(x)⊕ 2(r)). Let (Q,Γ) be
the k-pair in g(1(x)) with Q = ({1}, ∅, ∅) and Γ = {(∅, {1}, ∅)}.
The k-triple Q represents the set of atoms {x}. Since this set has
the proper subset ∅, there is a k-triple in Γ that indeed corre-
sponds to this subset. Now let (Q,Γ) = ((∅, {1}, ∅), ∅) be the
other k-pair in g(1(x)). Here Q represents the empty set of atoms,
which has no proper subsets, hence Γ is empty. For the single k-
pair ((∅, ∅, {2}), ∅) in g(2(r)), the situation is similar. Next, at
g(1(x)⊕2(r)), we combine every k-pair (Q1,Γ1) from g(1(x)) with
every k-pair (Q2,Γ2) from g(2(r)) to a new k-pair. For instance,
consider Q1 = ({1}, ∅, ∅) and Γ1 = {S}, where S = (∅, {1}, ∅),
as well as Q2 = (∅, ∅, {2}) and Γ2 = ∅. By definition of g, we ob-
tain a new k-pair (Q,Γ), where Q = Q1⊕Q2 = ({1}, ∅, {2}), and
Γ contains the single element Q2 ⊕ S = (∅, {1}, {2}). Recall that
the purpose of Q is to represent sets of atoms I , and each element
of Γ shall represent proper subsets of I; in this case, Q represents
{x}, and the element Q2 ⊕ S in Γ represents the proper subset ∅.
Next, at g(σ) we introduce a negative edge from x to r. From the
k-pair (Q, {S}) in g(1(x) ⊕ 2(r)), where Q = ({1}, ∅, {2}) and
S = (∅, {1}, {2}), we obtain the k-pair (Q′, {S′}) in g(σ), where
Q′ = QQT ,i,j = ({1}, ∅, ∅) (i.e., the label 2 from QU has disap-
peared) and S′ = SQT ,i,j = (∅, {1}, ∅). Here 2 has disappeared
from SU because the reduct w.r.t. all sets of atoms represented by Q′

no longer contains any rule labeled with 2. Note that the classical
model {x} represented by Q′ is no answer set even though Q′

U = ∅.
The reason is that S′ witnesses (by S′

U = ∅) that ∅ ∈ Mods(Π{x}).

We now prove correctness of the algorithm from Definition 8.

Lemma 4. Let Π be a program and θ be a k-expression for
SINC(Π). For every set I ⊆ A(Π) there is a k-pair (Q,Γ) ∈ g(θ)
such that (i) I is a Π-interpretation of Q and (ii) for every set J ⊂ I
there is a k-triple R ∈ Γ such that J is a ΠI -interpretation of R.
Moreover, for every k-pair (Q,Γ) ∈ g(θ) there is a set I ⊆ A(Π)
such that (i’) I is a Π-interpretation of Q and (ii’) for each k-triple
R ∈ Γ, there is a set J ⊂ I such that J is a ΠI -interpretation of R.

Proof. Observe that for each (Q,Γ) in g(θ) it holds that Q ∈ f(θ),
and for each Q in f(θ) there is some (Q,Γ) in g(θ). Hence we can
apply the same arguments as in the proof of Lemma 3 for (i) and
(i’). In addition, similar arguments can be used within each of the
distinguished cases for (ii) and (ii’). We use induction on the structure
of a k-expression θ defining Π. Let σ be a subexpression of θ, let
Πσ denote the program defined by σ, and let I ⊆ A(Πσ). We only
prove some of the cases, which should suffice to extend the ideas
from Lemma 3 in a similar way to prove the other cases.

If σ = σ1 ⊕ σ2, let Πi = Πσi and Ii = I ∩ A(Πi), for any i ∈
{1, 2}. By definition of Πi, it holds that A(Π) = A(Π1) ∪ A(Π2),
R(Π) = R(Π1) ∪ R(Π2) and I = I1 ∪ I2. Let J ⊂ I and, for
i ∈ {1, 2}, let Ji = J ∩ A(Πi). Observe that J1 ⊆ I1 and J2 ⊆ I2,
and at least one inclusion is proper. We distinguish three cases:

• If J1 ⊂ I1 and J2 ⊂ I2, then, by induction hypothesis, for any
i ∈ {1, 2} there is a k-pair (Qi,Γi) in g(σi) such that Ii is a Πi-
interpretation of Qi and there is a k-triple Ri ∈ Γi such that Ji is a
ΠIi

i -interpretation of Ri. By definition of g, there is a k-pair (Q,Γ)
in g(σ) such that Q = Q1 ⊕Q2 and there is a k-triple R in Γ such
that R = R1⊕R2. We can easily check that I is a Πσ-interpretation
of Q and that J is a ΠI

σ-interpretation of R.
• If J1 ⊂ I1 and J2 = I2, then, by induction hypothesis, there is a
k-pair (Q1,Γ1) in g(σ1) such that I1 is a Π1-interpretation of Q1

and there is a k-triple R1 ∈ Γ1 such that J1 is a ΠI1
1 -interpretation

of R1. Also, there is a k-pair (Q2,Γ2) in g(σ2) such that I2 is a
Π2-interpretation of Q2. By definition of g, there is a k-pair (Q,Γ)
in g(σ) such that Q = Q1 ⊕Q2 and there is a k-triple R in Γ such
that R = R1⊕Q2. We can easily check that I is a Πσ-interpretation
of Q and that J is a ΠI

σ-interpretation of R.
• The case J1 = I1, J2 ⊂ I2 is symmetric.

If σ = ηn
i,j(σ

′), then there is again a k-pair (Q′,Γ′) in g(σ′) such
that (i) I is a Πσ′ -interpretation of Q′ and (ii) for each J ⊂ I there
is a k-triple R in Γ′ such that J is a ΠI

σ′ -interpretation of R. Let
(Q,Γ) be the k-pair in g(σ) for which Q = Q′Q′

T ,i,j and Γ =

{RQ′
T ,i,j | R ∈ Γ′} hold. As before, I is a Πσ-interpretation of

Q. Let J ⊂ I , let R′ be the k-triple in Γ′ such that J is a ΠI
σ′ -

interpretation of R′, and let R = R′Q′
T ,i,j . As before, J satisfies the

first two conditions for being a ΠI
σ-interpretation of R. It remains to

check the third condition.
For all labels except j, we proceed as before. We now check that

j ∈ RU if and only if there is a rule r ∈ R(Πσ) such thatLσ(r) = j,
n(r) ∩ I = ∅ and J /∈ Mods(r+). First suppose toward a contra-
diction that j ∈ RU while J ∈ Mods(r+) for each r ∈ R(Πσ)
such that Lσ(r) = j and n(r) ∩ I = ∅. Since RU ⊆ R′

U , also
j ∈ R′

U and by induction hypothesis there is a rule r′ ∈ R(Πσ′)
such that Lσ′(r′) = j, n(r′) ∩ I = ∅ and J is not a model of r′+.
There is a corresponding rule r ∈ R(Πσ), for which Lσ(r) = j,
h(r′) = h(r), p(r′) = p(r) and n(r′) ⊆ n(r) hold. Since J is a
model of r+ but not of r′+ (and these rules are identical), there is an
a ∈ n(r) ∩ I with Lσ(a) = i. From a ∈ I it follows by induction
hypothesis that i ∈ Q′

T , but this leads to the contradiction j /∈ RU .
Finally, suppose toward a contradiction that j /∈ RU and there

is a rule r ∈ R(Πσ) such that Lσ(r) = j, n(r) ∩ I = ∅ and
J /∈ Mods(r+). Let r′ be the rule corresponding to r in Πσ′ . For this
rule it holds that Lσ′(r′) = j and n(r′) ⊆ n(r), so n(r′) ∩ I = ∅.
The set J does not satisfy r′+ either, since h(r′+) = h(r+) and
p(r′+) = p(r+). By induction hypothesis, this entails j ∈ R′

U . Due
to j /∈ RU , it holds that i ∈ Q′

T , so there is an atom a ∈ I such that
Lσ′ = Lσ(a) = i. Due to the new edge from a to r, a ∈ n(r) holds,
which contradicts n(r) ∩ I = ∅.
The other direction is similar.

Hence we get an FPT result for answer-set semantics:

Theorem 4. Let k be a constant and Π be a program. Given a k-
expression for the signed incidence graph of Π, we can decide in
linear time whether Π has an answer set.

Proof. Let k be a constant, Π be a program and σ be a k-expression
of SINC(Π). Using the same ideas as for Theorem 3, we can easily
show that there is an answer set of Π if and only if there is a k-pair
(Q,Γ) in g(σ) such that QU = ∅ and RU �= ∅ for every R ∈ Γ.
Again, it is easy to see that g(σ) can be computed in linear time.

4.2 The Role of Signs for Results on Clique-Width

We have shown that ASP parameterized by the clique-width of the
signed incidence graph is FPT. Because the clique-width of the (un-
signed) incidence graph is usually smaller than (and always at most
as high as) the clique-width of the signed incidence graph (Proposi-
tion 2), an FPT result w.r.t. the clique-width of the (unsigned) inci-
dence graph would be a significantly stronger result. It is therefore
natural to ask whether ASP is already FPT w.r.t the clique-width of

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming 1111

the unsigned incidence graph. A similar situation is known for the
satisfiability problem of propositional formulas (SAT), which was
first shown in [27] to be FPT parameterized by the clique-width
of the signed incidence graph, and the authors conjectured that the
same should hold already for the unsigned version. Surprisingly, this
turned out not to be the case [46]. In comparison to SAT, the situa-
tion for ASP is similar but slightly more involved. Whereas there are
only two potential signs for SAT (signaling whether a variable oc-
curs positively or negatively in a clause), ASP has three signs (h, p,
n). So how many signs are necessary to obtain tractability for ASP?
To settle this question, let SINCL(Π), for L ⊆ {h, p, n}, be the
(“semi-signed”) incidence graph obtained from SINC(Π) by joining
all labels in L, i.e., every label in L is renamed to a new label, which
we denote by α. We will show below that joining any set L of labels
other than {h, n} leads to intractability for ASP parameterized by the
clique-width of SINCL(Π). Together with our tractability result w.r.t.
the clique-width of SINC(Π) (Theorem 4), this provides an almost
complete picture of the complexity of ASP parameterized by clique-
width. We leave it as an open question whether ASP parameterized
by the clique-width of SINC{h,n}(Π) is FPT.

Theorem 5. Let L ⊆ {h, p, n} with |L| > 1 and L �= {h, n}, then
ASP is W[1]-hard parameterized by the clique-width of SINCL(Π).

Proof. We show the result by a parameterized reduction from the
W [1]-complete problem PARTITIONED CLIQUE [48]. The PAR-
TITIONED CLIQUE problem asks, whether a given k-partite graph
G = (V,E) with partition V1, . . . , Vk where |Vi| = |Vj | for every i
and j with 1 ≤ i, j ≤ k, has a clique of size exactly k.

Recall that a k-partite graph is a graph whose vertex set can be
partitioned into k sets such that there are no edges between vertices
contained in the same set. To prove the theorem it is sufficient to
show that the result holds for L being any combination of two labels
other than {h, n}. In other words, it suffices to show the result for
L = {h, p} and L = {p, n}. Because the reduction for the case
that L = {h, p} is very similar to the reduction from PARTITIONED

CLIQUE to SAT given in [46, Corollary 1], we omit its proof here and
only give the proof for the case that L = {p, n}. Let L = {p, n} and
G, k, V1, . . . , Vk be as in the definition of PARTITIONED CLIQUE

and assume that the vertices of G are labeled such that vji is the i-th
vertex contained in Vj . We will construct a program Π in polynomial-
time such that G has a clique of size k if and only if Π has an answer
set, and the clique-width of SINCL(Π) is at most k′ = 2k + k2.

The program Π contains one atom vji for every vertex vji of G,
and the following rules:
(R1) For every j with 1 ≤ j ≤ k, the rule: vj1 ∨ · · · ∨ vjn ←.
(R2) The rule:

← vj1i1 , v
j2
i2
,¬vj11 , . . . ,¬vj1i1−1,¬vj1i1+1, . . . ,¬vj1n ,

¬vj21 , . . . ,¬vj2i2−1,¬vj2i2+1, . . . ,¬vj2n
for every {vj1i1 , v

j2
i2
} /∈ E(G) with 1 ≤ j1, j2 ≤ k and 1 ≤

i1, i2 ≤ n.
We first show that G has a clique of size k if and only if Π has an

answer set. Toward showing the forward direction, let C be a clique
of size k of G. We claim that C is also an answer set of Π and first
show that C is indeed a model of Π. Because C contains exactly
one vertex from every Vi, all rules of type (R1) are satisfied by C.
Moreover, the same holds for all rules of type (R2), because there
is no pair u, v ∈ C with {u, v} /∈ E(G) and hence the body of
every such rule is always falsified. This shows that C is a model of
Π. Finally, because all the rules of type (R1) are also contained in the
reduct ΠC of Π, we obtain that C is an answer set of Π.

Toward showing the reverse direction, let C be an answer set of
Π. We claim that C is also a clique of G of size k and first show that
C contains exactly one variable from every Vi. Because of the rules
of type (R1) (which will also remain in the reduct ΠC), it holds that
C contains at least one variable corresponding to a vertex of Vi for
every i with 1 ≤ i ≤ k. Assume for a contradiction that C contains
more than one variable from some Vi. Then for every j with j �= i,
C has to contain at least three variables from Vi ∪ Vj . Consequently,
every rule of type (R2) corresponding to a non-edge of G incident to
a vertex in Vi does not appear in the reduct ΠC of Π, which shows
that C is not an answer set (minimal model) of ΠC . This shows that
C contains exactly one variable from every Vi. Now, suppose for a
contradiction that C is not a clique of G of size k. Then there are u
and w in C with u ∈ Vi and w ∈ Vj such that {u,w} /∈ E(G).
Hence, there is a rule of type (R2) (corresponding to the non-edge
{u, v}), which is violated by C, a contradiction to our assumption
that C is model of Π.

It remains to show that the clique-width of SINCL(Π) is at most
k′ = 2k + k2. We show this by providing a k′-expression for
SINCL(Π). We start by giving the terms that introduce the vertices
of SINCL(Π): (1) We introduce every atom vertex vji of SINCL(Π)
with the term j(vji). (2) For every rule vertex r of the form (R1) cor-
responding to a rule vj1 ∨ · · · ∨ vjn ←, we introduce the term l(r)
where l = k + j. (3) For every rule vertex r of the form (R2) cor-
responding to a non-edge between Vi and Vj with 1 ≤ i < j ≤ k,
we introduce the term l(r), where l = 2k + k(i − 1) + j. We then
combine all these terms using the disjoint union operator ⊕. Now it
only remains to show how the edges between the rule and the atom
vertices of SINCL(Π) are added: First, for every j with 1 ≤ j ≤ k,
we add the edges between the rule vertices of the form (R1) and
the atom vertices contained in those rules using the operator η�

j,k+j ,
where � = h. Second, for every i and j with 1 ≤ i < j ≤ k, we add
the edges between the rule vertices of the form (R2) and the atom
vertices contained in those rules using the operators ηα

i,2k+k(i−1)+j

and ηα
j,2k+k(i−1)+j .

5 Conclusion

In this paper, we have contributed to the parameterized complexity
analysis of ASP. We first gave some negative observations showing
that most directed width measures (applied to the dependency graph
or incidence graph of a program) do not lead to FPT results. On the
other hand, we turned a theoretical tractability result (which implic-
itly follows from previous work [31]) for the parameter clique-width
(applied to the signed incidence graph of a program) into a novel
dynamic programming algorithm. The algorithm is applicable to ar-
bitrary programs, whenever a defining k-expression is given. The al-
gorithm is expected to run efficiently in particular for small k, i.e.,
programs for which the signed incidence graph has low clique-width.

Future work includes solving the remaining question whether ASP
parameterized by the clique-width of SINC{h,n}(Π) is FPT or not.
Another open question is whether ASP parameterized by the clique-
width of the unsigned incidence graph is in the class XP (as is the
case for SAT [51]).

Acknowledgments. This work was supported by the Austrian Sci-
ence Fund (FWF) projects P25518 and Y698.

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming1112

REFERENCES

[1] G. Bagan, A. Bonifati, and B. Groz, ‘A trichotomy for regular simple
path queries on graphs’, in Proc. PODS, pp. 261–272. ACM, (2013).

[2] M. Balduccini, M. Gelfond, and M. Nogueira, ‘Answer set based de-
sign of knowledge systems’, Ann. Math. Artif. Intell., 47(1-2), 183–219,
(2006).

[3] J. Barát, ‘Directed path-width and monotonicity in digraph searching’,
Graphs and Combinatorics, 22(2), 161–172, (2006).

[4] R. Ben-Eliyahu, ‘A hierarchy of tractable subsets for computing stable
models’, J. Artif. Intell. Res. (JAIR), 5, 27–52, (1996).

[5] R. Ben-Eliyahu and R. Dechter, ‘Propositional semantics for disjunc-
tive logic programs’, Ann. Math. Artif. Intell., 12(1-2), 53–87, (1994).

[6] D. Berwanger, A. Dawar, P. Hunter, S. Kreutzer, and J. Obdrzálek, ‘The
dag-width of directed graphs’, Journal of Combinatorial Theory, Series
B, 102(4), 900–923, (2012).

[7] H. L. Bodlaender, ‘A tourist guide through treewidth’, Acta Cybernet-
ica, 11, 1–21, (1993).

[8] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks, ‘Approx-
imating treewidth, pathwidth, frontsize, and shortest elimination tree’,
J. Algorithms, 18(2), 238–255, (1995).

[9] M. Bojańczyk, C. Dittmann, and S. Kreutzer, ‘Decomposition theorems
and model-checking for the modal μ-calculus’, in Proc. CLS/LICS, pp.
17:1–17:10. ACM, (2014).

[10] G. Brewka, T. Eiter, and M. Truszczyński, ‘Answer set programming at
a glance’, Comm. ACM, 54(12), 92–103, (2011).

[11] R. S. Cohen, ‘Transition graphs and the star height problem’, in Proc.
of the 9th Annual Symposium on Switching and Automata Theory, pp.
383–394. IEEE Computer Society, (1968).

[12] D. G. Corneil and U. Rotics, ‘On the relationship between clique-width
and treewidth’, SIAM J. Comput., 34(4), 825–847, (2005).

[13] B. Courcelle, ‘Recognizability and second-order definability for sets
of finite graphs’, Technical Report I-8634, Université de Bordeaux,
(1987).

[14] B. Courcelle, ‘Graph rewriting: an algebraic and logic approach’, in
Handbook of theoretical computer science, Vol. B, 193–242, Elsevier
Science Publishers, North-Holland, Amsterdam, (1990).

[15] B. Courcelle, J. Engelfriet, and G. Rozenberg, ‘Context-free handle-
rewriting hypergraph grammars’, in Proc. Graph-Grammars, volume
532 of LNCS, pp. 253–268, (1991).

[16] B. Courcelle, J. Engelfriet, and G. Rozenberg, ‘Handle-rewriting hy-
pergraph grammars’, JCSS, 46(2), 218–270, (1993).

[17] B. Courcelle, J. A. Makowsky, and U. Rotics, ‘Linear time solvable op-
timization problems on graphs of bounded clique-width’, Theory Com-
put. Syst., 33(2), 125–150, (2000).

[18] B. Courcelle and S. Olariu, ‘Upper bounds to the clique-width of
graphs’, Discr. Appl. Math., 101(1-3), 77–114, (2000).

[19] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx,
M. Pilipczuk, M. Pilipczuk, and S. Saurabh, Parameterized Algorithms,
Springer, 2015.

[20] M. Dehmer and F. Emmert-Streib, eds., Quantitative Graph Theory,
chapter Width-Measures for Directed Graphs and Algorithmic Appli-
cations, CRC Press, 2014.

[21] R. Diestel, Graph Theory, 4th Edition, volume 173 of Graduate texts in
mathematics, Springer, 2012.

[22] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized
Complexity, Texts in Computer Science, Springer, 2013.

[23] W. Dvorák, S. Szeider, and S. Woltran, ‘Reasoning in argumentation
frameworks of bounded clique-width’, in Proc. COMMA, volume 216
of Frontiers in Artificial Intelligence and Applications, pp. 219–230.
IOS Press, (2010).

[24] T. Eiter and G. Gottlob, ‘On the computational cost of disjunctive logic
programming: Propositional case’, Ann. Math. Artif. Intell., 15(3–4),
289–323, (1995).

[25] M. R. Fellows, F. A. Rosamond, U. Rotics, and S. Szeider, ‘Clique-
width is NP-complete’, SIAM J. Discrete Math., 23(2), 909–939,
(2009).

[26] J. Fichte and S. Szeider, ‘Backdoors to tractable answer set program-
ming’, Artif. Intell., 220, 64–103, (2015).

[27] E. Fischer, J. A. Makowsky, and E. R. Ravve, ‘Counting truth assign-
ments of formulas of bounded tree-width or clique-width.’, Discr. Appl.
Math., 156(4), 511–529, (2008).

[28] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, Answer Set
Solving in Practice, Synthesis Lectures on Artificial Intelligence and

Machine Learning, Morgan & Claypool Publishers, 2012.
[29] M. Gelfond and V. Lifschitz, ‘Classical negation in logic programs

and disjunctive databases’, New Generation Comput., 9(3/4), 365–386,
(1991).

[30] A. C. Giannopoulou, P. Hunter, and D. M. Thilikos, ‘LIFO-search: A
min-max theorem and a searching game for cycle-rank and tree-depth’,
Discrete Applied Mathematics, 160(15), 2089–2097, (2012).

[31] G. Gottlob, R. Pichler, and F. Wei, ‘Bounded treewidth as a key to
tractability of knowledge representation and reasoning’, Artif. Intell.,
174(1), 105–132, (2010).

[32] H. Gruber, ‘Digraph complexity measures and applications in formal
language theory’, Discrete Mathematics & Theoretical Computer Sci-
ence, 14(2), 189–204, (2012).

[33] C. Guziolowski, S. Videla, F. Eduati, S. Thiele, T. Cokelaer, A. Siegel,
and J. Saez-Rodriguez, ‘Exhaustively characterizing feasible logic
models of a signaling network using answer set programming’, Bioin-
formatics, 29(18), 2320–2326, (2013). Erratum see Bioinformatics 30,
13, 1942.

[34] M. Heule and S. Szeider, ‘A SAT approach to clique-width’, ACM
Trans. Comput. Log., 16(3), 24, (2015).

[35] P. Hunter and S. Kreutzer, ‘Digraph measures: Kelly decompositions,
games, and orderings’, TCS, 399(3), 206–219, (2008).

[36] M. Jakl, R. Pichler, and S. Woltran, ‘Answer-set programming with
bounded treewidth’, in Proc. IJCAI, pp. 816–822, (2009).

[37] T. Johnson, N. Robertson, P. D. Seymour, and R. Thomas, ‘Directed
tree-width’, Journal of Combinatorial Theory, Series B, 82(1), 138–
154, (2001).

[38] L. Kaiser, S. Kreutzer, R. Rabinovich, and S. Siebertz, ‘Directed
width measures and monotonicity of directed graph searching’, CoRR,
abs/1408.4745, (2014).

[39] M. Kaminski, V. V. Lozin, and M. Milanic, ‘Recent developments
on graphs of bounded clique-width’, Discrete Applied Mathematics,
157(12), 2747–2761, (2009).

[40] M. M. Kanté, ‘The rank-width of directed graphs’, CoRR,
abs/0709.1433, (2007).

[41] M. Lackner and A. Pfandler, ‘Fixed-parameter algorithms for finding
minimal models’, in Proc. KR, pp. 85–95. AAAI Press, (2012).

[42] F. Lin and X. Zhao, ‘On odd and even cycles in normal logic programs’,
in Proc. AAAI, pp. 80–85. AAAI Press / The MIT Press, (2004).

[43] Z. Lonc and M. Truszczyński, ‘Fixed-parameter complexity of seman-
tics for logic programs’, ACM Trans. Comput. Log., 4(1), 91–119,
(2003).

[44] V. W. Marek and M. Truszczyński, ‘Stable Models and an Alternative
Logic Programming Paradigm’, in The Logic Programming Paradigm
– A 25-Year Perspective, 375–398, Springer Verlag, (1999).

[45] M. Morak, R. Pichler, S. Rümmele, and S. Woltran, ‘A dynamic-
programming based ASP-solver’, in Proc. JELIA’10, pp. 369–372,
(2010).

[46] S. Ordyniak, D. Paulusma, and S. Szeider, ‘Satisfiability of acyclic and
almost acyclic CNF formulas’, TCS, 481, 85–99, (2013).

[47] S. Oum and P. Seymour, ‘Approximating clique-width and branch-
width’, J. Combin. Theory Ser. B, 96(4), 514–528, (2006).

[48] K. Pietrzak, ‘On the parameterized complexity of the fixed alpha-
bet shortest common supersequence and longest common subsequence
problems’, JCSS, 67(4), 757–771, (2003).

[49] F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano, and
N. Leone, ‘Team-building with answer set programming in the Gioia-
Tauro seaport’, TPLP, 12, 361–381, (4 2012).

[50] M. A. Safari, ‘D-width: A more natural measure for directed tree
width’, in Proc. MFCS, volume 3618 of LNCS, pp. 745–756. Springer,
(2005).

[51] F. Slivovsky and S. Szeider, ‘Model counting for formulas of bounded
clique-width’, in Proc. ISAAC, volume 8283 of LNCS, pp. 677–687.
Springer, (2013).

[52] T. Soininen and I. Niemelä, ‘Developing a declarative rule language for
applications in product configuration’, in Proc. PADL, volume 1551 of
LNCS, pp. 305–319. Springer Verlag, (1998).

[53] L. J. Stockmeyer and A. R. Meyer, ‘Word problems requiring exponen-
tial time’, in Proc. Theory of Computing, pp. 1–9. ACM, (1973).

[54] M. Truszczyński, ‘Trichotomy and dichotomy results on the complexity
of reasoning with disjunctive logic programs’, TPLP, 11(6), 881–904,
(2011).

B. Bliem et al. / Clique-Width and Directed Width Measures for Answer-Set Programming 1113

