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Abstract. Electroencephalogram (EEG) based brain-computer in-
terface (BCI) has been proved to be an effective communication way
between human brain and external devices. In order to effectively re-
cover the cortical dynamics from the EEG signals and improve the
classification performance, plenty of studies focused on construct-
ing subject-specific spatial and spectral filters, achieving consider-
able improvement in classification accuracy. However, almost all the
approaches aimed to find one common subspace for projection of
all the samples in different classes. Studies have shown that active
channels and frequency information were not only subject-dependent
but also class-dependent. Thus the variety of class-dependent spa-
tial and spectral characteristics can provide further discriminative
information for classification. In this paper, we proposed a tensor-
based method which attempted to seek individual spatial and spec-
tral subspaces for each class by which each class was projected into
its own subspace separately such that they were easily to be classi-
fied. Finally, we added a regularization term in this model to avoid
overfitting. We evaluated the effectiveness and robustness of the pro-
posed method on two different datasets including one widely-used
benchmark EEG dataset collected from healthy subjects and one
self-collected EEG dataset collected from stroke patients. The results
demonstrated its superior performance.

1 Introduction

Brain-computer interface (BCI) provides a communication system
between human brain and external devices, and hence provides a
communication channel for people with severe motor disabilities to
reestablish environmental control abilities [35]. Among assorts of
brain diffused signals, electroencephalogram (EEG) is the most ex-
ploited sensory signal to be studied in BCI researches, due to its
low cost and high time resolution compared to other modalities. A
number of EEG-based BCI systems have been developed recently
[35, 6, 25] in which patterns of EEG in different mental states can be
discriminated for information transmission by feature extraction and
classification algorithms. Research [9, 22] has shown that their ef-
fectiveness and efficiency depend on the quality of EEG feature rep-
resentation and the accuracy of pattern classification of the recorded
single trial EEG.

One of the most successful algorithms for EEG classification, ev-
idenced by the BCI Competition [8], is termed the Common Spatial
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Pattern (CSP) [28]. CSP is used for discriminating two classes of
EEG data by maximizing the variance of one class while minimizing
the variance of the other class. Although CSP proves to be highly suc-
cessful in BCI, the performance of the spatial filters constructed by
CSP algorithm heavily depends on their operational frequency band-
s and channels configuration [3, 31, 21]. Setting a broad frequency
range and channels or manually selecting a subject-specific frequen-
cy range and channels are commonly used with the CSP algorithm
when applied on real applications.

To address the problem of manually selecting the operational
subject-specific frequency band and channels group, several ap-
proaches have been proposed. Arvaneh et al. proposed a sparse CSP-
based channel selection method by sparsifying the CSP projection
matrix [4]. Lemm et al. proposed a Common Spatio-Spectral Pat-
tern (CSSP) [18] method to optimize a simple filter that employed
a one time delayed sample with the CSP algorithm, while Dornhege
introduced a Common Sparse Spectral Spatial Pattern (CSSSP) [14]
method to improve the CSSP algorithm by performing simultane-
ous optimization of an arbitrary (Finite Impulse Response) FIR filter
within the CSP algorithm. Differently, Wu et al. proposed an iterative
learning method, called Iterative Spatio-Spectral Patterns Learning
(ISSPL) [36], in which an FIR filter and a classifier were simultane-
ously parameterized and optimized in the spectral domain, alternate-
ly with optimization of spatial filters using CSP in the spectral do-
main. More recently, Filter Bank Common Spatial Pattern (FBCSP)
[2], whose efficacy was demonstrated in the latest BCI Competition
IV [26], combined a filter bank framework with CSP and selected
the most discriminative features using a mutual information based
criterion [2].

However, learning optimum spatial-spectral filters is still a chal-
lenging and open issue in BCI, especially in some paradigms where
motor imagery characteristics are not available (e.g., active channel-
s and frequency information of stroke patients are not well known).
Moreover, the previous methods aimed to find common projection
matrices for all the classes so that all the samples were projected
into a lower dimensional space. Despite various studies and recen-
t advances, none of them attempted to learn the optimal individual
spatial-spectral filters for each class. e.g., CSP-based methods only
learned the individual spatial filters for each class, ignoring finding
class-dependent spectral filters. Studies have shown that both active
channels and frequency information are not only subject-dependent
but also class-dependent [38, 13, 39]. Hence, the variety of class-
dependent spatial and spectral characteristics can provide further
discriminative information. Theoretically speaking, the classification
performance will be improved if we try to seek a set of individual s-
patial and spectral subspaces for each class and project the samples
in each class into its own subspace rather than a common subspace.
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To address the problems mentioned above, in this paper, a tensor-
based method, called Higher-order Correlation Coefficient Analysis
(HOCCA), is proposed with the aim of simultaneously seeking indi-
vidual spatial and spectral subspaces for each class so that each class
is projected into its own subspace separately. Many real-world data
is formed in a multidimensional way rather than a vector form. i.e.,
EEG can be represented by high order tensors with multiple-modality
patterns in the spatial-spectral-temporal domain. Tensor provides an
effective and faithful representation of the structural properties of da-
ta, in particular, when multidimensional data or a data ensemble af-
fected by multiple factors are involved. Tensor representation has at-
tracted growing attention in multidimensional data analysis, such as
functional magnetic resonance (fMRI), electrocorticography (ECoG)
and EEG [37, 16].

In brief, the main contributions in this paper can be summarized
as follows:

• To the best of our knowledge, this is the first study for EEG clas-
sification which attempts to seek a set of individual multilinear
subspaces for each class rather than a common subspace for all
the classes, by which the samples belonging to different classes
are projected into their own subspace separately such that they are
easily to be classified.

• The proposed method extends the vector-based subspace learning
method to a tensor variate input space in order to consider the
multiway structure of inputs into the model learning and predic-
tions, which is effective and robust for multidimensional EEG data
classification when lacking of the prior knowledge like channels
configuration and active frequency bands.

• The discriminative spatial and spectral patterns can be simultane-
ously identified from limited training dataset, which may provide
insights to the underlying cortical activity patterns, e.g. for brain
source localization and physiological knowledge exploration.

In the rest part of the paper, Section 2 introduces the notations
and basic multilinear algebra operations. Details of HOCCA is given
in Section 3, followed by the experimental configuration in Section
4. Section 5 evaluates the effectiveness of HOCCA when applied on
one widely-used benchmark EEG dataset and one self-collected EEG
dataset. Finally, we give a brief discussion and conclusion about our
work in Section 6 and Section 7, respectively.

2 Preliminary

2.1 Notations and tensor algebra

Many real-world data is formed in a multidimensional way rather
than a vector form. Tensor representation has attracted growing at-
tention in multidimensional data analysis, such as functional mag-
netic resonance (fMRI), electrocorticography (ECoG) and EEG
[16, 20, 19].

N th-order tensors (multi-way arrays) are denoted by underlined
boldface capital letters, matrices (two-way arrays) by boldface
capital letters, and vectors by boldface lower-case letters, e.g., X,
P and t are examples of a tensor, a matrix and a vector, respec-
tively. The nth-mode matricization of a tensor X is denoted by X(n).

Definition 1: (Inner product) The inner product of two same-sized
tensors X,Y is defined by:

〈X,Y〉 =
∑

i1i2···iM
xi1i2···iM yi1i2···iM (1)

The Frobenius norm by ‖X‖F =
√〈X,X〉.

Definition 2: (Outer product) The outer product of the tensors X and
Y is given by

(X ◦Y)i1i2...iM j1j2...jN = xi1i2...iM yj1j2...jN (2)

Definition 3: (Mode-n product) The mode-n product of a tensor X ∈
RI1×I2×···×IN and matrix A ∈ RJn×In is denoted by Y = X×n

A ∈ RI1×I2×···×In−1×Jn×In+1×···×IN and is defined as:

yi1...in−1jnin+1...iN =
∑
in

xi1...iNajnin

The mode-n product of a tensor X ∈ RI1×I2×···×IN and multiple
matrices {A(n) ∈ RJn×In , n = 1, . . . , N} is denoted by Y =

X
N∏

n=1

×nA
(n) ∈ RJ1×J2×···×JN . Especially, the product of X and

multiple matrices {A(n)}Nn=1 except the k-th one is denoted as

X(k̄) = X

N∏
n=1,n �=k

×nA
(n) ∈ RJ1×···×Jk−1×Ik×Jk+1...×JN

Definition 4: (Tensor Contraction) The contraction of a tensor is
obtained by equating two indices and summing over all values of
the repeated indices. Contraction reduces the tensor order by 2.
Given two tensors X ∈ RI1×I2×···×IM×J1×J2×···×JN and Y ∈
RI1×I2×···×IM×K1×K2×···×KP , the contraction on the tensor prod-
uct X⊗Y along the first M modes is

[[X⊗Y; (1 : M)(1 : M)]] =

I1∑
i1

· · ·
IM∑
iM

xi1...iM j1...jN yi1...iMk1...kP

Especially, contracted product of X and Y on all indices except the
k-th index is denoted as [[X⊗Y; (k)(k)]].

3 Higher-order Correlation Coefficient Analysis

HOCCA is proposed with the aim of finding multilinear subspaces
for each class so that high-dimensional samples belonging to differ-
ent classes are projected into their individual subspaces where the
mutual correlation between them is minimized. We first formulate
the HOCCA model and then adopt an alternating solution to solve
this problem in iterations.

3.1 Problem Formulation

(1) Vector-based Correlation Coefficient Analysis
For each subject, denote Xt ∈ RI1×M and Yt ∈ RJ1×M as EEG

training samples of left and right motor imagination at time t, respec-
tively, where M is the number of the training samples and I1 (J1) is
number of the channels. Motivated by the definition of correlation
coefficient [7], we aim to seek two projection vectors, u ∈ RI1 and
v ∈ RJ1 , such that the following correlation coefficient constructed
by Xt and Yt:

ρ=
uTXtY

T
t v√

(uTXtXT
t u)(v

TYtYT
t v)

(3)
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is minimized.
Since ρ is invariant to the scaling of u and v, minimizing ρ can be

formulated equivalently as

min
u,v

uTXtY
T
t v

s. t. uTXtX
T
t u = 1, vTYtY

T
t v = 1

(4)

Hence, u can be learned as the eigenvector corresponding to smallest
eigenvalue of the following generalized eigenvalue problem:

XtY
T
t (YtY

T
t )

−1YtX
T
t u = λXtX

T
t u (5)

where λ is the eigenvalue corresponding to the eigenvector u. v can

be learned as v =
(YtY

T
t )
−1

YtX
T
t u√

λ
. By the pair of projection vec-

tors u and v, the discriminant features xt and yt can be obtained as
xt = uTXt and yt = vTYt, respectively.

(2) Higher-order Correlation Coefficient Analysis
Multiple projection vectors under certain orthonormality con-

straints can be computed simultaneously by solving the following
optimization problem:

{U,V} = min tr(UTXtY
T
t V)

s. t. UTXtX
T
t U = I,VTYtY

T
t V = I

(6)

where U ∈ RI1×� and V ∈ RJ1×� are the projections matrices, � is
the number of projection vectors, and I is the identity matrix.

According to the objective functions defined in (6), we have:

{U,V} = min tr(UTXtY
T
t V)

= min tr
(
(UTXt)(V

TYt)
T
)

= min [[(Xt×1U
T )⊗ (Yt×1V

T ); (1 : 2)(1 : 2)]]

s. t. UTXtXt
TU = I,VTYtYt

TV = I

(7)

The solution to the optimization problem consists of the � smallest
eigenvectors of the generalized eigenvalue problem in Eq. (5).

In this paper, in order to simultaneously learn the spatial and
spectral patterns for bilateral hemispheres, two-way (channel ×
time) raw EEG samples are constructed into high-order tensors.
e.g., we use the complex Morlet wavelet to construct two-way
(channel × time) sample Xchannel×time into a third-order ten-
sor Xchannel×frequency×time in spatial-spectral-temporal domain.
Let {X

m
}M
m=1

, where X
m

∈ RI1×···×IN , denote M samples (ten-
sor) in one class (e.g., left motor imagination), while {Y

m
}M
m=1

,
where Y

m
∈ RJ1×···×JN , denote M samples in the other class (e.g.,

right motor imagination). For simplicity, we use XI1×···×IN×M and
YJ1×···×JN×M to represent the samples in these two classes, re-
spectively. For the convenience of formulation, the training samples
are subtracted to be zero-mean.

The objective of the proposed HOCCA method is to find pairs
of projections matrices U(n)|Nn=1, where U(n) ∈ RIn×Ln , and
V(n)|Nn=1, where V(n) ∈ RJn×Ln , to project the training samples
in these two classes into low dimensional spaces where each pair is
minimally correlated. Based on an analogy with (7), we define HOC-

CA by replacing U,V,Xt,Yt with U(n)|Nn=1,V
(n)|Nn=1,X,Y, as:

{
U(n)|Nn=1,V

(n)|Nn=1

}
= min [[(X

N∏
n=1

×nU
(n)T )⊗

(Y

N∏
n=1

×nV
(n)T ); (1 : N + 1)(1 : N + 1)]]

s. t. (X

N∏
n=1

×nU
(n)T )T

(N+1)
(X

N∏
n=1

×nU
(n)T )(N+1) = I

(Y
N∏

n=1

×nV
(n)T )T

(N+1)
(Y

N∏
n=1

×nV
(n)T )(N+1) = I

(8)

3.2 Alternating solution

The problem defined in Eq. (8) does not have a closed form solution,
so we derive a suboptimal solution instead by following the principle
of the alternating projection method [33], where the complicated op-
timization problem is reduced into smaller conditional subproblems
that can be solved through simple established methods. Therefore,
Eq. (8) is decomposed into N different subproblems, as:

F = min

⎛
⎝ [[(X

N∏
n=1

×nU
(n)T )⊗ (Y

N∏
n=1

×nV
(n)T );

(1 : N + 1)(1 : N + 1)]]

⎞
⎠

= min

(
[[(X(n̄)×nU

(n)T )⊗
(Y(n̄)×nV

(n)T ); (1 : N + 1)(1 : N + 1)]]

)

= min tr
{
U(n)T

(
[[(X(n̄))⊗ (Y(n̄)); (n̄)(n̄)]]

)
V(n)

}
s. t. U(n)T

(
[[(X(n̄))⊗ (X(n̄)); (n̄)(n̄)]]

)
U(n) = I,

V(n)T
(
[[(Y(n̄))⊗ (Y(n̄)); (n̄)(n̄)]]

)
V(n) = I

(9)

To simplify Eq.(9), we define C
(n)
xy , C(n)

xx , C(n)
yy and C

(n)
yx as

C(n)
xy = ([[(X(n̄))⊗ (Y(n̄)); (n̄)(n̄)]])

C(n)
xx = ([[(X(n̄))⊗ (X(n̄)); (n̄)(n̄)]])

C(n)
yy = ([[(Y(n̄))⊗ (Y(n̄)); (n̄)(n̄)]])

C(n)
yx = ([[(Y(n̄))⊗ (X(n̄)); (n̄)(n̄)]])

(10)

Therefore, Eq. (9) is simplified as:

{U(n),V(n)} = min tr{U(n)T C(n)
xy V(n)}

s. t. U(n)T C(n)
xx U(n) = I, V(n)T C(n)

yy V(n) = I
(11)

We use the Lagrange multipliers to transform the objective func-
tion (11) to the following unconstrained multi-variate optimization
problem, which is defined as:

L(λx, λy,U
(n),V(n)) = tr{U(n)T C(n)

xy V(n)}−
λx

2

∥∥∥U(n)T C(n)
xx U(n) − I

∥∥∥
F
−λy

2

∥∥∥V(n)T C(n)
yy V(n) − I

∥∥∥
F

(12)

where λx and λy are the Lagrange multipliers.
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The optimization is performed by setting the partial derivative of
L(λx, λy,U

(n),V(n)) with respect to U(n) and V(n) to zero, re-
spectively.

∂L

∂U(n)
= λxC

(n)
xx U(n) −C(n)

xy V(n) = 0

∂L

∂V(n)
= λyC

(n)
yy V(n) −C(n)

yx U(n) = 0

(13)

In (13), subtracting V(n)T times the second equation from U(n)T

times the first equation we have:

λyV
(n)T C(n)

yy V(n) − λxU
(n)T C(n)

xx U(n) = 0 (14)

Together with the constraints in the objective function (11), we have
λx = λy . Let λ = λx = λy . Assuming C

(n)
yy is invertible we have

V(n) =
C

(n)−1

yy C
(n)
yx U(n)

λ
(15)

Substituting (15) in the first equation in (13) gives:

C(n)
xy C(n)−1

yy C(n)
yx U(n) = λ2C(n)

xx U(n) (16)

Hence, when C
(n)
xx and C

(n)
yy are nonsingular, U(n) is achieved as

the (unit) generalized eigenvectors corresponding to the smallest Ln

generalized eigenvalues of Eq. (16). Then V(n) is obtained by Eq.
(15).

In conclusion, the whole alternating projection optimization pro-
cedure of HOCCA is shown in Algorithm 1.

Algorithm 1 Higher-order Correlation Coefficient Analysis (HOC-
CA) Algorithm

Input: XI1×···×IN×M : zero-mean samples for one class.
YJ1×···×JN×M : zero-mean samples for another class. σ: the
threshold to test the convergence. T : the maximum number of
iteration.
Output: Pairs of multilinear projections matrices{
U(n),V(n)

}N

n=1
, where U(n) ∈ RIn×Ln and V(n) ∈ RJn×Ln .

Method:

1: Initialize
{
U

(n)

(0) ,V
(n)

(0)

}N

n=1
= 1.

2: for iteration t = 1 to T do

3: for iteration n = 1 to N . do

4: Calculate C
(n)

xx(t−1),C
(n)

xy(t−1),C
(n)

yx(t−1),C
(n)

yy(t−1)

according to Eq. 10.
5: Learn U

(n)

(t) and V
(n)

(t) according to Eq. 16 and Eq. 15, re-
spectively.

6: end for

7: Check:
N∑

n=1

‖U(n)

(t) −U
(n)

(t−1)‖2F+‖V(n)

(t) −V
(n)

(t−1)‖2F ≤ σ.

8: end for

9: Return all U(n) = U
(n)

(t) and V(n) = V
(n)

(t) for all n.

3.3 Regularized HOCCA

In this section, we formulate a Regularizing HOCCA model (rHOC-
CA) to address the practical small sample size problem [7]. A regu-
larization term ηI is added to C

(n)
xx and C

(n)
yy defined in the objective

function (11) to prevent overfitting and avoid the singularity of C(n)
xx

and C
(n)
yy . Therefore, we have:

{U(n),V(n)} = min tr{U(n)T C(n)
xy V(n)}

s. t. U(n)T (C(n)
xx + ηI)U(n) = I,

V(n)T (C(n)
yy + ηI)V(n) = I

(17)

Based on a similar derivation with HOCCA, rHOCCA solves the
following generalized eigenvalue problem, in terms of U(n).

C(n)
xy (C(n)

yy + ηI)−1C(n)
yx U(n) = λ2(C(n)

xx + ηI)U(n) (18)

and V(n) can be obtained as V(n) = (C
(n)
yy + ηI)−1C

(n)
yx U(n)/λ.

3.4 Complexity

The computational complexity and memory requirements of HOC-
CA are analyzed, in a similar way as in [24]. From a com-
putational complexity point of view, the most demanding step-
s involve the calculations of the projection C

(n)

xx(t−1),C
(n)

xy(t−1),

C
(n)

yx(t−1),C
(n)

yy(t−1). Therefore, the overall computational complex-

ity is TNt′max

N∑
n=1

In.

With respect to the memory requirement, the respective computa-
tion can be done incrementally by reading sequentially. Hence, the
memory needed for the HOCCA algorithm can be as low as In (ig-
noring lower-order terms).

4 Experimental Configuration

4.1 Data Acquisition

We conducted several experiments on two motor imagery datasets,
which were one benchmark dataset recorded from 5 normal person-
s and one dataset recorded from 10 stroke patients, to validate the
performance of HOCCA. The task was to classify the type of the
imagination for each trial in an offline fashion.

(1) Dataset I: Dataset I was collected from five healthy subjects
(labeled ’aa’, ’al’, ’av’, ’aw’ and ’ay’ respectively) performing right
hand and right foot motor imagery in a benchmark dataset of dataset
IVa from BCI competition III [10]. EEG was recorded using 118
electrodes, and bandpass filtered between 8 and 30 Hz. We extracted
a time segment from 500 to 2500 ms after the cue. A training set and
a testing set were available for each subject. Their size was different
for each subject. More precisely, 280 trials were available for each
subject, among which 168, 224, 84, 56 and 28 composed the training
set for the five subjects and the remaining trials were their test set.

(2) Dataset II: Dataset II was collected from 10 unilaterally para-
lyzed stroke patients diseased in two months who performed motor
imagination of their disabled (left or right) upper limb in a BCI com-
bined with Functional Electrical Stimulation (BCI-FES) rehabilita-
tion training system for 24 times over two months (three times per
week). EEG data was recorded by a 16-channel (FC3, FCZ, FC4,
C1-C6, CZ, CP3, CPZ, CP4, P3, PZ and P4) g.USBamp amplifier at
a sampling rate of 256 Hz. Patients had to complete basic motor im-
agery related tasks for five sessions and each session comprised forty
trials and lasted for 240 s. At the beginning of each trial, a bold arrow
as the visual cue with a command, randomly left or right, was shown
on the screen, instructing patients to imagine left or right. We extract-
ed a time segment starting from 0.5s to 4.5s after the visual cue for
analysis. All the trials in the training model course were divided into
a training set with 120 trials and a testing set with 80 trials.
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Figure 1. Distributions of two best features obtained by CSP and the proposed rHOCCA filters for Subjects aa, al, av, aw and ay. The best features were
obtained by using the Fisher score strategy. The blue circles and red crosses denoted the first and second features of the two classes, respectively. The black line

represented the LDA hyperplane. The features were plotted after normalization.

4.2 Data Preprocessing

EEG signals were bandpass filtered within a specific frequency band
related to motor imagery. For healthy people, exemplary spectral
characteristics of EEG in motor imagery tasks were α rhythm (8-
13 Hz) and β rhythm (14-30 Hz) [27]. Thus Dataset I was bandpass
filtered in the frequency range of 8-30 Hz. However, it was not avail-
able to obtain the spectral characteristics of stroke patients [17]. Thus
raw data in Dataset II was filtered in a general band ranged from 5 to
40 Hz.

4.3 Feature Extraction and Classification

We employed five state-of-the-art approaches for comparison includ-
ing Common Spatial Pattern (CSP) [28], Common Sparse Spectral
Spatial Pattern (CSSSP) [14], Filter Bank Common Spatial Pattern
(FBCSP) [1], Bayesian Spatio-spectral Filter Optimization (BSSFO)
[30], and General Tensor Discriminant Analysis (GTDA) [32]. We
employed each algorithm to extract discriminative features from dif-
ferent types of data to detect change of rhythmic activity in different
subjects.

CSP, which has been evidenced as the most successful algorithm-
s for EEG classification, discriminated two classes of EEG data by
maximizing the variance of one class while minimizing the variance
of the other class [28]. CSSSP method performed simultaneous opti-
mization of an arbitrary (Finite Impulse Response) FIR filter within
the CSP algorithm [14]. FBCSP, whose efficacy was demonstrated in
the latest BCI Competition IV [26], selected discriminative frequen-
cy bands by means of the mutual information between class labels
and feature vectors [1]. BSSFO utilized a Bayesian framework to si-
multaneously optimize spectral filters and spatial filters along with
a modified factored-sampling method for probability density func-
tion (pdf) estimation [30]. GTDA, which was the extension of two-
dimensional Linear Discriminant Analysis (LDA) in tensor space,
was applied to reserve multilinear discriminative subspace from the
training tensors [32].

For CSSSP, the regularization constant C was set to 0.3. FBC-
SP filtered the EEG signals into six nonoverlapping subband com-
ponents. For BSSFO, particles were generated from a mixture of

Gaussians as described in the original paper [30]. Finally, for GT-
DA and the proposed HOCCA and rHOCCA, we constructed the
two-dimensional EEG data into third-order EEG tensors in spatial-
spectral-temporal domain by a complex Morlet wavelet [34]. i.e.
φ(t) = exp(2iπt) exp(−t2/2)/

√
2π (center frequency: 1; band-

width parameter: 2). Then we combined all the training samples into
a fourth-order tensor as channels × frequency × time × trials.
Regularization parameter η in rHOCCA was set to 0.1.

A linear support vector machine (SVM) [12], which obtained top-
level performance in many applications, was conducted for classifi-
cation. A 5-fold cross-validation was used to choose suitable SVM
parameters.

5 Experimental Results

In this section, we presented the experimental results on the two
aforementioned datasets, where the first dataset was one widely-used
benchmark dataset of Dataset IVa from BCI competition III and the
last one referred to stroke patients. To begin with, we applied the
proposed method on the first dataset where motor imagery related s-
patial and spectral characteristics were known, and evaluated its per-
formance when compared with some traditional algorithms. Finally,
the proposed method was applied on the second dataset where the
discriminative spatial and spectral properties were not specifically
identified.

5.1 Results on Dataset IVa from BCI competition
III

The results were mainly given in two aspects of the classification
accuracy and the merits of HOCCA.
(1) Classification accuracy. For HOCCA, rHOCCA, the training
samples were divided into two parts: X with all the samples in the
right hand imagery, and Y with all the samples in the right foot im-
agery. X and Y were used as input for HOCCA and rHOCCA to
find a pair of projection matrices {U(n),V(n)}3n=1 by which EEG
samples from right hand imagery and right foot imagery were pro-
jected separately into their individual space. Each sample in the test
dataset was projected into the two individual low-dimensional spaces
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{U(n)}3n=1 and {V(n)}3n=1 separately, yielding two feature vectors
representing the two classes. We finally combined these two feature
vectors into one feature vector for classification. The feature dimen-
sionality was set to 32. Table 1 showed the classification accuracies
obtained by all the methods on the benchmark dataset. It is obvious
that HOCCA and rHOCCA yielded superior classification accuracies
against the other algorithms, and rHOCCA had the best performance.
With a closer look at the HOCCA results, it was realized that bigger
improvements were achieved by subject av with relatively poor per-
formances.

Table 1. The classification accuracies of all the methods on Dataset IVa
from BCI competition III (%)

Subject CSP CSSSP FBCSP BSSFO GTDA HOCCA rHOCCA

aa 73.3 80.1 84.6 78.3 69.8 92.1 93.7
al 82.3 91.8 90.5 92.7 86.4 100 100
av 52.4 56.6 61.7 65.4 72.5 79.9 80.2
aw 78.6 89.2 86.3 89.2 81.2 98.7 99.3
ay 74.2 79.5 83.5 72.5 80.8 98.5 98.9
Mean 72.16 79.44 81.32 79.62 78.14 93.84 94.42

(2) Toward Understanding the Merits of HOCCA: In the previous
section, we showed quantitative evidences indicating the proposed
HOCCA-based methods can improve the classification accuracy in
EEG-based BCIs. In this section, we provided more analysis and vi-
sualizations to better understand the nature and the impact of our pro-
posed algorithm on nonstationary changes in the EEG signals and the
feature space.

Fig. 1 visualized the features obtained by CSP and rHOCCA for
Subjects aa, al, av, aw and ay, respectively. It is noted that for the ease
in visualization only two features which had the highest Fisher scores
in the dataset were plotted. The features were plotted after normaliza-
tion. Red crosses represented one class while blue circles stood for
the other. The black line represented the LDA hyperplane. Compar-
ing the distributions of the two features with the highest Fisher scores
extracted from CSP and the proposed rHOCCA algorithm clearly re-
vealed that the rHOCCA features were more compact and thus more
separable. It was observed that the features obtained by rHOCCA
were more discriminative than CSP features, indicating learning in-
dividual spatial-spectral subspaces for each class contributed more to
classification than only learning individual spatial subspaces.

To better explain the performance differences between the CSP
and the rHOCCA algorithms, Fig. 2 compares some examples of the
most relevant individual spatial-spectral filters obtained by rHOC-
CA for right hand class and right foot class, respectively, and Fig. 3
shows the spatial filters obtained by CSP for the five subjects. For
rHOCCA, the most relevant subspaces on each mode of EEG ten-
sor for each class were selected from the optimized paired projection

matrices
{
U(n),V(n)

}3

n=1
by a Fisher score strategy [7]. In gen-

eral, these pictures showed that the important channels obtained by
rHOCCA for four out of the five subjects (aa, al, aw and ay) were
physiologically relevant, with strong weights over the motor cortex
areas, as also expected from the study [27]. The most important chan-
nels obtained by rHOCCA were mainly centered on central cortical
area (for right foot imagination) and left cortical area (for right hand
imagination). The same phenomenon was also observed in the pic-
tures given by CSP. Moreover, the results indicated that the channels
and frequency information were not only subject-dependent but also
class-dependent. e.g., for subject al, the largest variance of right foot
mainly focused on central scalp map and a large peak around 20-25
Hz, while the largest variance of right hand mainly focused on left

area and frequency band of 10-15 Hz.
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Figure 2. The most relevant subspaces in spatial-spectral domain for right
hand class and right foot class, respectively. (a) Right hand class; (b) Right
foot class. Left column represents projection matrices on spatial modality
and right column represents projection matrices on frequency modality.

Subject aa Subject al Subject av Subject aw Subject ay

(a)

(b)

CSP Spatial Patterns

Figure 3. Spatial weights for the two most discriminative filters
constructed by CSP for all the subjects in Dataset I. (a) Spatial filters for

performing right hand motor imagery; (b) Spatial filters for performing right
foot motor imagery.

5.2 Results on Dataset collected from stroke
patients

In the above experiments, we showed quantitative evidences indicat-
ing the proposed HOCCA-based methods can achieve an improve-
ment in classification accuracy for normal persons whose related s-
patial and spectral characteristics were available. In this experiment,
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without any prior knowledge like the active motor cortex regions and
frequency bands, we tried to verify the feasibility and robustness of
HOCCA when decoding the unknown information of stroke patients’
motor imagery. The results were mainly given in three aspects: (1)
Classification accuracy. (2) Merits of HOCCA. (3) Neurophysiolog-
ic rehabilitation mechanism in impaired cortex.
(1) Classification accuracy. For every patient, classification accuracy
in each day was calculated, where feature dimensionality was set to
16. Then classification accuracies in the same month were averaged
to represent the mean accuracy of the month. Table 2 gives the mean
accuracies of the two months achieved by all the methods on the ten
patients.

Note that HOCCA and rHOCCA methods outperformed all the
other algorithms, and rHOCCA achieved the best classification per-
formance. With a closer look at the results, it was realized that bigger
improvements were achieved by almost all these patients with poor
CSP performances. Comparisons using a Mann-Whitney U test be-
tween HOCCA-based methods and the other methods showed that
the accuracies by HOCCA and rHOCCA were significantly higher.

Table 2. Mean classification accuracies of the two months obtained by all
the methods on stroke patients (%)

Subject Month CSP CSSSP FBCSP BSSFO GTDA HOCCA rHOCCA

S1 M1 54.4 56.5 62.5 63.4 58.3 70.7 71.4
M2 63.7 65.2 68.4 65.3 62.4 77.4 77.6

S2 M1 57.7 58.6 64.7 62.4 67.7 75.1 75.3
M2 66.5 72.2 71.7 68.3 73.7 85.1 85.9

S3 M1 42.7 53.6 55.8 56.7 59.6 72.7 71.3
M2 58.7 67.2 68.3 71.4 72.5 81.5 82.3

S4 M1 44.1 52.2 53.3 56.6 62.3 72.3 73.5
M2 58.3 63.3 65.8 64.4 63.6 74.7 74.9

S5 M1 62.1 67.7 65.2 63.3 65.4 72.7 74.7
M2 67.9 71.4 77.8 75.9 72.1 84.3 84.7

S6 M1 41.5 56.3 55.7 57.6 59.2 67.3 66.6
M2 59.6 64.8 67.1 65.2 68.2 79.6 79.8

S7 M1 51.6 62.6 66.7 66.6 65.3 75.7 76.6
M2 62.2 66.8 67.7 64.2 68.5 86.4 86.6

S8 M1 41.3 50.1 53.8 54.2 55.7 66.2 67.4
M2 53.4 59.6 61.2 62.2 60.6 74.2 74.4

S9 M1 38.4 48.9 51.1 52.6 53.8 67.4 68.2
M2 47.5 58.6 60.2 58.3 62.5 74.3 74.3

S10 M1 48.7 61.3 59.8 62.4 57.3 73.7 74.1
M2 52.2 63.6 64.5 61.4 66.8 78.3 79.2

Mean M1 48.2 56.7 58.6 59.5 60.4 71.3 71.9
M2 59.0 65.2 67.2 65.6 67.1 79.5 79.9

(2) Toward Understanding the Merits of HOCCA. In this part, we
provided more analysis and visualizations to better understand the
nature and the impact of our proposed algorithm when applied on
stroke patients. Fig. 4 visualized the features obtained by all the
methods except FBCSP for Patient 5 on day 60. FBCSP employed
a filter bank that bandpass filtered the EEG measurements into mul-
tiple bands, and then multiple pairs of CSP features were construct-
ed based on each pair of bandpass and spatial filter. Thus, we did
not visualize all these FBCSP features in each pair of bandpass and
spatial filter. It is noted that for the ease in visualization, only two
features which had the highest Fisher scores [7] were plotted. The
features were plotted after normalization. Red crosses represented
one class while blue circles stood for the other. The black line rep-
resented the Linear Discriminant Analysis (LDA) hyperplane. The
results clearly revealed that the HOCCA and rHOCCA features were
more compact and separable, indicating learning individual spatial-
spectral subspaces for each class contributed more to classification
than learning universal ones.
(3) Neurophysiologic plasticity mechanism in impaired cortex. To
better understand the effectiveness and robustness of HOCCA-based
methods when decoding the motor imagery patterns of stroke pa-
tients which were not available beforehand, we visualized the spatial-

spectral filters obtained by rHOCCA method and the spatial filters
learned by CSP in terms of Patient 5. In order to observe the gradual
changes of EEG patterns in spatial and spectral domains over time,
we chose the raw EEG of three days, day 1, 30 and 60, to repre-
sent the different phases during rehabilitation. rHOCCA was utilized
to extract the spatial-spectral filters of Patient 5 with lesion in right
side on these three days, as shown in Fig. 5. For comparison, Fig. 6
illustrated the chosen three days’ spatial filters learned by CSP fo Pa-
tient 5. From these pictures, we can clearly see that the channels and
frequency information were class-dependent. e.g., for spectral infor-
mation on Day 1, the largest variance of right movement imagination
mainly focused on 6-12 Hz, while the largest variance of left move-
ment imagination mainly focused on the frequency bands of 5-12 Hz
and 20-30 Hz. Another important observation was that during motor
recovery motor imagery EEG patterns of stroke patient were chang-
ing and quite different from the ones by motor imagery of normal
persons. The differences attributed to active cortex regions and fre-
quency bands. In detail, the spatial filters obtained by CSP appeared
as messy, with large weights in several unexpected locations from a
neurophysiological point of view. On the contrary, rHOCCA filter-
s were physiologically more relevant. In detail, the most significant
channels for right movement imagination were focused at around left
central areas (like C3), as also expected from the study [27]; howev-
er, the channels contributed to left movement imagination were with
strong weights over not only the right central areas (like C4) but al-
so the frontal-central and parietal areas (like FC4 and P4). Similar
phenomena were also reported in some other studies [11, 15]. As for
spectral characteristics, active frequency band was updated from a
wide-ranged band (8-30 Hz) at the beginning to a lower band (8-13
Hz) after two months. This dynamic band accentuation implied that
active rhythms might be modulated during rehabilitation. Similar ob-
servation was also reported from the literature [29].

  CSP  CSSSP  BSSFO

HOCCAGTDA rHOCCA

Figure 4. Distributions of the best two features obtained by all the
methods except FBCSP for Patient 5 on day 60. The blue circles and red

crosses denoted the features of the two classes, respectively. The black line
represented the LDA hyperplane. The features were plotted after

normalization.

6 Discussion

This study presented a tensor-based algorithm, namely HOCCA, for
EEG classification which aimed to seek individual spatial and spec-
tral subspaces for each class so that each class was projected into
its own subspace separately. First, EEG was represented by high
order tensors (multiway arrays) i.e., multiple-modality patterns in
the spatial-spectral-temporal domain. Next, HOCCA was applied on
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Figure 5. rHOCCA spatial-spectral filters of day 1, 30 and 60 for Patient
5, respectively. Spatial-spectral filters 1 and 2 correspond to right and left
upper limbs imagery, respectively. From top row to bottom row: day1, 30
and 60. x-axis in the spectral filters represents frequency while y-axis is
power and values are normalized. In spatial filter, red dots show higher

power while blue ones represent lower power.

high order EEG tensors to obtain individual multilinear discrimina-
tive subspace for each class by minimizing the mutual correlation
between classes, and thus high-dimensional tensors were mapped to
low-dimensional tensors. Finally, some classical classifiers were con-
ducted for classification in the feature space with the reduced dimen-
sion.

Extensive experiment comparisons were performed on two
datasets containing one dataset acquired from normal persons and
one dataset related to unilaterally paralyzed stroke patients. Exper-
imental results showed that our algorithm yielded relatively high-
er classification accuracies compared with five state-of-the-art ap-
proaches. In particular, considering the classification results in the
two datasets, one interesting phenomenon was observed: for the sub-
jects with poor CSP performances (i.e., CSP error rate more than
30% like av in Dataset I, and almost all the subjects in Dataset II),
the proposed HOCCA-based algorithms significantly outperformed
the CSP algorithm. Moreover, compared to Dataset I, the classifica-
tion performance difference between CSP and HOCCA-based meth-
ods in the neuro-rehabilitation Dataset II was more salient.

To explore the reasons, firstly, it could be the fact that HOCCA-
based methods, which are different from the other methods which
directly use one common subspace for projection of all the class-
es, seeks a set of individual multilinear subspaces for each class and
projects the samples in each class into its own subspace. This makes
sense, since the spatial and spectral information are not only subject-
dependent but also class-dependent, which can be found in the evi-
dent difference of both spatial and frequency patterns in two classes’
EEG shown in Fig. 5. Secondly, the performance of the CSP-based
methods heavily depends on their operational frequency band and
channels, which, however, can not be obtained for stroke patients be-
forehand. As for stroke patents, their injured brain is under recovery.
There should be a higher chance that the most contributed channels
group and frequency bands will change [17, 5, 23]. To the best of
our knowledge, there is no agreed clinical conclusion about motor
imagery patterns of stroke patients. Our HOCCA-based methods are
more robust than CSP-based methods by performing autonomous s-
election of key channels and frequency band. The robustness of our
proposed methods is very useful because it can be applied to extract

the discriminative features and patterns when the spatial and spectral
characteristics in some paradigms are not available. Thirdly, differen-
t from CSP-based methods, the proposed algorithm is performed in
the tensor space rather than the vector space, yielding both the spatial
and frequency filters containing the maximum discriminative infor-
mation. The best performance achieved by HOCCA-based methods
in the classification results evidence that channel selection and fre-
quency selection extract extra effective information of EEG, and they
complement each other, both contributing to the classification abili-
ty. All these results show that HOCCA-based methods could be more
successful and robust in capturing the spatial-spectral filters.

Day 1

Day 30

Day 60

Figure 6. CSP spatial patterns for Patient 5 on day 1, 30 and 60 (from top
to bottom: day 1, 30 and 60). Red dots show higher power while blue ones

represent lower power.

7 Conclusions

In this work, a tensor-based method, called Higher-order Correlation
Coefficient Analysis (HOCCA), was proposed for motor imagery
EEG classification. Since spatial and spectral information of EEG
data are not only subject-dependent but also class-dependent, HOC-
CA attempted to seek a set of individual multilinear subspaces for
each class rather than a single common subspace for all the samples,
by which the samples belonging to different classes were projected
into their own subspace separately such that they were easily to be
classified. Experimental analysis for classification of motor imagery
EEG in two different datasets recorded from the healthy people and
stroke patients demonstrated the superior performance of our algo-
rithm when compared with some state-of-the-art methods, indicating
that learning individual multi-modal spaces for each class contribut-
ed more to classification than learning only one common space.
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[17] Darren J Leamy, Juš Kocijan, Katarina Domijan, Joseph Duffin,
Richard AP Roche, Sean Commins, Rónán Collins, and Tomas E Ward,
‘An exploration of EEG features during recovery following stroke–
implications for BCI-mediated neurorehabilitation therapy’, Journal of
neuroengineering and rehabilitation, 11(1), 9, (2014).

[18] Steven Lemm, Benjamin Blankertz, Gabriel Curio, and K-R Muller,
‘Spatio-spectral filters for improving the classification of single trial
EEG’, IEEE Transactions on Biomedical Engineering, 52(9), 1541–
1548, (2005).

[19] Ye Liu, Mingfen Li, Hao Zhang, Hang Wang, Junhua Li, Jie Jia, Yi Wu,
and Liqing Zhang, ‘A tensor-based scheme for stroke patients’ motor
imagery EEG analysis in BCI-FES rehabilitation training’, Journal of
neuroscience methods, 222, 238–249, (2014).

[20] Ye Liu, Hao Zhang, Min Chen, and Liqing Zhang, ‘A boosting-based

spatial-spectral model for stroke patients’ EEG analysis in rehabilita-
tion training’, IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 24(1), 169–179, (2016).

[21] Ye Liu, Qibin Zhao, and Liqing Zhang, ‘Uncorrelated multiway dis-
criminant analysis for motor imagery EEG classification’, International
journal of neural systems, 25(04), 1550013, (2015).

[22] Fabien Lotte, Marco Congedo, Anatole Lécuyer, Fabrice Lamarche,
Bruno Arnaldi, et al., ‘A review of classification algorithms for EEG-
based brain–computer interfaces’, Journal of neural engineering, 4,
(2007).

[23] Isabelle Loubinoux, Christophe Carel, Jérémie Pariente, Sophie
Dechaumont, Jean-François Albucher, Philippe Marque, Claude
Manelfe, and François Chollet, ‘Correlation between cerebral reorga-
nization and motor recovery after subcortical infarcts.’, Neuroimage,
20(4), 2166, (2003).

[24] Haiping Lu, Konstantinos N Plataniotis, and Anastasios N Venet-
sanopoulos, ‘Uncorrelated multilinear discriminant analysis with reg-
ularization and aggregation for tensor object recognition’, IEEE Trans-
actions on Neural Networks, 20(1), 103–123, (2009).

[25] J. R. Millan, F. Renkens, J. Mourino, and W. Gerstner, ‘Non-invasive
brain-actuated control of a mobile robot by human EEG’, IEEE Trans-
actions on Biomedical Engineering, 51(6), 1026–1033, (2004).

[26] M Naeem, C Brunner, R Leeb, B Graimann, and G Pfurtscheller,
‘Seperability of four-class motor imagery data using independent com-
ponents analysis’, Journal of neural engineering, 3(3), 208, (2006).

[27] Gert Pfurtscheller and Christa Neuper, ‘Motor imagery and direct brain-
computer communication’, Proceedings of the IEEE, 89, 1123–1134,
(2001).

[28] H. Ramoser, J. Muller-Gerking, and G. Pfurtscheller, ‘Optimal spatial
filtering of single trial EEG during imagined hand movement’, IEEE
Transactions on Rehabilitation Engineering, 8, 441–446, (2000).

[29] S. Shahid, R.K. Sinha, and G. Prasad, ‘Mu and beta rhythm modula-
tions in motor imagery related post-stroke EEG: a study under BCI
framework for post-stroke rehabilitation’, BMC Neuroscience, 11, 1–
2, (2010).

[30] Heung-Il Suk and Seong-Whan Lee, ‘A novel bayesian framework for
discriminative feature extraction in brain-computer interfaces’, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 35(2),
286–299, (2013).

[31] Wing-Kin Tam, Kai-yu Tong, Fei Meng, and Shangkai Gao, ‘A minimal
set of electrodes for motor imagery BCI to control an assistive device
in chronic stroke subjects: a multi-session study’, IEEE Transaction-
s on Neural Systems and Rehabilitation Engineering, 19(6), 617–627,
(2011).

[32] D. Tao, X. Li, X. Wu, and S.J. Maybank, ‘General tensor discriminant
analysis and gabor features for gait recognition’, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(10), 1700–1715, (2007).

[33] Dacheng Tao, Xuelong Li, Xindong Wu, and Steve Maybank, ‘Tensor
rank one discriminant analysis-a convergent method for discriminative
multilinear subspace selection’, Neurocomputing, 71(10), 1866–1882,
(2008).

[34] Anthony Teolis, Computational signal processing with wavelets,
Springer Science & Business Media, 2012.

[35] Jonathan R Wolpaw, Niels Birbaumer, Dennis J McFarland, Gert P-
furtscheller, Theresa M Vaughan, et al., ‘Brain-computer interfaces for
communication and control’, Clinical neurophysiology, 113(6), 767–
791, (2002).

[36] Wei Wu, Xiaorong Gao, Bo Hong, and Shangkai Gao, ‘Classifying
single-trial EEG during motor imagery by iterative spatio-spectral pat-
terns learning (ISSPL)’, IEEE Transactions on Biomedical Engineer-
ing, 55(6), 1733–1743, (2008).

[37] Qibin Zhao, Cesar F Caiafa, Danilo P Mandic, Zenas C Chao, Yasuo
Nagasaka, Naotaka Fujii, Liqing Zhang, and Andrzej Cichocki, ‘High-
er order partial least squares (HOPLS): a generalized multilinear re-
gression method’, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(7), 1660–1673, (2013).

[38] Qibin Zhao, Tomasz M Rutkowski, Andrzej Cichocki, and Liqing
Zhang, ‘High resolution common spatial frequency filters for classi-
fying multi-class EEG’, in Advances in Cognitive Neurodynamics (II),
683–688, Springer, (2011).

[39] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki, ‘Multilinear gener-
alization of common spatial pattern’, in ICASSP 2009, pp. 525–528.
IEEE, (2009).

Y. Liu et al. / Higher-Order Correlation Coefficient Analysis for EEG-Based Brain-Computer Interface1088


