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Abstract. We investigate how incremental learning of long-term
human activity patterns improves the accuracy of activity classifi-
cation over time. Rather than trying to improve the classification
methods themselves, we assume that they can take into account prior
probabilities of activities occurring at a particular time. We use the
classification results to build temporal models that can provide these
priors to the classifiers. As our system gradually learns about typical
patterns of human activities, the accuracy of activity classification
improves, which results in even more accurate priors. Two datasets
collected over several months containing hand-annotated activity in
residential and office environments were chosen to evaluate the ap-
proach. Several types of temporal models were evaluated for each of
these datasets. The results indicate that incremental learning of daily
routines leads to a significant improvement in activity classification.

1 Introduction

Automated recognition of human activities is a hot topic of research.
It enables a wide range of applications such as security, retail or
healthcare, but recently a huge focus has been given to the recog-
nition of the Activities of Daily Living (ADL) due to its potential ap-
plication in Ambient Assisted Living (AAL). This technology could
help to address the predicted shortage of health workers and improve
the quality of life of the increasing elderly population in the near fu-
ture, by assisting people in their daily tasks and identifying potential
problems. Furthermore, it could be used also in security applications
to detect anomalous situations that could endanger people or prop-
erty. The introduction of new technologies has made this problem
easier to address. In particular, RGB-D sensors together with pose
estimation software and smart sensors for the Internet of Things have
enabled the possibility of acquiring data for such applications, giv-
ing birth to many related datasets [3, 16, 38, 1]. The development
of activity recognition is furthermore supported by novel techniques
to manage huge quantities of data (‘Big Data’) and the increased
computational power of modern computers, enabling real-time im-
plementations.

The main focus of the recognition models has been the recognition
of patterns derived from the data acquired from the sensors. The fea-
tures used for pattern recognition typically relate to the body move-
ment and the surrounding context, in the case of RGB-D sensors,
or by the sensor events in a smart environment. By contrast, in this
work we aim to exploit the long-term patterns of recurring activi-
ties to improve the performance of activity classification. Prior work
showed that the patterns of the spatio-temporal dynamics of the envi-
ronment can be exploited to improve indoor localization [20] or path
planning [12] of a mobile robot in long-term scenarios.
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In a similar way this work proposes an approach to calculate prior
probabilities of an activity happening at a certain time, which reduces
the error rate of a given classification algorithm. We analyse sev-
eral possible techniques, including a novel approach based on Adap-
tive Interval Based Models, which delivers continuous improvement
to the recognition performance on-the-fly by incrementally perform-
ing naı̈ve Bayesian learning. We evaluate our methods on the Aruba
Dataset [3], based on the activities of daily living and the Witham
Dataset [18], manually annotated from an overhead camera record-
ing in an office environment.

There are two main contributions in this paper: (i) the introduc-
tion of a probabilistic formulation to incrementally model temporal
and spatial context to improve activity recognition performance of a
given classifier, (ii) the introduction of novel probabilistic models of
temporal and spatial context, (iii) comparison of different temporal
models in order to understand which ones can better represent the
temporal structure of daily activities.

The remainder of this paper is organized as follows. Section 2
gives an overview of the state-of-the-art for activity recognition per-
formed with smart sensors and RGB-D cameras and on the use of
temporal and spatial models for activity recognition. Section 3 pro-
vides a formulation of the activity recognition problem. Section 4
introduces the temporal models used in our experiments. Section 5
explains our method of evaluation for the temporal models. Section 6
reports the results of our experiments, and finally Section 7 presents
the conclusion and future work.

2 Related work

Human activity recognition aims to recognize the actions and goals
of human agents using a sequence of observations of the agents’ ac-
tions and the environmental conditions. Tracking and understanding
human behaviour through videos is a very important and challeng-
ing problem with various useful applications. Activity recognition
has originally been performed on RGB video streams with a wide
spectra of solutions [15, 30], including a recent approach [14] with
unsupervised deep-learning-based hierarchical feature models. This
allows to create a system that learns and improves itself by updat-
ing the activity models incrementally over time. The development of
cheap RGB-D cameras has contributed to the increased focus on this
problem, since they allow to reduce the computational requirement
for estimating the pose of the human body and the contextual pat-
terns in the scene in real-time. In [10, 11] a probabilistic ensemble
of classifiers called a Dynamic Bayesian Mixture Model (DBMM)
is proposed to combine different posterior probabilities from a set
of classifiers for activity recognition. Wang et al. [39] show a deep
structured model built with layered convolutional neural networks. A
biologically inspired approach adopting an artificial neural network
to combine pose and motion features for action perception is pro-
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posed by [28]. In [6], a simple way to apply qualitative trajectory
calculus to model 3D movements of the tracked human body using
hidden Markov models (HMMs) is presented. A method for social
activity recognition based on proximity of the interacting humans is
presented in [5]. Sung et al. [32, 33] perform activity recognition in
unstructured environments such as homes and offices with an RGB-
D camera. The movement is modelled by transforming the rotation
matrix of each joint to the body torso and inferring the activities and
sub-activities with a two-layered Maximum Entropy Markov Model
(MEMM). A three-level hierarchical discriminative approach is pre-
sented in [23]. The activities are decomposed into a lower level rep-
resenting the pose data, an intermediate level where the poses are
combined into simple human actions, and a high level where the ac-
tions are spatially and temporally combined into complex human ac-
tivities. The approach presented in [29] uses HMMs combined with
Gaussian Mixture Models (GMM) to model the combination of con-
tinuous joint positions over time for activity recognition. In [37], the
authors use random occupancy patterns to model activities using con-
text from depth data.

Smart environments allow to mine though the sensor events to
classify which activity has happened. Fleury et al. [13] present a
dataset with smart sensors for ADL recognition, where the classifi-
cation is performed using Support Vector Machines (SVM). A min-
ing technique to find the association rules between the activities and
their frequent patterns in smart environments is presented in [40]. In
[9], the authors use the Back-Propagation algorithm to train a feed-
forward Neural Network with features extracted from the motion
sensor events. In [8], a method for evaluating the confidence of clas-
sification is presented. The method is able to reduce false positives
by identifying samples with low confidence that can be further inves-
tigated by a human operator. In [4] an activity discovery algorithm is
presented which identifies patterns in sensor data with a greedy ap-
proach. It searches for a sequence pattern that best compresses the
input data; the data is scanned to create initial patterns of length one,
which are extended in every loop while minimizing the description
of the data.

In [27] analysis of human activities in an office environment is per-
formed using a Layered Hidden Markov Model (LHMM) architec-
ture based on real-time streams of evidence from video, acoustic, and
computer interactions. Similarly, a multi-level HMM is presented in
[41] for recognising office activities and tracking the users across
the rooms. In [26] a solution for office activity recognition is pro-
posed, which handles multiple-user, multiple-area situations, based
on an ontological approach, using low-cost, binary and wireless sen-
sors. The idea of exploiting long-term analysis has been presented
already by Van Laerhoven et al. [36], using wrist-worn sensors to
collect daily activity data to create rhythmic models of the activities.
These models are created off-line using a frequentist approach, accu-
mulating the amount of times an annotated activity starts and stops
within a certain time interval, which is represented as a bin. In [24]
a long-term annotated dataset using many different sensors is intro-
duced. The classification is performed using a binary classifier for
each learned activity, collecting features from the sensor data in par-
ticular time windows. Daily routines are recognized in [2] from fea-
tures extracted with a sliding window approach. These are clustered
with k-means to calculate their occurrence statistics and store them
in a histogram which is classified using a Joint Boosting technique.
Suryadevara et al. [34] introduce a wellness determination process
to help healthcare providers to assess the performance of the elderly
in their daily activities. It verifies the behaviour of elderly people at
three different stages (usage of appliances, activity recognition and

forecast levels) in a smart home monitoring environment integrating
the spatial and temporal information.

In [7] a model is introduced for long-term monitoring of activities
in a smart home. The classification is performed with a Probabilistic
Neural Network (PNN), and the daily schedules of activities are then
clustered with k-means. The clusters with highest inter-variation are
considered as normal and the others as their deviations. Minor et al.
[25] present a way of predicting future activity occurrences, with a
recurrent predictor, based on the structure of the temporal sequence
of the activities. Long-term modelling of indoor environments has
been exploited also in other cases. In [19], the authors argue that
part of the environment variations exhibit periodicities and represent
the environment states by their frequency spectra. The concept of
Frequency-based Map Enhancement (FreMEn) was applied to oc-
cupancy grids in [22] to achieve compression of the observed envi-
ronment variations and to landmark-based maps in order to increase
robustness of mobile robot localization [20].

In this paper, we proposed a method that can be applied to ex-
isting classification algorithms for activity recognition, learning the
temporal structure of the classified activities in order to incremen-
tally improve the classification results on-line. In some sense, our
approach provides an abstraction for meta-classification that is inde-
pendent from the particular classification method, i.e. HMM, SVM,
etc, and can be combined with any of those, improving their perfor-
mance. We investigate several possible representations which can be
used to model the (prior) occurrence probability of the learned activ-
ities.

3 Problem formulation

We formulate the activity classification problem simply as a Bayesian
decision making problem. Let us assume that at time t, a person is
performing an (unknown) activity from the set of possible activities
A while being observed by a set of sensors. Let some algorithm C
processes the sensory readings and classifies that the activity being
performed is o ∈ A. Let us assume that we have experimentally es-
tablished the performance of C on some representative dataset and
thus, we know C’s confusion matrix, i.e. we can characterise the per-
formance of C as a conditional probability distribution p(o|a), where
a represents the activity performed. Thus, every time the algorithm
C provides us with an observation o, we can establish the posterior
distribution p(a|o, t) over the possible activities at time t as:

p(a|o, t) = p(o|a) p(a, t)∑
b∈A p(o|b)p(b, t) . (1)

In our case, we will use a separate spatial/temporal model for each
activity. To emphasize that the models are calculated separately, we
rewrite the Equation (1) for a single activity a as

pa(o, t) =
p(o|a) pa(t)

p(o|a)pa(t) + p(o|¬a)(1− pa(t))
, (2)

where pa(t) represents the probability of the activity a being per-
formed at time t, i.e. the temporal prior of a. The expression pa(t)
was chosen to emphasize that the temporal models are built indepen-
dently - it corresponds to p(a, t) in Equation (1).

While most of the research in activity recognition is aimed at the
performance of the activity recognition algorithm C, which increases
the likelihood of correct activity classification by improving p(o|a)
in Equation (2), our work is not concerned with the actual method
that is used to determine the activity from the sensory readings. In-
stead, we focus on the term pa(t) in (2), which effectively represents
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the temporal context of a given activity. We hypothesize that since
people tend to perform certain activities on a regular basis, pa(t) is
a (pseudo-)periodic function that can be learned over time and that
better knowledge of pa(t) would positively impact the performance
of the classification system represented by Equation (2).

To learn pa(t), we apply Equation (2) iteratively. Initially, we start
with all pa(t) = 1/|A|, i.e. we assume that the activities occur with
the same probability regardless of the time. Whenever an activity is
classified by (2), we use the output of (2) to update pa(t). Then we
use the updated pa(t) in the following classification step.

The key questions that our paper addresses are:

1. Which model should be used to represent the temporal activity
context (or prior) pa(t)?

2. How much does the temporal context impact the performance of
state-of-the-art classifiers?

3. Can we learn the temporal context even with a weak classifier?

To answer these questions, we tested four different temporal mod-
els on two datasets, which contain human activities labelled minute-
by-minute over several weeks.

4 Temporal models

In our work, a temporal model of activity a is a function pa(t), which
represents the probability of the activity a occurring at time t. We
consider four types of temporal models: Frequency Map Enhance-
ment (FreMEn), which represents cyclic processes by their frequency
spectra, Gaussian Mixtures, which are well established in several do-
mains, and naı̈ve and adaptive versions of interval-based models.

4.1 Frequency Map Enhancement

Frequency Map Enhancement (FreMEn) is an emerging technique
that improves the efficiency of mobile robots that operate au-
tonomously for long periods of time [20, 12]. The method assumes
that states of the robots’ operational environments are affected by
pseudo-periodic processes, whose influence and periodicity can be
obtained through the Fourier transform. Thus, the uncertainty of a
given state s(t) is represented as a probabilistic function of time that
is a combination of harmonic functions:

p(t) = α0 +
n∑

i=1

αicos(ωit+ ϕi), (3)

where the amplitude αi, phase shift ϕi and frequency ωi correspond
to the most prominent spectral components of the observations of the
original state s(t).

In our case, the state s(t) of the FreMEn model is a binary func-
tion of time oa(t) which indicates if the activity a was observed at
time t and pa(t) will be our probabilistic function p(t). To build the
FreMEn model, we simply take the results of the past classifications
and form a sequence oa(t) for each activity a ∈ A. Then, we cal-
culate the Fourier spectrum of each sequence oa(t), select n of its
most prominent (i.e. with highest amplitudes) spectral components
and use their amplitudes, periodicities and phase shifts as (αi, ωi

and ϕi) parameters of the predictive FreMEn model in Equation (3),
which is used as a prior for classification in Equation (2). Since the
performance of the FreMEn model is affected by the choice of the
model order n, we run our experiments with n ranging from 1 to 9
and chose the best performing setting, which was n = 2. To speed
up calculations, we used the version of FreMEn introduced in [21],
which allows for incremental updates.

The main advantage of the FreMEn model is that it naturally rep-
resents multiple periodicities that are inferred automatically from the
data. However, it poorly represents periodic, but short duration activ-
ities, such as teeth brushing or tea making.

4.2 Gaussian Mixture Model

Gaussian Mixture Models, which approximate multi-dimensional
functions as weighted sums of Gaussian component densities, are
a well-established method that find their applications in numerous
fields from Psychology to Astrophysics [35]. A Gaussian Mixture
Model of a function f(t) is a weighted sum of m Gaussian func-
tions:

f(t) =
1√
2π

m∑

j=1

wj

σj
e
− (t−μj)

2

2σ2
j . (4)

The parameters of the GMM components, i.e. the means μj , vari-
ances σj and weights wk, are typically calculated from the train-
ing data by iterative Expectation Maximization (EM) or Maximum
Aposteriori (MAP) algorithms. Since the classic GMMs are not
meant to represent periodic functions, we simply assume that peo-
ple perform most of their activities on a daily basis and limit the time
domain of GMM-based models to one day. While this assumption is
not entirely correct (as activities of weekdays differ from the week-
end ones), such a temporal model might still perform better than a
‘static’ one, where the probability of a given activity is constant in
time.

To build the GMM model of pa(t), we first create a temporal se-
quence of observations oa(t) for each activity in the same way as in
the FreMEn case. Then, we calculate an initial prior as follows:

p′a(t) =
k

τ

�k/τ�∑

i=1

oa(t+ (i− 1)τ), (5)

where τ is the assumed period (in our case τ = 86400 s), k is the s(t)
sequence length, and �k/τ� is a floor operator, that returns the inte-
ger part of k/τ . After calculating p′a(t), we employ the Expectation
Maximization algorithm to find the means μi, standard deviations σi

and weights wi of its Gaussian Mixture approximation:

pa(t) =
1√
2π

n∑

i=1

wi

σi
e
− ((t mod τ)−μi)

2

2σ2
i , (6)

where τ is the apriori known period of the function pa(t) and mod
is a modulo operator.

The advantages of periodic GMMs are complementary to the ad-
vantages of the FreMEn. Periodic GMMs can approximate short-
duration activities, but they can represent only one period that has to
be known apriori. Similarly to FreMEn, the performance of GMMs
depends on the choice of n, which represents the number of Gaus-
sians used in the mixture model. Again, we run our experiments with
n ranging from 1 to 9 and chose the best performing setting, which
was n = 3.

4.3 Interval-based Model

Another temporal model that has been considered partitions the time
into disjoint intervals, each with a different prior probability pa(t).
Similarly to the GMM-based models, the partitioning requires that
the periodicity τ and model order n (the number of intervals) are
chosen apriori. In our interval-based model, pa(t) is represented by

C. Coppola et al. / Learning Temporal Context for Activity Recognition 109



n values p′a(k) that denote prior probabilities of a given activity
occurring between τm+ τ k

n
and τm+ τ k+1

n
, where m ∈ N and

k ∈ {0, 1 . . . n− 1}. In the following text, we will refer to the time
interval τ/n as the “interval width”. To update or retrieve pa(t), one
has to simply determine the index k of the relevant interval:

pa(t) = p′a(k) = p′a(�(t mod τ)
n

τ
�). (7)

Unlike the FreMEn and GMM models, the interval-based model is
updated according to Bayes rule in Equation (2). Thus, when a clas-
sification is performed at time t, we first calculate k by Equation (7)
and then perform the model update by

p′a(k) ← p(o|a) p′a(k)∑
a∈A p(o|a)p′a(k) . (8)

Again, a crucial question here is model granularity (i.e. the interval
width that is determined by the number of the represented intervals
n). Models with wide intervals cannot represent short-duration activ-
ities, whereas models with short intervals require larger amounts of
data for training, therefore their learning rate is slow.

4.4 Adaptive Interval Model

To deal with the aforementioned problem, we can store the number
of updates performed for each interval u(k) and calculate pa(t) by
aggregating the probabilistic values of neighbouring intervals, so that
pa(t) is based at least on l updates. While the model update remains
the same as in the previous case (see Equation (8)) with the only dif-
ference is that the value of u(k) is increased by 1, calculating pa(t)
differs. To determine pa(t), we first calculate the index of the rele-
vant interval k as �(t mod τ)n

τ
� (see Equation (7)). We check if the

number of updates performed to calculate p′a(k) is at least l and if
not, we include the neighbouring intervals and calculate p(t) as the
weighted (by the number of updates) average. This is repeated until
the number of measurements used to determine pa(t) exceeds l. See
Algorithm 1 for more details.

Algorithm 1 Adaptive interval prior calculation
1: function CALCULATEPRIOR(t, τ, n,u,p′

a, l)
2: k ← �(t mod τ)n

τ
� � determine interval index

3: m ← u(k) � initialize total number of measurements
4: p ← mp′a(k) � initialize prior probability
5: while m < l do � num. of measurements must be at least l
6: p ← p+ p′a(k + 1)u(k + 1) � add neighbour prior
7: p ← p+ p′a(k − 1)u(k − 1) � add neighbour prior
8: m ← m+ u(k + 1) + u(k − 1) � update meas.num.
9: end while

10: pa(t) ← p/m � the resulting prior is a weighted average
11: end function

This “adaptive interval” method calculates pa(t) over several in-
tervals in the case there is not enough data available, which is equiv-
alent to adjusting the interval width to the number of data gathered.
However, one still has to choose the minimal interval width (in our
case 60 s), the periodicity (in our case τ = 1 day) and l, which is the
minimal number of measurements required to calculate pa(t). The
optimal number of measurements l is subject to investigation in the
following sections.

4.5 Modelling the spatial context

Although the main aim of this paper is investigation of long-term
temporal models, for the sake of completeness, we included also the
evaluation of a spatial model. The use of spatial context is motivated
by the fact that certain activities are tied to specific locations, e.g.
cooking typically occurs in a kitchen. Similarly to temporal models,
we formalise a spatial model of activity a as a function pa(l), which
represents the probability of the activity a performed by a person at
location l. The process of using and building a spatial context model
is similar to the interval temporal models:

pa(l) ← p(o|a) pa(l)∑
a∈A p(o|a)pa(l) . (9)

The only difference is that the location l is not calculated based on
time, but on the position of the person. The combination of spatial
and temporal context is considered for an extended version of this
work.

4.6 Model overview and evaluation

Each of the aforementioned models has advantages and drawbacks.
The main aim of this work is to investigate how these models per-
form when used as priors for activity recognition. We abstract from
the actual algorithm that is used for classification - we simply as-
sume that the classifier can use the priors provided by our spatial and
temporal models to estimate which activity is being performed. We
assume that if the priors are not provided, the performance of a given
classifier depends on its confusion matrix, which represents the con-
ditional probability distribution p(o|a). The primary metric to be in-
vestigated is the overall activity recognition error, i.e. the probability
that o �= a.

Aruba dataset Witham dataset

Bed to Toilet Go Outside
Eating Reading
Enter Home Writing
Housekeeping Watching a video
Leave Home Cooking
Meal Preparation Talking
Relax Sleeping
Resperate Phonecall
Sleeping Go to toilet
Wash Dishes Other
Work

Table 1. Activities of the Aruba and Witham experiments.

5 Experiments

To evaluate the usefulness of the individual models for activity recog-
nition, we compared their performance on two datasets that cover
several weeks of human activity at home and at work.

The first dataset, ‘Aruba’, was collected by the Center for Ad-
vanced Studies in Adaptive Systems (CASAS) to support their re-
search concerning smart environments [3]. The Aruba dataset con-
tains ground-truthed activities (Table 1) of a home-bound person
in a small apartment for 16 weeks. The second dataset, ‘Witham’,
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Figure 1. Aruba dataset - reconstructed layout of the apartment [3].

Figure 2. Aruba dataset - topological structure of the apartment.

was gathered at the Lincoln Centre for Autonomous System (L-
CAS) as part of the large-scale EU-funded STRANDS project, which
aims to enable long-term autonomous operation of intelligent robots
in human-populated environments. The Witham dataset, which was
gathered for four weeks, contains activities (Table 1) of one of the
L-CAS researchers.

Both datasets are freely available as a part of the long-term dataset
collection provided by the L-CAS [18, 31] The entire pipeline that
we used for our experiments is open source and is available through
the website of the FreMEn temporal modelling method [17].

5.1 Aruba dataset

The Aruba dataset [3] consists of measurements collected by 41
motion, temperature and door closure sensors distributed over a
10 × 12 m2, seven-room apartment (see Figure 1) over a period of
16 weeks.

During data collection, the apartment was occupied by a single
person who was occasionally visited by other people. While the start-
ing and finishing times of activities are provided with the CASAS
dataset, the location of the person is not. Thus, we partitioned the
apartment into nine different locations, seven of which represent dif-
ferent rooms and two correspond to corridors, and estimated the per-
son location from the events of the apartment’s 33 motion detectors.
Thus, the Aruba dataset contains a minute-by-minute timeline of 12
different activities performed at 9 different locations over the course
of 16 weeks.

5.2 Witham dataset

The Witham dataset was collected in an open-plan office of the Lin-
coln Centre for Autonomous Systems (L-CAS). The office consists
of a kitchenette, resting area, lounge and 20 working places that are
occupied by students and postdoctoral researchers. We installed a
ceiling camera that took a snapshot of the office every 10 seconds for
3 weeks, and we hand-annotated activities and locations of one of the
researchers over time.

The Witham dataset contains a minute-by-minute timeline of 10
different activities performed at 10 different locations over the course
of 3 weeks.

5.3 Evaluation

As mentioned before, we abstract from the internal working of the
classifier itself and we simply assume that it can take into account
the priors provided by our spatial and temporal models. Thus, we
base our evaluation on the fact that we know the conditional proba-
bilities p(o|a) which are represented by the confusion matrix of the
evaluated classifier.

The evaluation starts with the prior models being invariant to time
(and location) and equal to each other, i.e.

pa(t) =
1

|A| , ∀a ∈ A, ∀t ∈ R. (10)

Then, we retrieve the activity performed at time t = 0 from the
given dataset and, using the priors initialised by Equation (10) and
known p(o|a), we calculate the posterior probabilities pa(t|o) with
the Bayes Equation (2). After that, we simulate the stochastic na-
ture of the activity classification process by running a Monte-Carlo
scheme over the probabilities pa(t|o) and we obtain the simulated
classification result o(t) ∈ A. Then, we update the binary sequences
oa(t) of each activity as follows:

oa(t) = 1 ⇐⇒ o(t) = a,
oa(t) = 0 ⇐⇒ o(t) �= a.

(11)

These sequences are then processed by the models. Then, we in-
crement the time by 60 s and repeat the procedure again. After 1440
iterations, which represent the activity recognition results minute-
by-minute for a full day, we compare the ground truth to the results
of the simulated activity recognition o(t) and calculate the activity
classification error for that particular day. This error is calculated for
every day of the available datasets.

Figure 3. Witham dataset - topological structure of the apartment.
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5.3.1 Evaluated classifiers

We evaluated the spatial and temporal models with three differ-
ent classifiers represented by different distributions p(o|a). The first
‘weak’ classifier has only a 20% probability of correct recognition,
i.e. its confusion matrix has 0.2 on the diagonal and the other ele-
ments are equal. This corresponds to a high, 80% classification er-
ror. The second, ‘good’ classifier has a low, 20% classification error,
which means that the diagonal elements of its confusion matrix are
equal to 0.8 and the non-diagonal elements are identical.

Finally, we consider a real classifier that was evaluated on the
Aruba dataset in [8]. Here, the authors evaluate the performance of
a classifier that can indicate lack of evidence to perform an actual
classification. This is represented by a special type of observation,
called “Irregular”, which constitutes an additional column in their
classifier’s confusion matrix. To obtain a square confusion matrix re-
quired by our method, the conditional probabilities represented by
this additional column are uniformly redistributed across the matrix.
The average value of the diagonal elements of the real classifier’s
confusion matrix is 85.14% (Figure 4a).

On the Witham dataset, instead, there are no classifiers existing
from previous works. To represent the p(o|a) of the real classifier for
the Witham dataset, we used a 10×10 submatrix of the real classifier
used with the Aruba dataset (Figure 4b).
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Figure 4. Confusion matrices which characterize the p(o|a) of the ’real’
classifiers for the Aruba(a) and Witham(b) datasets.

6 Experimental results

Each of the models mentioned in Section 4 depends on a parameter
as summarised in Table 2. Here we discuss the sensitivity of these
models to the parameter values and how well the models perform on
the aforementioned datasets.

Temporal model Parameter type Units Used value

GMM num. of Gaussians - 3
FreMEn num. of periodics - 2
Interval-based interval width minutes 5
Adaptive interv. num. of samples - 1000

Table 2. The list parameters for each temporal model which improve the
results the most on the datasets.

6.1 Model Parameters

The FreMEn results in Figure 5 show that it can identify periodicities
in the observed activities and use them to improve activity classifica-
tion. Although increasing the FreMEn order does improve the classi-
fication performance, the effect is not significant, as shown in Figure
5. The only exception is the static component in the Aruba dataset,
since in the case of a weak base-classifier the performance increase
does not reach the same magnitude as the higher orders. This sug-
gests that using a FreMEn model of order 3 is sufficient to obtain a
good reduction of the error rate.

A similar result was observed using Gaussian Mixture Model
based priors. Indeed, as can be seen in Figure 6, the results are fairly
stable with respect to the order of the model.

For the Interval Models, the choice of the interval width is im-
portant, as shown in Figures 7. In the case of a weak base classifier,
an interval width of one hour produced the best results. Furthermore,
this choice is the only one improving the same classifier on the Aruba
dataset. In all the other cases the sensitivity of the error rate is not
very strong.

The Adaptive Interval Models adapt the interval width according
to the available quantity of evidence, so the smaller the number of
samples the closer the behaviour will be to the atomic unit (1 minute
in our case). As shown in Figure 8, the Adaptive Interval Model with
a single sample has the same behaviour as the static interval with
1 minute width. In the case of weak classifiers, the number of samples
for the adaptation of the intervals does not influence the classification
performance, and the same happens with a real base-classifier. In the
case of a good classifier (20% error rate) using a higher number of
samples improved the model performance.

According to our experiments, the models which are the least sen-
sitive to the variation of classifier and to the parameter choice are the
FreMEn and GMM models. Following these results, we will use the
best performing cases to compare the models. The parameters used
are the ones shown in Table 2.
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Figure 5. Impact of the number of modelled periodical processes on the
FreMEn model. Best viewed in color.
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6.2 Model Comparison

Our experiments showed that the use of incrementally learned mod-
els for spatial and temporal context can improve the performances
of an activity recognition system. In Figure 10, it can be seen that
all the temporal models improved the classification results. It is in-
teresting to notice how the Location-based (or spatial) model on the
Aruba dataset reduced the error only slighly, while on the Witham
dataset it outperformed all the temporal models. This might depend
on the fact that the association between activities and locations has
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Figure 6. Impact of the number of Gaussians included on the performance
of the Gaussian Mixtures. Best viewed in color.
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Figure 7. Impact of the interval width on the performance of the Interval
models. Best viewed in color.

a higher correlation in an office-like environment rather than in a
domestic one. Furthermore, we can observe that the Static compo-
nent of FreMEn improves, but only slightly compared to the other
models, showing the need of having higher frequencies in the weak
base-classifiers. Figure 11 shows how the Interval Models tend to fail
to represent the temporal context, especially without the adaptive in-
tervals, being unable to improve the results. As in the previous case,
the Location-based model works better on the Witham dataset. The
remaining models are able to reduce the error rate again. Finally,
Figure 12 shows how a realistic base-classifier would benefit from
learning of the contextual prior probabilities. The results show that
using the right model and parameters, the error rate can be signifi-
cantly reduced over time, as can be seen in Figures 10, 11 and 12.

To compare the performance of the models, we performed a paired
t-test on each pair of models using their error rates for the last 7 days
of the experiment with the realistic classifiers. The results of the t-
tests are summarized in Figure 9, showing which methods perform
significantly better than others at the 95% confidence level.

Overall, the models that produced the most reliable results were
the GMM and FreMEn, which had similar performances in reduc-
tion of the error rates and stability to the choice of parameters. The
only real difference lies in the fact that the GMM starts to reduce
the errors right from the beginning, while FreMEn tends to increase
the errors, creating pronounced spikes in the error rate during the
early days of execution. This effect is caused by the fact that while
the GMM is given the information about daily periodicities apriori,
FreMEn determines the periodicities by itself, which requires the in-
put data to be at least twice as long as the period that it attempts to
detect. The Interval-based Models can actually perform an improve-
ment comparable to the aforementioned models, in the case of a weak
classifier (Figure 10), while they appear to worsen performance if the
classifier is a strong one (Figures 11, 12). Additional tests indicated
that the Interval-based Models improve the performance of classi-
fiers with accuracy lower than 70%, while their use with better clas-
sifiers might result in reduction of their performance. This might be
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Figure 8. Impact of the number of samples used for prior estimation on the
performance of the Adaptive Interval Models. Best viewed in color.
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Figure 9. Comparative performance of the examined methods on the
Aruba (left) and the Witham (right) dataset. An arrow from A to B indicates
that method A has a significantly lower classification error than method B.
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Figure 10. The impact of various spatial and temporal priors on the activity
recognition error over time - weak classifier with 80% classification error.

caused by the lack of sufficient evidence during the estimation of the
probability priors when the confidence of the classifier is high. The
latter can be demonstrated by the fact that the adaptation of the inter-
vals according to the actual evidence improves the model behaviour,
reaching performances similar to the GMM and FreMEn.

The Location-based probability priors had discordant results on
the two datasets. In the Aruba dataset, it had a negative effect on the
error rate of the classification, although it improved when a strong
classifier was used. This could mean that the model requires high
base accuracy in complex indoor environments, in which the activi-
ties do not have a direct association to the place where they occur. On
the Witham dataset instead, it did not only improve performance, but
also outperformed some of the other temporal prior models. This de-
pends directly on the high association of the activities performed with
places in office environments; for example, the activity of writing on
the keyboard will always be performed close to the workplace. The
effect might be also related to social constraints and office etiquette.
For a single-inhabited household, one does not have to consider oth-
ers, which makes the activity-location constraints a bit weaker.

7 Conclusion

This paper presented a novel approach to activity recognition for in-
door environments based on incremental modelling of long-term spa-
tial and temporal context. The presented approach allows to integrate
several observations of the same environment in spatial and tempo-
ral models that capture the periodic behaviour of the activity occur-
rences and use this knowledge to construct time and location depen-
dent probability priors to improve the recognition of the activities. In
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Figure 11. The impact of various spatial and temporal priors on the activity
recognition error over time - good classifier with 20% classification error.

Static
Location−based

Interval−based
Adaptive intervals

Gaussian Mixtures
FreMEn

 0

 5

 10

 15

 20

 25

 0  2  4  6  8  10  12

E
rr

o
r 

ra
te

 [
%

]

Time [days]

Aruba (apartment) dataset

 0  2  4  6  8  10  12
Time [days]

Witham (office) dataset

Figure 12. The impact of various spatial and temporal priors on the activity
recognition error over time - real classifiers with ∼13% classification error.

other words, given the assumption of spatial and temporal structure
of the activities, we have tried to learn those patterns to improve the
performance of a base classifier with different models. The ability of
the models to improve the classification performance through con-
tinuous learning was evaluated on two datasets representing home
and office environments over a duration of two weeks. The experi-
ments indicated that naı̈ve methods, based on histograms of activity,
do not necessarily lead to improvement of the classification rate. On
the other hand, more advanced methods reduced the error of activity
classification in a significant way. The best performing models were
based on the concept of Frequency Map Enhancement (FreMEn),
which represents the environment dynamics in the spectral domain,
and on periodic Gaussian Mixtures adjusted to model the daily pat-
terns of people behaviour. Both of these temporal models demon-
strated the ability to reduce the activity classification error through
continuous learning of long-term patterns of human behaviour. The
experiments also indicated that the use of spatial context might im-
prove the performance of activity classification as well. Here, the im-
provement was more significant in the office environment, where the
activities are strongly correlated with the location where they occur.

Possible future works will include combination of spatial and tem-
poral models, e.g. by combining FreMEn and Gaussian processes or
by applying a different temporal model in each spatial element of the
environment. To allow reproduction of the experiments presented and
to facilitate the work on the long-term temporal context for activity
recognition, we have published the datasets [18] and the evaluation
pipeline used in our experiments as open-source code [17].
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