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Abstract. A partial-order plan (POP) compactly encodes a set of
sequential plans that can be dynamically chosen by an agent at exe-
cution time. One natural measure of the quality of a POP is its flex-
ibility, which is defined to be the total number of sequential plans it
embodies (i.e., its linearizations). As this criteria is hard to optimize,
existing work has instead optimized proxy functions that are corre-
lated with the number of linearizations. In this paper, we develop and
strengthen mixed-integer linear programming (MILP) models for
three proxy functions: two from the POP literature and a third novel
function based on the temporal flexibility criteria from the schedul-
ing literature. We show theoretically and empirically that none of the
three proxy measures dominate the others in terms of number of se-
quential plans. Compared to the state-of-the-art MaxSAT model for
the problem, we empirically demonstrate that two of our MILP mod-
els result in equivalent or slightly better solution quality with savings
of approximately one order of magnitude in computation time.

1 Introduction

A partial-order plan (POP) is a plan that imposes only action order-
ings necessary for achieving a goal, as opposed to a total ordering of
actions as enforced in sequential planning. Equivalently, a POP rep-
resents a set of sequential plans – or linearizations – all including the
same actions but under different orderings. POPs provide flexibility
to agents, who can dynamically commit to the sequence of actions
during the real-time execution of the plan [18].

A key question in the area, however, concerns the criterion which
best reflects the quality of a POP. Several different objectives have
been proposed in the literature, such as the makespan of the plan
(i.e., longest path from the initial state to the goal), total number of
unordered actions, existence of possible action reorderings, among
others [24, 20, 1]. This work extends recent research [18, 17] that
combines two distinct criteria: a cost per action, and the flexibility
of a plan, here measured as the total number of linearizations of
the POP. This objective naturally incorporates the least-commitment
principle of first executing as few (costly) actions as possible, and
then improving the robustness of the system by placing as many se-
quential plans as possible at the disposal of the agent.

While total action cost has been traditionally tackled in sequential
planning, enhancing the flexibility of a plan poses a much more chal-
lenging problem. Specifically, optimizing the number of lineariza-
tions of a POP is equivalent to maximizing the number of Hamilto-
nian paths in a directed acyclic graph, which is computationally im-
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practical in general [16, 3]. To address this issue, Muise et al. [18, 17]
optimize the number of ordering constraints in a POP, a metric that is
correlated to the number of linearizations. Such a metric function is
more computationally tractable and can be efficiently handled, e.g.,
by MaxSAT solvers.

Building on the work of Muise et al. and previous literature in
planning and scheduling [7, 8], we address the problem of converting
a valid sequential plan into a valid POP with minimum action cost
and maximum number of linearizations. In particular, we consider
the notion of temporal flexibility from the scheduling literature as a
novel proxy function for the number of linearizations of a POP. We
show that there is no dominance relation between our proxy function
and two previous proxy functions in the literature: depending on the
problem instance, the optimization of any of the proxy functions may
lead to a greater number of linearizations than either of the others.

Nonetheless, a central benefit of the temporal flexibility criteria is
the scaling of model size that is quadratic in the number of actions,
rather than cubic as in Muise’s model. Further, the linear relation-
ships inherent in the temporal flexibility are amenable to mathemati-
cal programming techniques. We exploit this advantage and propose
three mixed-integer linear programming (MILP) models for mini-
mizing action cost and maximizing flexibility: a novel model of tem-
poral flexibility, a model that linearizes an existing MaxSAT formu-
lation [18], and a model that adapts an existing MILP formulation for
temporal planning to POPs [8]. Going further, we derive a number of
valid linear inequalities that can also be applied to the MILP models,
substantially decreasing their solution times.

We compare our three MILP formulations to the current state-of-
the-art MaxSAT model by Muise et al. [18]. Our empirical evalu-
ation suggests that optimizing any of the three proxy functions re-
sults in equivalent solution quality, consistent with our theoretical
results. Furthermore, the strengthened MILP models achieve approx-
imately one order of magnitude speedup compared to the state-of-
the-art MaxSAT model, solving significantly more problem instances
to optimality. These results hold both when minimizing total action
cost and maximizing flexibility and when only maximizing flexibility
with a fixed set of actions.

Contributions. We present temporal flexibility as a novel proxy func-
tion for maximizing the number of linearizations in a partial-order
plan and provide a novel mixed-integer linear program to optimize
this criterion. We derive new valid linear inequalities that can be ap-
plied to the new and existing POP MILP formulations. Finally, we
show that the modified MILP models achieve substantially better
run-time performance than the current state-of-the-art without sac-
rificing solution quality.
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2 Preliminaries

A STRIPS planning problem is a tuple Π = 〈F,A, I,G〉 where F
is a set of fluent symbols, A is a set of actions, I ⊆ F is the initial
state, and G ⊆ F is the goal state [10, 9]. Each action a ∈ A is
associated with three sets of fluents, PREa, ADDa, and DELa,
representing the preconditions, add effects, and delete effects of a,
respectively. An action a is executable in state s ⊆ F if and only if
PREa ⊆ s. The execution of an action a results in the state s′ =
(s∪ADDa)\DELa. We denote by pref , addf , and delf the set of
actions that have fluent f as precondition, that add f , and that delete
f , respectively.

A sequential plan π is a solution to Π and corresponds to a se-
quence of executable actions (a1, a2, . . . , am) such that, when start-
ing from the initial state I , executing each action in sequence results
in a state s∗ containing all fluents required in the goal G, i.e. G ⊆ s∗

[10, 19].
A partial-order plan (POP) relaxes the sequential nature of plans

by only imposing orderings that are sufficient to satisfy the goal con-
ditions [23]. Formally, a POP is a tuple P = 〈A,O〉 where A ⊆ A
is the set of actions of the plan and O ⊆ A×A is a set of ordering
constraints [18]. We use the notation a1 ≺ a2 ∈ O to indicate an or-
dering constraint between a1 and a2 in O. A linearization of a POP
P is a total ordering of A that is consistent with O, i.e. a sequence
(a1, a2, . . . , a|A|) such that ai ≺ aj ∈ O implies i < j. A POP P
is valid for a planning problem Π if and only if all linearizations of
P are valid sequential plans for Π [15].

Since enumerating linearizations is computationally expensive
(see Section 1 and Muise [17]), the validity of a POP P = 〈A,O〉 is
commonly established through causal links and threats [13]. Given
actions a1, a2 ∈ A and a fluent f ∈ F , κ(a1, a2, f) is a causal
link for P if action a1 adds the fluent f required by action a2 in all
linearizations of P [14]. Moreover, K is a set of causal links for P
if, for every κ(a1, a2, f) ∈ K, we have a1 ∈ addf , a2 ∈ pref ,
and there does not exist κ(ai, a2, f) ∈ K for any ai ∈ addf [14].
Note that κ(a1, a2, f) ∈ K implies a1 ≺ a2 ∈ O. A causal link
κ(a1, a2, f) ∈ K is threatened by an action a3 ∈ A if a3 ∈ delf ,
a3 ≺ a1 �∈ O and a2 ≺ a3 �∈ O [19].

We represent the initial and the goal states by actions aI and aG,
where aI ∈ addf , ∀f ∈ I and aG ∈ pref , ∀f ∈ G, respectively. As
shown previously [15, 14], a POP P = 〈A,O〉 is valid for a STRIPS
planning problem Π if there exists a set of causal links, K, such
that: (1) All the preconditions of each action a ∈ A are satisfied
by exactly one causal link, κ ∈ K; (2) No causal link κ ∈ K is
threatened by any action a ∈ A; and (3) The actions aI , aG ∈ A
are respectively ordered before and after all the other actions a ∈ A,
a �= aI , a �= aG.

3 Least Commitment Flexible POPs

Given a sequential plan π to a STRIPS problem Π, our aim is to
derive a POP P from π that is ideally optimal both in terms of its
action cost and its flexibility. These two characteristics are embodied
in the concept of least commitment criteria [15, 18].

The least commitment criteria evaluates POPs according to two
metrics: the total action cost and the number of linearizations of
the plan. The first is a natural and common objective in planning
as agents would like to incur the minimum total action cost possi-
ble to achieve a goal. The second metric intuitively gives us a notion
of how flexible the plan is, since more linearizations indicate more
alternative ways to execute the actions to achieve the goal [18].

Equipped with these two notions, we formally define the structure
of an optimal POP in our context.

Definition 1. (Least Commitment Flexible POP (LCFP) of a Plan).
Let P = 〈A,O〉 and P ′ = 〈A′,O′〉 be two valid POPs for a plan-
ning problem Π where A′ ⊆ A. Moreover, let ca be a non-negative
cost associated with each action a ∈ A. P ′ is a least commitment
flexible POP (LCFP) of plan P iff

(i) For all valid POPs with action set A′′ ⊆ A, we have∑
a∈A′′ ca ≥

∑
a∈A′ ca; and

(ii) For all valid POPs P ′′ with action set A′′ ⊆ A and∑
a∈A′′ ca =

∑
a∈A′ ca, the number of linearizations of P ′

is greater or equal to the number of linearizations of P ′′.

This definition differs from that of Muise et al. [18] as it contains
a more general action cost structure and explicitly incorporates the
number of linearizations, as opposed to the number of ordering con-
straints.

As in previous work, Definition 1 does not include solving the tra-
ditional POP planning problem of finding the set of actions and the
ordering constraints that achieve a valid POP. Rather, we are con-
cerned with the optimization of action cost and flexibility, given a
valid POP. Thus, our primary goal in this work is to find the LCFP
of a sequential plan, which is itself a POP. Since counting lineariza-
tions is computationally challenging, we investigate the optimization
of alternative proxy functions that correlate with the number of lin-
earizations of a POP.

4 Proxy Measures of POP Flexibility

We study three proxy functions for the number of linearizations of
a POP, two of which are extracted from previous works, and one
novel to this work: the minimization of the number of open ordering
constraints [8], the minimization of the number of closed ordering
constraints [18], and the maximization of temporal flexibility adapted
from the scheduling literature [7], respectively.

4.1 Order Flexibility

Muise et al. [18] optimized what we term the order flexibility of a
POP: the total number of ordering constraints in the plan. The more
ordering constraints, the less order flexibility a POP has. We investi-
gate two definitions of an ordering constraint.

Definition 2. (Open Ordering Constraint): Given the set of actions
A and the set of causal links K, the open ordering constraint a1 ≺
a2 belongs to the set O for some POP P = 〈A,O〉 to a planning
problem Π if:

1. There exists a causal link κ(a1, a2, f) ∈ K from action a1 to
action a2 on some fluent f ∈ F , or

2. There exists a causal link κ(a2, a3, f) ∈ K from action a2 to
action a3 on some fluent f ∈ F and action a1 ∈ delf is ordered
before action a2 to resolve the threat, or

3. There exists a causal link κ(a3, a1, f) ∈ K from action a3 to
action a1 on some fluent f ∈ F and action a2 ∈ delf is ordered
after action a1 to resolve the threat.

Do and Kambhampati [8] minimize the equivalent of the number
of open ordering constraints in order constrained plans, temporal
plans which have a partial-order structure but allow concurrent ex-
ecution of non-interfering actions. Concurrent execution semantics

B. Say et al. / Mathematical Programming Models for Optimizing Partial-Order Plan Flexibility 1045



create a subtle but relevant difference in the meaning of open order-
ing constraints. In particular, Definition 2 relaxes Do and Kambham-
pati’s definition by assuming a sequential execution of a POP.

We can now characterize the ordering constraint definition used
by Muise et al. [18] as specifically the transitive closure of the open
ordering constraints.

Definition 3. (Closed Ordering Constraint): Given the set of actions
A and the set of causal links K, the closed ordering constraint a1 ≺
a2 belongs to the set O for some POP P = 〈A,O〉 to a planning
problem Π if:

1. There exists an open ordering constraint between actions a1 and
a2, or

2. There exists some other action a3 such that: a1 ≺ a3 ∈ O and
a3 ≺ a2 ∈ O.

We will refer to the set of open and closed ordering constraints as
OO and OC , respectively.

4.2 Temporal Flexibility

In scheduling, temporal flexibility refers to a schedule’s ability to
absorb temporal variation during execution [21]. We exploit the same
property to define an analogous version of temporal flexibility for
planning problems.

Given a POP P = 〈A,O〉 for Π and a duration da of each action
a ∈ A, the horizon of P , HP , is the sum of the action durations.
Intuitively, since the actions will be executed in sequence, HP is the
(temporal) length of the plan. The earliest start time of an action
a is esta = maxa′≺a∈O (esta′ + da′) and the latest finish time of
action a is lfta = mina≺a′∈O (lfta′ − da′), where estaI = 0 and
lftaG = HP for the unique first and last actions. Let the action
slack of a, Ta, be such that Ta = lfta−esta−da [7]. The temporal
flexibility, T , of P is given by T =

∑
a∈A Ta. For classical (i.e.

non-temporal) planning, we assume that all actions have a duration
of one time unit.

4.3 Dominance Relations Among Proxy Functions

A proxy function obj1 dominates another proxy function obj2 if, for
any planning problem instance Π, any POP P that optimizes obj1
has at least as many linearizations as any POP P ′ that optimizes obj2
and, for at least one instance Π∗, the number of linearizations in P
is strictly greater than that of P ′. We have the following result.

Proposition 4. There are no dominance relations among the open
ordering, closed ordering, and temporal flexibility proxy functions.

Proof. For each pair of objective functions (obji, objj), i �= j, it suf-
fices to show the existence of two problem instances Π1,Π2, where,
for Π1, a POP P that optimizes obji has more linearizations than
a POP P ′ that optimizes objj and vice versa for Π2. The counter-
examples are simple but tedious to verify and are presented in the
Appendix of the paper.

5 The OMILP
C Model

Muise [17] empirically investigated equivalent MILP and MaxSAT
models for the problem of minimum reordering: finding a POP with
the minimum number of closed ordering constraints without remov-
ing actions from the initial set of actions. OMILP

C is a minor extension
of Muise’s MILP encoding for the LCFP problem under the closed

min (|AN |2 + 1)
∑

a∈AN

caZa +
∑

ai,aj∈AN

Oai,aj

s.t.
∑

ai∈addf

Xf
ai,aj

= Zaj (1)

∀aj ∈ A, f ∈ PREaj

(1−Xf
ai,aj

) + (Oad,ai +Oaj ,ad) ≥ Zad (2)

∀ai, ad, aj ∈ A, f ∈ PREaj ∩DELad ∩ADDai

Oai,aj ≥ Xf
ai,aj

(3)

∀ai, aj ∈ A, f ∈ ADDai ∩ PREaj

OaI ,a = Za ∀a ∈ A\{aI} (4)

Oa,aG = Za ∀a ∈ A\{aG} (5)

Oai,aj +Oaj ,ai ≤
Zai + Zaj

2
∀ai, aj ∈ A (6)

ZaI = ZaG = 1, (7)

Oa,a = 0 ∀a ∈ A (8)

(1−Oai,aj ) + (1−Oaj ,ak ) +Oai,ak ≥ 1 (9)

∀ai, aj , ak ∈ A

Figure 1: The OMILP
C model.

constraint proxy function. OMILP
C does not use the input ordering of

the initial sequential plan.
The parameters used in OMILP

C are as follows.

• AN = A\{aI , aG} is the set of non-dummy actions.
• If = 1 if dummy action aI adds fluent f or equivalently if f is

true in the initial state.
• Gf = 1 if dummy action aG requires fluent f or equivalently if f

is required to be true in the goal state.

The decision variables in the OMILP
C model are as follows.

• Za = 1 iff action a is selected to be part of the POP.
• Xf

ai,aj
= 1 iff action ai supports fluent f for action aj with the

causal link κ(ai, aj , f).
• Oai,aj = 1 iff action ai is ordered before action aj .

The OMILP
C MILP model is presented in Figure 1. The objective

first minimizes the sum of action costs, then minimizes the number
of closed ordering constraints. The first coefficient of the objective
function, |AN |2 + 1, guarantees this property when all the actions
have costs greater or equal to 1 unit. When this is not the case, we
need to normalize the action costs so that all the actions have costs
greater or equal to 1 unit. Constraint (1) ensures that if an action is
selected, all of its preconditions are met exactly once. Constraint (2)
orders the threatening actions either before or after the causal link.
Constraint (3) is an order implication constraint that states that if ac-
tion a1 ∈ A supports some other action a2 ∈ A with some fluent
f ∈ F , a1 must be ordered before a2. Constraints (4)-(5) restrict all
the included actions to be between the initial and the goal actions.
Constraint (6) makes sure that the actions in an enforced ordering
constraint are included in the plan. Constraint (7) includes the ini-
tial and goal actions. Constraint (8) disallows self-loops for ordering
constraints. Constraint (9) produces a transitively-closed POP. Con-
straints (8)-(9) together forbid cycles in the action precedence graph.

Note that due to the ternary arity of Constraint (9), OMILP
C grows

cubically with the number of actions.
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6 The OMILP
O and T MILP Models

Both OMILP
O and T MILP build on Do and Kambhampati’s MILP model

[8]. The main differences are that OMILP
O does not enforce an ordering

between all pairs of interfering actions, while also allowing for ac-
tions to be excluded when they are not relevant to the POP’s validity.

OMILP
O and T MILP are identical aside from their objectives. The key

difference with OMILP
C is the use of start time variables to represent

implied ordering constraints. With the addition of a linear number of
variables, the models grow quadratically with the number of actions.

Compared to the formulation of OMILP
C , OMILP

O and
T MILP introduce three additional variables: Esta =
maxa′≺a∈O (Esta′ + da′) is the earliest start time of action
a; Lfta = mina≺a′∈O (Lfta′ − da′) is the latest finish time of a;
and finally Ta = Lfta − Esta − da is the slack of a.

min (|AN |
∑

a∈AN

da + 1)
∑

a∈AN

caZa −
∑

a∈AN

Ta

s.t. Constraints (1)-(8)

Estai + daiOai,aj ≤

Estaj +
∑
a∈A

da(1−Oai,aj ) ∀ai, aj ∈ A (10)

Lftai + dajOai,aj ≤

Lftaj +
∑
a∈A

da(1−Oai,aj ) ∀ai, aj ∈ A (11)

Esta + daZa + Ta = Lfta ∀a ∈ A (12)

EstaI = 0 (13)

LftaG =
∑
a∈A

daZa (14)

Figure 2: The T MILP model. The OMILP
O model differs from T MILP

only in using the objective function in OMILP
C .

As OMILP
O uses the same objective function as OMILP

C and the only
difference between T MILP and OMILP

O are the objectives, we present
the model for T MILP in Figure 2. Analogously to OMILP

C , in T MILP the
objective first minimizes the sum of action cost, then maximizes the
sum of temporal slack of all the actions. Constraints (10)-(11) make
sure that, if some action ai is ordered before some other action aj ,
the earliest start time and the latest finish time of aj are not before
the earliest start time and the latest finish time of ai, respectively.
Constraint (12) defines the temporal slack of an action. Constraints
(13)-(14) set the plan horizon.

7 Valid Inequalities

We now present valid linear inequalities to strengthen the MILP mod-
els. Unless noted, the constraints can be added to all formulations.

Mutual Threat Constraints As illustrated in Figure 3, a cycle
is formed when action ai supports fluent f for action aj and fluent
g for action aj , where aj and ak threaten the causal links Xg

ai,ak

and Xf
ai,aj

, respectively. Since a cycle is not allowed in the action
precedence graph, Xg

ai,ak
and Xf

ai,aj
are mutually exclusive in any

POP and are removed via Constraint (15). When f = g, all Xf
ai,aj

are mutually exclusive and are also removed by Constraint (15).

aiaddf,g

aj pref∩delg
Oak,aj

ak preg∩delf

Oaj ,ak

Xf
ai,aj

Xg
ai,ak

Figure 3: Mutual threat constraint example.

max

⎧⎨
⎩Xg

ai,ak
+Xf

ai,aj
,

∑
aj∈(pref∩delf )

Xf
ai,aj

⎫⎬
⎭ ≤ Zai (15)

∀f ∈ ADDai , ai ∈ A

Action Relevance Constraint Constraint (16) states that a se-
lected action must support at least one causal link.

∑
aj∈pref ,f∈ADDai

Xf
ai,aj

≥ Zai ∀ai ∈ AN . (16)

Minimal Interference Constraint When an action a1 ∈ A adds
only one fluent f ∈ F , there must exist another action a2 ∈ pref
and the causal link κ(a1, a2, f) ∈ K. Further, if there exists a third
action a3 ∈ delf , action a1 must be ordered with respect to it, due to
Constraint (2). Constraint (17)3 enforces ordering constraints on all
the pairs of actions, a1, a2 ∈ A, if, given |ADDa2 | = 1, either a1 ∈
delf and a2 ∈ (addf ∪pref ) or a2 ∈ delf and a1 ∈ (addf ∪pref ).

Oai,aj +Oaj ,ai ≥ Zai + Zaj − 1 (17)

∀ai, aj ∈ A, ∃f ∈ (PREai ∪ADDai) ∩DELaj ,

and |ADDai | = 1.

Counting Constraints Inspired by operator counting constraints
[22], we observe the following: since all actions ai that delete and
require fluent f (i.e., f ∈ F, ai, aj ∈ delf ∩ pref ) are sequentially
ordered due to an interference on f , there must exist at least one
action ak that adds fluent f (i.e., ak ∈ addf ) between each ai. This
observation gives rise to three constraints: Constraint (18) counts the
total number of occurrences of both ai and ak while Constraints (19)
and (20) each split the plan into two for each ai and ensure there are
more actions ak than aj succeeding and preceding ai, respectively.

∑
ak∈addf

Zak + If ≥
∑

aj∈(delf∩pref )

Zaj +Gf ∀f ∈ F (18)

∑
ak∈addf

Oai,ak ≥
∑

aj∈(delf∩pref )

Oai,aj +GfZai (19)

∀ai ∈ A, f ∈ PREai ∩DELai∑
ak∈addf

Oak,ai + IfZai ≥
∑

aj∈(delf∩pref )

Oaj ,ai (20)

∀ai ∈ A, f ∈ PREai ∩DELai

Symmetry Breaking Constraints Two actions that are equivalent
in their preconditions, add effects, and delete effects (denoted ai ≡
aj) introduce symmetrically identical solutions (and non-solutions)

3 Based on the interference constraints of Do and Kambhampati [8].

B. Say et al. / Mathematical Programming Models for Optimizing Partial-Order Plan Flexibility 1047



Zai ≤ Zaj ∀i < j, ai ≡ aj ∈ A (21)

Oai,aj = 0 ∀i < j, ai ≡ aj ∈ A (22)

Estaj ≤ Estai +
∑
a∈A

da(1− Zai) (23)

∀i < j, ai ≡ aj ∈ A

Oaj ,ai = Zai ∀i < j, ai ≡ aj ∈ A, (24)

∃f ∈ F, ai, aj ∈ delf ∩ pref

Figure 4: Symmetry breaking constraints.

into the search space. We can break this symmetry by enforcing a
lexicographical ordering as shown in Figure 4. Constraints (21)-(23)
disallow the inclusion, ordering, and start of the action with lower
index value before its equivalent action with higher index value, re-
spectively. Constraint (24) ensures that two equivalent actions, ai, aj ,
that delete and require fluent f (i.e. f ∈ F, ai, aj ∈ delf ∩ pref )
are ordered with respect to their index values.

Note that Constraint (23) can only be applied to OMILP
O and T MILP.

Constraints (17), (19), (20), and (24) do not introduce any ordering
constraints that are not relevant to the validity of a POP. However,
their addition to OMILP

O can change the optimal solution because the
orderings due to threats may now be replaced with explicit order-
ing constraints. We add Constraints (15)-(22) and Constraint (24) to
OMILP

C , OMILP
O and T MILP, and add Constraint (23) only to OMILP

O and
T MILP. We refer to these strengthened models as OMILP+S

C , OMILP+S
O

and T MILP+S, respectively.

8 Computational Results

In this section, we present the results of two computational exper-
iments. In Experiment 1, we investigate the empirical behaviour of
the three proxy functions. While we discussed in Section 4.3 that the-
oretically none of the proxy functions dominate the others, this result
does not speak to the average empirical behaviour: it is possible that,
in practice, a proxy function often results in more linearizations than
others. To test this possibility, we focus on the minimum reordering
problem: a version of LCFP where the number of actions is fixed.
This restriction ensures that we are comparing the proxy functions
while controlling for the complicating factor of different action sets
that arises in the LCFP models. We show that, generally, there is
also no empirical domination among the proxy functions, with our
only significant comparison being that T MILP+S achieves a statisti-
cally significant higher mean logarithmic number of linearizations
than OmaxSAT

C . We also provide empirical evidence that the MILP
models for temporal flexibility and open ordering constraints are sub-
stantially faster than the state-of-the-art MaxSAT model on the min-
imum reordering problems.

In Experiment 2, we solve the full LCFP problems. Our findings
show that the proposed models OMILP+S

O and T MILP+S can be solved
to optimality faster on the majority of the tested instances, and scale
better with the initial number of actions compared to OmaxSAT

C . The
solution quality across proxy functions is similar with no significant
differences in the action cost or mean number of linearizations but
with T MILP+S and OmaxSAT

C finding a statistically significantly higher
mean logarithmic number of linearizations than OMILP+S

O .

Experimental Details For both experiments, the initial plans are
generated using Fast-Forward [12]. For the first experiment, we

use eight domains from the International Planning Competition:
Depots, Driverlog, Freecell, Gripper, Logistics,
Rovers, Tpp, and Zenotravel, giving in total 144 instances.
For the second experiment, we use the use the same experimental
setup as Muise et al. [18] including the same domains: Depots,
Driverlog, Logistics, Rovers, Tpp, and Zenotravel,
giving in total 138 instances. The experiments ran on a MacBookPro
computer with 2.66 GHz Intel Core i7. The MILP models were
solved using IBM ILOG CPLEX 12.6.2 with 1 thread. For OmaxSAT

C ,
we use the SAT4j MaxSAT 2.3.5 solver with a memory limit of 2GB.
A time limit of 1,800 seconds was imposed on all models.

8.1 Experiment 1: Comparing Proxy Functions

To observe the effect of the optimization of each proxy objective on
the number of linearizations in a POP, we fix the set of actions (i.e.,
Za = 1, ∀a ∈ A) and optimize the proxy objective functions.

Solution Quality In Table 1, we report the mean logarithmic num-
ber of linearizations considering the instances for which all three
models return an optimal solution and for which we successfully
count the number of linearizations: 99 instances. Values in boldface
represent the maximum in each row. The number of linearizations
is found through a simple depth-first search with a time limit of 30
minutes per instance. We note that the mean logarithmic number of
linearizations is equivalent to the geometric mean of such numbers,
which is more appropriate when comparing large-magnitude num-
bers (as the number of linearizations grows exponentially large with
the number of actions). This measure is largely used in the optimiza-
tion literature (see, e.g., [2, 4]).

We performed bootstrap paired t-tests [5] using two statistics:
number of linearizations and logarithmic number of linearizations
(base 10). Our results indicated that there are no statistically signif-
icant differences in the mean number of linearizations while for the
mean logarithmic statistic the only significant difference (p ≤ 0.01)
is that T MILP+S finds a higher mean than OmaxSAT

C . Among the two
models that optimized the closed ordering constraints, OMILP+S

C and
OmaxSAT

C , OmaxSAT
C consistently dominated OMILP+S

C . Therefore the re-
sults for OMILP+S

C are not presented in this section.

Mean Log10 Number of Linearizations

Dom T MILP+S OMILP+S
O OmaxSAT

C
Dep 7.09 6.97 6.93
Dri 5.84 5.95 5.83
Fre 7.55 6.80 7.57
Gri 4.34 4.34 4.34
Log 11.91 11.42 11.38
Rov 8.53 8.15 8.41
Tpp 3.71 3.71 3.71
Zen 7.69 7.55 7.69

Mean 7.76 7.51 7.63

Table 1: Solution quality in terms of linearizations (logarithmic) in
Experiment 1.

In Figure 5, we plot the number of linearizations for which op-
timal solutions were found for both closed ordering flexibility and
temporal flexibility and for which we successfully counted the num-
ber of linearizations. For 83% of the instances, optimization of both
proxy objective functions resulted in POPs with the same number of
linearizations.

Computational Effort We now compare the models with respect
to the effort to optimize each proxy objective. Figure 6 shows a per-
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formance profile depicting the number of instances solved to opti-
mality over the 30-minute time limit. Optimization of open order,
temporal and closed ordering flexibility using OMILP+S

O , T MILP+S and
OmaxSAT

C models solve 126, 122 and 118 problem instances to opti-
mality within 30 minutes, respectively. It can be observed that both
MILP models outperform OmaxSAT

C , while OMILP+S
O is also superior to

T MILP+S across all time points.

8.2 Experiment 2: Solving LCFPs

Turning to LCFPs, we present results on three issues in this sub-
section: the quality of LCFPs produced by each model, the compu-
tational effort for each model, and the impact of the strengthening
constraints that we introduced above.

Solution Quality In Table 2, we report the mean action cost for
each planning domain. The table includes results from the 131 prob-
lems instances for which at least one of the approaches found a fea-
sible solution. For instances for which an approach found no feasible
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Figure 5: Number of linearizations between temporal flexibility and
closed ordering flexibility (in logarithmic scale) in Experiment 1.
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Figure 6: Performance profile (in log scale) for Experiment 1.

POP but another one did, we use the action cost of the input sequen-
tial plan for the former approach. Values in boldface are the minimum
for each row. All four models perform similarly, a result reflected in
the bootstrap paired t-tests showing no significant differences. The
Tpp domain is the only one that appears to have variation, an obser-
vation that we further explore below (see Figure 10).

Average Total Action Cost

Dom OMILP+S
O OMILP+S

C T MILP+S OmaxSAT
C

Dep 42.30 43.86 42.30 42.30
Dri 26.80 26.80 26.80 26.80
Log 91.11 91.94 91.11 91.14
Rov 35.2 35.2 35.2 35.2
Tpp 91.5 94.05 91.82 85.95
Zen 33.1 33.1 33.1 33.1

Mean 59.81 60.74 59.87 58.95

Table 2: Solution quality in terms of total action cost.

Mean Log10 Number of Linearizations

Dom OMILP+S
O OMILP+S

C T MILP+S OmaxSAT
C

Dep 9.24 8.55 11.17 10.95
Dri 6.66 6.81 6.79 6.81
Log 18.01 18.76 18.70 18.76
Rov 14.82 15.05 15.05 15.05
Tpp 9.75 8.06 10.53 10.58
Zen 7.64 7.84 7.82 7.84

Mean 11.06 10.97 11.75 11.72

Table 3: Solution quality in terms of linearizations (logarithmic).

In Table 3 we report the average logarithmic number of lineariza-
tions considering instances for which all four models return a feasi-
ble solution with the same action cost and for which we successfully
count the number of linearizations: 93 instances in total. Values in
boldface represent the maximum in each row. As in Experiment 1,
we generate the linearizations through a depth-first search with a 30-
minute time limit per instance. T MILP+S performs at the same level as
the closed ordering constraint models (OMILP+S

C and OmaxSAT
C ) while

OMILP+S
O trails substantially. Bootstrap paired t-tests indicate no sig-

nificant differences between any pair in terms of the mean number
of linearizations while reflecting the pattern in the table in terms
of the mean of the logarithm of the number of linearizations: both
T MILP+S and OmaxSAT

C have a significantly higher log mean number of
linearizations than OMILP+S

O (p ≤ 0.01).

Computational Effort We compare the models with respect to so-
lution times, focusing on the strengthened formulations – we evaluate
the effect of the strengthening below (see Figure 11). Figure 7 shows
a performance profile depicting the number of instances solved to
optimality over time. OMILP+S

O and T MILP+S each solved 119 instances
out of 138, while OMILP+S

C and OmaxSAT
C each solved 111 instances, all

of which were also solved by the other methods.
For the 111 instances solved by all methods, OMILP+S

O and T MILP+S

were faster than the other approaches in all but one case. On aver-
age, OMILP+S

O and T MILP+S were approximately 27 times and 20 times
faster than OmaxSAT

C , respectively. A scatter plot comparing the run
times of T MILP+S and OmaxSAT

C for all instances is depicted in Figure
8. The plot comparing OMILP+S

O and OmaxSAT
C on the same basis is sim-

ilar. The speedups obtained both by OMILP+S
O and T MILP+S are likely

due to a smaller formulation when compared to other models. As
noted above, the number of constraints in OMILP+S

C (which is derived
directly from OmaxSAT

C ) grows cubically with the number of actions,
while in OMILP+S

O and T MILP+S the growth is quadratic. This explana-
tion is supported by Figure 9, which indicates that the difference in

B. Say et al. / Mathematical Programming Models for Optimizing Partial-Order Plan Flexibility 1049



Run Time (seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s 
S

ol
ve

d

Run Time (seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s 
S

ol
ve

d

Run Time (seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s 
S

ol
ve

d

0
20

40
60

80
10

0
12

0

Run Time (seconds)

N
um

be
r o

f P
ro

bl
em

 In
st

an
ce

s 
S

ol
ve

d

TMILP+S

OO
MILP+S

OC
MILP+S

OC
maxSAT

10-2 10-1 100 101 102 103

Figure 7: Performance profile (in log scale) for Experiment 2.
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Figure 8: Run time comparison between T MILP+S and OmaxSAT
C (in log-

arithmic scale).

run times between T MILP+S and OmaxSAT
C is positively correlated with

the number of actions in the original plan.
All models grow linearly with the number of threats in the plan,

here encoded by Constraints (2), which now becomes more relevant
to the size of both OMILP+S

O and T MILP+S. Figure 10 depicts the run
time of T MILP+S as a function of the number of threat ordering con-
straints for each domain, and strongly suggests a direct correlation.
The 19 instances that were unsolved by OMILP+S

O and T MILP+S are
from the Tpp domain and have more than 10,000 threats.

The Effect of the Strengthening Constraints In Figure 11 we
plot run time comparisons between the pairs of base and strengthened
models. The effect is significant for the instances that take longer
than one second to solve. On average, the strengthened models are
one order of magnitude faster than their corresponding base models.

Summary of Results The performance profiles in Figures 6 and 7
clearly show the superior performance of T MILP+S and OMILP+S

O over
OmaxSAT

C in terms of problem solving efficiency. Figure 11 demon-
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Figure 9: Run times of OmaxSAT
C and T MILP+S and number of actions
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Figure 10: Run time performance of T MILP+S and number of threat
ordering constraints (in logarithmic scale).

strates that the run time advantage is largely a result of the valid
inequalities that we derived. The solution quality results are more
nuanced, showing no significant differences in action cost in Exper-
iment 2 or in mean number of linearizations in either experiment.
The mean logarithmic number of linearizations does show superior-
ity for T MILP+S over OmaxSAT

C in Experiment 1 and for both T MILP+S

and OmaxSAT
C over OMILP+S

O in Experiment 2.

9 Related Work

The problem of generating a flexible POP from an initial set of ac-
tions has been theoretically [1] and empirically [8, 18] investigated.
Do and Kambhampati [8] studied the problem of generating a flex-
ible order-constrained plan by minimizing the number of ordering
constraints in a plan. Unlike POPs, order-constrained plans allow for
concurrent execution of multiple actions, which can invalidate the
plan if two interfering actions (i.e., a1 ∈ delf and a2 ∈ addf∪pref )
overlap during execution. Do and Kambhampati [8] ordered all pairs
of interfering actions with ordering constraints. Because we assume
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a sequential execution, we do not need to enforce the ordering of all
such interfering actions unless a causal link is threatened. Therefore,
we relax Do and Kambhampati’s [8] ordering constraint definition to
form our open ordering constraint definition.

Muise at al. [18] focused on the problem of finding a POP with
minimum total action cost and, among all such minimum POPs, the
one that minimizes the number of ordering constraints under transi-
tive closure, given an initial sequential plan. The authors showed that
minimizing the number of ordering constraints under transitive clo-
sure is positively correlated with the number of linearizations in the
POP and developed the MaxSAT model denoted as OmaxSAT

C above.

10 Conclusion

We presented three mixed-integer programming models for convert-
ing a sequential plan to a POP by optimizing a combination of action
cost and one of three different proxy functions: the number of open
ordering constraints [8], the number of closed ordering constraints
[18] and a novel proxy, temporal flexibility. We proved, through a
set of counter-examples, that none of these functions dominates the
others in terms of the number of linearizations in the resulting POPs.
We then added valid strengthening constraints to these models, re-
sulting in approximately an order of magnitude improvement in per-
formance. Finally, we demonstrated that the two MILP models based
on open ordering constraints and temporal flexibility achieve solu-
tion quality equal to that of the previous state-of-the-art MaxSAT ap-
proach [18] with a decrease in run time of approximately one order
of magnitude.

An obvious direction for future work is to investigate the improve-
ment of the MaxSAT model through the encoding of temporal vari-
ables rather than closed ordering constraints. The ideas of Crawford
& Baker [6] and Frausto-Solis & Cruz-Chavez [11] may be useful
here. We would also like to investigate other proxy functions and
their relationship to POP flexibility.

A Appendix: Dominance Relations

To formally prove Proposition 4, Figures 12 to 15 present counter-
examples showing that there does not exist a dominance relation be-
tween any pair of the three proxy functions in terms of the resulting

number of linearizations in a POP. That is, it is not the case that op-
timizing one proxy function will always lead to more POP lineariza-
tions than optimizing one of the other two.

Each counter-example presents a planning problem with fluents
indexed by integers and two graphs presenting the POP found by op-
timizing two of the objective functions, respectively. The nodes rep-
resent the actions and arcs represent the ordering constraints under
the OO definition. For clarity, we do not show the causal links, the
action variables aI and aG, or the transitive closure. We use the nota-
tion obj1 � obj2 to represent the non-dominance of obj1 over obj2
with respect to the number of linearizations, where obj1 and obj2
represent a pair of proxy objectives. In order to show obj1 � obj2,
we optimize the set of actions with respect to both obj1 and obj2,
and show that L1 > L2, where Li is the number of linearizations of
objective i which counted through exhaustive enumeration. For each
POP example, we report the proxy objective functions optimized, and
the resulting |OO|, |OC |, T and L values.

Actions Pre Add Del

aI - 0 -
a1 0 1,7 -
a2 1 2,3,8 -
a3 0 6,9 4
a4 6 4,5,10 -
a5 4 2,3,11 -
a6 2,3,5 12 -
aG 7,8,9,10,11,12 - -

a1 a2

a3 a4 a5

a6 a1 a2 a6

a3 a4 a5

Figure 12: min. |OC | � max. T . Left: min. |OC |, |OO| = 5,
|OC | = 7, T = 16, L = 15. Right: max. T , |OO| = 5, |OC | = 8,
T = 18, L = 16.

Actions Pre Add Del

aI - 8,9,10 -
a1 8 0,3 -
a2 0 1,2,4 -
a3 0,1,2 5 -
a4 9 1,6 -
a5 10 2,7 -
aG 3,4,5,6,7 - -

a1 a2

a3

a4

a5

a5 a1 a2

a4 a3

Figure 13: max. T � min. |OC | and max. T � min. |OO|. Left:

min. |OC | or min. |OO|, |OO| = 3, |OC | = 3, T = 14, L = 20.
Right: max. T , |OO| = 4, |OC | = 4, T = 15, L = 18.

Actions Pre Add Del

aI - 7 -
a1 7 2,3 0
a2 7 0,1,4 -
a3 0,7 1,2,5 -
a4 1,2,7 6 -
aG 3,4,5,6 - -

a1 a3

a2 a4

a1 a2

a3 a4

Figure 14: min. |OO| � min. |OC | and min. |OO| � max. T .
Left: min. |OC | or max. T , |OO| = 4, |OC | = 5, T = 4, L = 2.
Right: min. |OO|, |OO| = 3, |OC | = 6, T = 0, L = 1.

Actions Pre Add Del

aI - 10 -
a1 10 3,4,5 -
a2 3,4,10 0,1,2,6 -
a3 10 1,4,7 3
a4 1,10 2,8 -
a5 2,10 3,9 -
aG 5,6,7,8,9 - -

a1 a2 a3

a4a5 a3 a4

a5 a2

a1

Figure 15: min. |OC | � min. |OO|. Left: min. |OO|, |OO| = 4,
|OC | = 7, T = 10, L = 6. Right: min. |OC |, |OO| = 5; |OC | = 6,
T = 8, L = 5.
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