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Abstract. Dynamic resource assignment is a common problem in
multi-agent systems. We consider scenarios in which dynamic agents
have preferences about assignments and the resources that can be as-
signed using online auctions. We study the trade-off between the fol-
lowing online auction properties: (i) truthfulness, (ii) expressiveness,
(iii) efficiency, and (iv) average case performance. We theoretically
and empirically compare four different online auctions: (i) Arrival
Priority Serial Dictatorship, (ii) Split Dynamic VCG, (iii) e-Action,
and (iv) Online Ranked Competition Auction. The latter is a novel
design based on the competitive secretary problem. We show that,
in addition to truthfulness and algorithmic efficiency, the degree of
competition also plays an important role in selecting the best algo-
rithm for a given context.

1 Introduction

Consider a scenario in which an Uber driver prefers customers who
want to travel in a particular direction, e.g., the driver carries cus-
tomers in a shared ride and hence prefers new passengers who have
destinations close to those of the passengers already in the vehicle.
In such situations, the driver might be willing to pay Uber a small
amount (over the standard amount that Uber charges drivers for a
fare) to carry a preferable customer. In expert crowdsourcing task
assignment, expert agents have preferences about which tasks they
would like to work on, and they may be willing to pay the platform a
premium for obtaining preferable tasks [10].

As yet another example, consider a hotel booking platform. A ho-
tel ranked lower down on the platform might be interested in being
listed higher for a certain class of travellers with whom the hotel be-
lieves it has a higher chance of obtaining a booking. The hotel may
be willing to pay a small fee to the platform to achieve this.

Motivated by such real-world examples, we consider dynamic as-
signment for crowds where the dynamic agents (Uber’s drivers, the
experts in the expert crowdsourcing example or the hotel owners on
the hotel booking website) have preferences for different available
resources (new Uber passengers, the tasks in the expert crowdsourc-
ing example or the travellers on the hotel booking website) and assign
certain valuations to matches (which can be zero, if an agent has no
preference). Additionally, each agent has a deadline after which he
no longer has use for the resource, known as his departure time. A
platform’s goal (whether Uber, an expert crowdsourcing platform or
a hotel booking website) is to improve the quality of resource assign-
ment, which is also termed as social welfare or efficiency - the sum
of agents’ valuations for their assignments. To achieve this, the plat-
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form needs agents to report their valuations truthfully. This property
is known as incentive compatibility [18]. Additional challenges are
that agents are dynamic and that assignments must happen online,
i.e., they must happen before the agents leave the system. Strategic
agents may attempt to manipulate assignment mechanisms if it is
beneficial to them. Moreover, strategic agents may manipulate their
arrival-departure if it is part of their private information. There is thus
a need to design appropriate game theoretic mechanisms to induce
truthful reporting of private information.

Dynamic Mechanism Design Mechanism design theory [18] is
useful for designing procedures to elicit agent’s valuations of the re-
sources they are matched with. Gujar and Faltings [10] proposed that
agents should pay the platform a premium to obtain their preferred
matches. When such monetary transfers are feasible, one can design
dynamic mechanisms for assignments in such modern marketplaces.

In the literature, there are two well-studied approaches for design-
ing dynamic mechanisms. The first approach, based on stochastic
models of agents’ private information, uses dynamic programming,
Markov Decision Processes, etc.; e.g., the mechanisms proposed in
[1, 4]. Adapting these dynamic mechanisms for crowds is challeng-
ing as it needs precise information about the probability distribu-
tions of agents’ valuations of their assignments and this may not be
available in a new marketplace. Furthermore, agents may have lit-
tle knowledge of mechanism design theory, and understanding such
complex, dynamic mechanisms may be demanding.

The second approach does not assume any probability distribution
for agents’ valuations. These model-free dynamic mechanisms are
called online auctions. The theory developed to solve the classic sec-
retary problem is useful for designing online auctions (Babaioff et.
al.[2]). Mechanisms based on the secretary problem are often easy to
understand and implement.3 The present paper focuses on this sec-
ond approach to online auctions for resource assignment.

A hypothetical optimal algorithm that has knowledge about all the
agents’ valuations in the beginning, is called offline-optimal. Online
auction performance is evaluated using the competitive ratio (CR)
metric, which indicates how far a given algorithm’s solution is from
the offline-optimal solution in the worst case. In real life, a worst
case may not occur frequently. For repeated usage of an auction, the
platform may prefer an online auction that performs well on average,
rather than one that only performs well in a worst case.

The Problem This paper’s goal is to determine which online
auction mechanisms have the following desirable characteristics: (i)
truthfulness, (ii) preference expressiveness (richness of preference
elicitation), (iii) efficiency (social welfare) and, most importantly,

3 Online auctions may be designed using completely different approaches
from the secretary problem.

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1035

1035



(iv) good performance on average.
Our Approach Typically, resources compete for the best possible

assignment (agents). This is analogous to the competitive secretary
problem [13, 15]. However, these two papers did not address agents’
strategic behaviours. We adapt the techniques developed by Karlin
et. al. [15] to design a new, truthful, online auction called, an online
ranked competition auction (ORCA).

We hypothesize that online auctions, optimized for worst case
guarantees, only perform well on average if there is a high level of
competition, i.e., the degree of competition between agents for the
resources affects the auction’s average performance. We analyse auc-
tions empirically by generating a large number of instances of the re-
source assignment problem for different stochastic models. To eval-
uate the performance of a given online auction, we introduce three
metrics: (i) the Empirical Competitive Ratio (ECR), (ii) the Sam-
ple Average Competitive Ratio (SACR), and (iii) the Empirical Ex-
pected Efficiency (EEE). A given online auction’s ECR is the worst
performance observed among the instances generated. SACR mea-
sures how far, on average, a given online auction’s solution is from
an offline-optimal solution. EEE measures the average fraction of the
expected valuations of all the agents in an offline-optimal solution,
that can be achieved by a given online auction.

We study the resource assignment problem using the following on-
line auctions: Arrival Priority Serial Dictatorship (APSD), proposed
by Zou et. al.[22], the Split Dynamic VCG (SDV) [10], eAuction
[10] and ORCA, proposed by the present paper.

Contributions We explore the application of truthful online auc-
tions for resource assignment. We also propose a new, truthful, on-
line, ranked competition auction (ORCA). We look for theoretical
guarantees and average case performance. This paper’s main contri-
bution is its evaluation of online auctions for trade-offs between: (i)
truthfulness, (ii) expressiveness, (iii) efficiency, and (iv) average case
performance. We demonstrate empirically that the auctions designed
for better worst-case guarantees often only perform well if there is a
high degree of competition between agents. In less competitive set-
tings, simpler auctions perform better.

Our empirical study considers APSD, SDV, eAuction and ORCA.
Analysis validates our hypothesis, i.e., when compared with APSD
and SDV, eAuction and ORCA only performed well in highly com-
petitive settings (Figure 2 and Figure 3). ORCA also performs better
when the agent arrival rate is lower, with moderate competition be-
tween agents (Figure 7). For all four online auctions, the empirical
worst cases are not as bad as indicated by corresponding theoretical
bounds (Figure 1, Figure 5) and worst cases are infrequent. We pro-
vide guidelines on how to select the most appropriate online auction
mechanism for a platform’s conditions.

Organisation In the next subsection we describe related work to
ours. Section 2 explains the notation used in this paper and the secre-
tary problem. Section 3 describes the online auctions studied. Section
4 formally defines the ECR, SACR and EEE, describes the experi-
ments and analyses the empirical evaluation. Section 5 concludes the
paper.

1.1 Related Work

Mechanism design theory is a rich field. Nisan et. al.[18] and the
references cited therein provide pointers to it. Dynamic mechanism
design has been addressed with regard to auction design when prior
distribution of agents’ arrival-departure and valuations are known [1,
4, 20]. However, we focus on a model-free design for online auctions.

Although the literature on online algorithms does not address

agent’s strategic behaviour, the techniques it has developed are very
useful for designing online auctions. The notion of an online algo-
rithm was popularised in a seminal paper by Karp et. al. [16]. For
more details on online algorithms, readers are referred to [5, 8].
The classic secretary problem has been well studied in the literature
[7, 13, 15, 17]. Solutions to it have also been used in the design of
online auctions, e.g., [2, 3].

There is abundant literature on the task assignment problem in
crowdsourcing [6, 11, 12, 14, 21]. However, there has not been much
research on the use of online algorithms/auctions for task (resource)
assignment, with exceptions being [9, 10]. The present paper ad-
dresses the resource assignment problem for new marketplaces using
an online auction approach.

2 Preliminaries

Let R = {r1, r2, . . . , rk} be the set of k available resources on a
given platform. Let N = {1, 2, . . . , n} be the set of n agents in-
terested in those resources. Each resource must be assigned to one
agent only, and each agent is only interested in one resource.4 Let
Xi ∈ R ∪ {⊥} denote the resource assigned to agent i, where ⊥
indicates no assigned resource and �Xi=rj denotes an indicator vari-
able which is 1 if agent i obtains rj and is 0 otherwise. Agent i gives
a valuation vij to obtain resource rj (∀i, vi⊥ = 0). Agent i arrives
in the system at time period ai and is available until time period di.
The platform’s goal is to maximise the sum of the agents’ valuations
of the resources assigned to them, as described in Problem (1):

max
∑

viXi s.t.

Xi ∈ R ∪ {⊥} ∀i ∈ N (1)∑
i

�Xi=rj ≤ 1 ∀rj ∈ R

First, we assume that the agents are honest in reporting their val-
uations for the resources. If all the agents’ valuations are known
in advance, the platform can solve this optimization problem and
efficiently assign resources. The hypothetical algorithm that solves
Problem (1) in the presence of dynamic agents is called the offline-
optimal. However, in dynamic environments, valuations only become
known when agents arrive in the system and they are not all available
simultaneously. Therefore, the platform cannot solve the above opti-
misation problem. Hence, the platform must look for mechanisms
that are as close to the offline-optimal as possible. The secretary
problem, and its analysis, is very useful for designing online auc-
tions.

2.1 The Secretary Problem

In the secretary problem, a recruiter wishes to hire a secretary from
among n candidates. The recruiter can only evaluate a candidate after
interviewing him. However, the recruiter must either offer the job or
reject the candidate before moving on to a new one. The decision
is irrevocable. This problem was analysed by [7, 17]. An optimal
strategy is for the recruiter to interview the first n

e
candidates and

offer the job to the next candidate who is better than these first n
e

candidates [7, 17]. Here, e is the base of the natural logarithm.

4 We focus on a time window in which each agent is typically only interested
in one assignment.

S. Gujar and B. Faltings / Online Auctions for Dynamic Assignment: Theory and Empirical Evaluation1036



In the resource assignment problem, with k = 1, the platform’s
goal is to assign the resource to the agent giving it the highest valua-
tion which is known only after he arrives in the system. This resource
assignment problem is exactly the same as the secretary problem.
Thus, the platform should wait until the first n

e
agents have indicated

their valuations and offer the resource to the next agent who provides
a higher valuation than those first n

e
agents.

2.2 Competitive Secretary Problem

Consider a case where there are k > 1 resources and n agents com-
peting for them. The platform prefers to assign each resource to the
agent providing the highest valuation for that resource. The agents
appear on the platform sequentially. Each agent can be offered zero,
one or more resources while he is present in the system, but he can
select only one of them. After his departure, the next agent arrives
in the system. If an agent is offered multiple resources, he chooses
to accept a single resource and rejects the remainder. The literature
addresses two separate cases, depending on how the agent selects a
resource from among multiple offers.
(i) Resources having equal rank: an agent with multiple offers has an
equal probability of choosing any one of those resources.
(ii) Resources having ranked order: resources are ranked, and an
agent with multiple offers accepts the highest ranked resource.

Let us assume that the platform waits until n
thj

agents have arrived
in the system and reported their valuation of rj . The platform offers
rj to the first agent to give a valuation higher than that of the first
n

thj
agents. thj is called the stopping threshold for rj . Note that for

the secretary problem (k = 1), th1 = e is the optimal stopping
threshold. For the above two settings, the optimal stopping threshold
for each resource should be different.

Resources Having Equal Rank Immorlica et. al. [13] addressed
this case. However, a closed-form solution to optimal stopping
thresholds for k > 2 is unknown. We leave the design of online
auctions for such cases for future research.

Resources Having Ranked Order An agent can assign differ-
ent valuations for different resources. If he receives multiple offers,
he chooses the resource to which he assigned the highest valuation.
Hence, the probability of accepting a particular offer is higher for a
resource that is preferred by all the agents. This induces a natural
ordering of resources and the higher-ranked resource will always be
chosen by an agent with multiple offers. To take advantage of the
possibility that the best possible agent arriving before the stopping
threshold of a higher-ranked resource, the platform could use lower
stopping thresholds for lower-ranked resources [15].

Note that the above approaches only work if agents report the plat-
form valuations and availability truthfully. However, in real life, since
agents are strategic, auction theory can be used instead, as explained
in the next subsection.

2.3 Online Auctions

Strategic agents can boost their valuations to ensure they receive a
resource. However, if they are made to pay an appropriate amount
to the platform, truthful behaviour can be induced. Let pi denote the
payment that agent i makes to the platform for resource assignment,
i.e., his utility for that resource assignment is viXi − pi. Note that
the focus of the present paper is on the quality of assignment, hence

we refer to agents’ utility for assignments and not external utility,
that an Uber driver may derive by serving a passenger, for example.
Another possibility for manipulation is on arrival and departure. Thus
for the agent i, the private information is: θi = (vi, ai, di) where,
vi = (vi1, vi2, . . . , vik) ∈ R

k
+

5. This private information θi is called
the type of agent i. Let Θi denote the space of possible types of agent
i. Let θ = (θ1, . . . , θn) denote the type profile of all the agents. θ
is also indicated by (θi, θ−i) where θ−i is the type profile for all the
agents except i.

For a given type profile, an online auction A = (X, p) selects a
feasible resource assignment X(θ) = (X1(θ), X2(θ), . . . , Xn(θ))
and determines the payments p(θ) = (p1(θ), p2(θ) . . . , pn(θ)). A
feasible resource assignment is one in which each agent receives a
resource, if any, before his departure time and this is independent of
the types of the agents who are yet to arrive.

Let Ci(θi) denote the space of possible misreports available to
agent i when his true type is θi. That is, he may report his type
to be θ̂i ∈ Ci(θi) if it is beneficial to him. Generally, agents can-
not appear in the system before their true arrival time and cannot be
present after their true departure time, though they can pretend to
appear late or leave early or misreport their valuations. We call this
domain of misreports no-early-arrival-no-late-departure. We restrict
the domain of misreports to no-early-arrival-no-late-departure. That
is, Ci(ex)(θi) = {θ̂i = (v̂i, âi, d̂i)} with v̂i ∈ R

k
+, ai ≤ âi ≤

d̂i ≤ di. These settings are also called exogenous arrival-departure.
In some cases, it may be possible to assume that agents cannot ma-
nipulate their arrival-departure times or that these are not part of their
private information. We capture this setting as Ci(en)(θi) = {θ̂i =
(v̂i, ai, di)}. This is also called endogenous arrival-departure.

Definition 1 (Truthfulness) An online auction, A, is dominant
strategy-incentive compatible (or truthful) for domain of misreports
Ci(θi)s if for every agent i and for every θi ∈ Θi,

viXi(θ) − pi(θ) ≥ viXi(θ
′
i,θ−i)

− pi(θ
′
i, θ−i) (2)

∀θ′i ∈ Ci(θi), ∀θ−i ∈ Θ−i

The next subsection presents a necessary condition for a truthful
online auction.

2.4 Necessary Condition for a Truthful Online
Auction

In online auctions, the dynamics of the arrival-departure of differ-
ent agents offers strategic agents more flexibility for manipulation.
Hence, online auctions must be designed carefully.

Definition 2 (Arrival-Departure Priority) Online auctions for re-
source assignment problems are said to have an arrival-departure
priority if agent i’s utility at a type θi having the same valuation as
θ′i, but with either earlier arrival or later departure than θ′i, does not
decrease. That is, ∀θi, θ′i ∈ Θi such that vi = v′

i, ai ≤ a′
i and

di ≥ d′i,

viXi(θi,θ−i) − pi(θi, θ−i) ≥ viXi(θ
′
i,θ−i)

− pi(θ
′
i, θ−i)

Lemma 1 In exogenous settings, a truthful online auction must have
an arrival-departure priority.

5 Recall, ai, di are his arrival and departure times.
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Proof: Suppose a truthful online auction A does not have an
arrival-departure priority, i.e., for an agent, say i, there exist two
types of θi : θ′i such that vi = vi

′, and ai ≤ a′
i, and di ≥ d′i and

ui(θ
′
i, θ−i) > ui(θi, θ−i). If agent i has a true type θi and other

agents have type θ−i, agent i benefits from arriving late at a′
i and

from reporting his type to be θ′i, contradicting the truthfulness of A.
�

The above lemma implies that, to design a truthful online auction
for no-early-arrival-no-late-departure domains, one has to ensure that
the auction satisfies the arrival-departure priority.

We now define the competitive ratio (CR) metric. Let V A(θ) de-
note the total valuation by all the agents for the resources in an online
auction A, and let V ∗(θ) be the total valuation by all the agents in
the offline-optimal solution. A CR of A is defined as:

Definition 3 (CR) An online auction A is said to be α-competitive
if

min{θ:V ∗(θ)�=0}E
V A(θ)

V ∗(θ)
≥ 1

α

where expectation is taken with respect to random orderings of the
agents.

A CR is a fair measure with which to evaluate different online auc-
tions as online auctions are independent of stochastic models. A low
CR is desirable because even in the worst case, the given online auc-
tion is close to the offline-optimal. In general, CRs are quite high as
online auctions can perform poorly in worst cases.

Having provided background information on online auctions, the
next section describes the auctions studied.

3 Online Auctions for Resource Assignment

We consider the following online auctions: (i) APSD, (ii) SDV, (iii)
eAuction and (iv) ORCA. eAuction and ORCA are based on the sec-
retary problem.

3.1 Arrival Priority Serial Dictatorship (APSD)

Zou et. al. [22] proposed arrival priority serial dictatorship (APSD)
for assignment problems. In APSD, upon arrival, each agent se-
lects the resource for which he has the highest valuation from the
pool of available resources, but does not pay the platform. The au-
thors proved that APSD is the only truthful mechanism for no-early-
arrival-no-late-departure domains if monetary transfers are not al-
lowed.

Note that as payments are absent in APSD, it is not an auction as
we imagine a real-world auction. However, it is a very simple, yet
truthful mechanism without asking the agents to report anything.

3.2 Split Dynamic VCG (SDV)

Gujar and Faltings [10] proposed a Vickrey-Clarke-Groves (VCG)-
based mechanism for resource assignment in crowdsourcing. VCG
mechanism for static settings (i.e., ∀i, ai = di = 1) is as follows. It
finds an assignment that maximizes the sum of the agents’ valuations
for the resources and the payments are based on the externalities they
impose on the system [18]. In [10], the authors considered the par-
tition of the agents such that the agents in each part of the partition
are available simultaneously. The platform assigns the remaining re-
sources to the agents by solving VCG mechanism for each part of the
partition. SDV mechanism does not satisfy arrival-departure priority
and hence, it is only truthful for endogenous settings.

3.3 eAuction

In [19], Parkes proposes an online auction for a single item using a
solution to the secretary problem. Gujar and Faltings [10] adapted
this for a k resources setting. The platform waits until n

e
agents have

arrived and if the agent providing the highest valuation for any re-
source is available, he gets the resource by paying the second-highest
reported valuation. Otherwise, for each resource, the highest valua-
tion received in the first phase is set as a reserve price and whichever
agent provides a higher valuation than that reserve price obtains the
resource by paying the reserve price. If an agent is eligible for more
than one resource (i.e., having provided valuations higher than the
reserve prices), the platform assigns the agent the resource with the
highest utility to him. This is referred to as an eAuction, and eAuc-
tions are truthful for no-early-arrival-no-late-departure domains.

In the competitive secretary problem - when there are multiple re-
sources - optimal stopping thresholds for different resources are dif-
ferent [13, 15]. The next subsection proposes a threshold-based on-
line auction framework which enables the use of different thresholds
for different resources using the online ranked competition auction.

3.4 Online Ranked Competition Auction (ORCA)

Here we propose a generic threshold-based online auction frame-
work for k resources.

Definition 4 (Threshold-Based Online Auction) Let th1, . . . , thk

be the stopping thresholds for r1, . . . rk, respectively. Let hj and shj

be the highest bid and second-highest bid for rj from the first n
thj

bids. Agent i has a priority higher than agent j if ai < aj (ties are
resolved randomly).

At each time slot, an agent i locks in rj if: (i) resource rj is unas-
signed, (ii) it has not been locked in by another agent with a higher
priority, and (iii) di ≥ a n

thj
. If an agent with a lower priority has

already locked it in, the lower priority agent loses that lock in on rj .
At di, i is assigned the resource giving him the highest utility from
among the resources he has locked in. If agent i receives resource rj ,
then he pays the platform shj if ai ≤ a n

thj
, otherwise he pays the

platform hj . All the other resources locked in for i are released at di.

Proposition 1 A threshold-based online auction satisfies arrival-
departure priority.

Proof: Consider an agent i with two types, θi and θ′i, such that
vi = v′i, ai ≤ a′

i and di ≥ d′i. Let us fix other agents’ types as θ−i.
When agent i has type θi, he can lock in all the resources that he
can lock in with type θ′i, but additionally, he may be able to lock in
more resources in θi either because he now has a higher priority or
because some resources were released after d′i to which he may now
get access. Agent i is offered the resource yielding him the highest
utility and hence, ui(θi, θ−i) ≥ ui(θ

′
i, θ−i). As this is true for all

agents, the proposition follows. �

Theorem 1 A threshold-based online auction is truthful for a no-
early-arrival-no-late-departure misreports domain.

Proof: The agent’s payment is independent of his bid for a resource,
hence no agent has an incentive to lie about his valuation for that
resource. However, in dynamic settings, an agent may try to manip-
ulate the online auction in order to get the resource with the highest
utility to him. From Proposition 1, a threshold-based online auction
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satisfies the arrival-departure priority. With this property and the fact
that the threshold-based online auction offers the agent the resource
that has the highest utility to him throughout his availability, no
agent has any incentive to misreport his type. �

As explained earlier, there are two approaches to determining stop-
ping thresholds for each resource in the classic competitive secretary
problem. We focus on the case where resources are ordered.

Let rj be the jth ranked resource. Let Prj(l) be the probability
that rj cannot be matched with the best possible agent when l is used
as the stopping threshold. Then Karlin et. al. [15] showed:

Theorem 1 [15] Optimal stopping threshold thj for jth ranked re-
source (rj) is given by

thj = min{l : Prj(l) ≥ 1− l

n
} − 1

Online Ranked Competition Auction (ORCA) Karlin et. al. pro-
vided a dynamic programme with which to compute the above
thresholds. We use the solution to this programme and plug these
thresholds into a threshold-based online auction referred to as an On-
line Ranked Competition Auction (ORCA).

3.5 Comparing APSD, SDV, eAuction and ORCA

The complexity of the implementing mechanism increases as we
move from APSD to ORCA. However, each system is designed to
achieve better CR and to provide more information to the auction.
Table 1 summarizes6 the theoretical properties of the online auctions
discussed.

APSD SDV eAuction ORCA
Preference No Only vi’s vi’s and vi’s, ai’s
elicitation ai’s and di’s

Truthfulness Exogenous Endogenous Exogenous Exogenous
CR n n e2 < e2

Table 1. Comparison of the theoretical properties of APSD, SDV,
eAuction and ORCA

This section concludes by illustrating how all the mechanisms
work using the following example.

����
i = 1 2 3 4 5 6 7 8 9 10

ai 1 2 3 4 4 5 5 6 6 6
di 2 2 3 6 7 6 5 8 9 7
vi1 6 8 7 15 12 16 4 17 2 5
vi2 5 3 4 1 4 2 3 2 1 4

Table 2. Example: n = 10, k = 2

Example: Consider a market with k = 2 resources and n = 10
competing agents. Resource 1 is preferable to resource 2, i.e., all
agents are more likely to value resource 1 more than resource 2. Each
agent’s arrival time, departure time and valuations are given in Table
2. The mechanisms described above yield the following outcomes:

6 CRs for APSD, SDV, eAuction are taken from [10]. We believe the CR for
ORCA should be better than eAuction.

• OFFLINE-OPTIMAL: Agent 8 gets resource 1 and agent 1 gets
resource 2, with optimal social welfare = 22.

• APSD: Agent 1 gets resource 1 and agent 2 gets resource 2, with
social welfare = 9.

• SDV: SDV executes VCG at t = 2. Agent 2 gets resource 1 and
agent 1 gets resource 2, and their payments are 1 and 0, respec-
tively, while social welfare = 13.

• e-Auction: e-Auction waits for � 10
e
	 = 3 agents to submit their

bids. Thus, e-Auction sets reserve prices for resource 1 at 8 and
for resource 2 at 5. Agent 4 gets resource 1, however no agent gets
resource 2, leading to social welfare = 15.

• ORCA: ORCA waits for � 10
e
	 = 3 agents to submit their bids to

for resource 1 and for 2 bids to arrive for resource 2. Thus, agent
4 obtains resource 1 by paying 8 and agent 1 obtains resource 2
by paying 3. Thus ORCA achieves social welfare of 20 in this
instance.

In the next section, we empirically evaluate all the online auctions
described above for average performance using different stochastic
models for θ’s.

4 Evaluating Online Auctions

This paper’s goal is to study online auctions empirically to evaluate
how they perform in practice using various stochastic models. To do
this, we define performance measures for evaluating a given online
auction.

4.1 Performance Measures for Online Auctions

Although CR captures an online auction’s worst case performance,
we believe that worst cases performances may not be recurrent in
practice. To evaluate a given online auction, we generated N differ-
ent instances of θ’s according to a fixed stochastic model for θ. Let fi
be the probability density function (pdf) for θi, let S denote the set of
N samples generated with f1, f2, . . . , fn and let f = f1 × . . .× fn
denote the joint probability distribution function. New measures are
now defined as follows:

Definition 5 (ECR) Online auction A is said to have an empirical
βN
f competitive ratio (ECR) if

min{θ∈S:V ∗(θ)�=0}

{
mean

θ|v is fixed
V A(θ)

V ∗(θ)

}
≥ 1

βN
f

The ECR measures how far online auction A’s solution is away from
the offline-optimal using generated samples. Even for large N , if the
ECR is good, then worst cases are rare.

Definition 6 (SACR) Online auction A has a sample average com-
petitive ratio (SACR) γN

f if

mean{θ∈S:V ∗(θ)�=0}

{
mean

θ|v is fixed
V A(θ)

V ∗(θ)

}
≥ 1

γN
f

An SACR measures, via an analysis of average cases, how far on-
line auction A’s solution is away from the offline-optimal, where the
average is taken from generated samples. Even for large N , if the
SACR is low, then, on average, the auction performs better than one
with a higher SACR.
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Definition 7 (EEE) Online auction A is said to have an empirical
expected efficiency (EEE) as ΔN

f , where

ΔN
f =

meanθ∈SV
A(θ)

meanθ∈SV ∗(θ)

The EEE captures the average fraction of expected offline-optimal
social welfare achieved by online auction A. The closer EEE is to 1,
the closer, on average, A is to the offline-optimal.

The next section describes this empirical analysis.

4.2 Experiments

For a fixed number of resources (k), the parameters that can vary are
the size of the agent pool (n), the agent arrival rate (λ), agent wait-
ing time and agents’ preferences vij’s. First, we explain the different
models of agents’ preferences considered in these experiments.

4.2.1 Preference Models

The following agents’ preference models were considered:
Low Competition

• Preference Model 1 (PM1): each agent’s valuation for each re-
source is an independent and identically distributed (i.i.d.) random
variable with a uniform distribution on [0,1].

• Preference Model 2 (PM2): each agent’s valuation for each re-
source is an i.i.d. random variable with a triangular distribution on
[0,1] with a peak at 0.5.

High Competition

• Preference Model 3 (PM3): each agent has the same valuation for
every resource and these valuations have a uniform distribution on
[0,1].

• Preference Model 4 (PM4): Resources are ranked. Any agent’s
valuation for resource rj is uniformly drawn from [ k−j

k
, k−j+1

k
].

In the first two PMs, there is relatively less competition between
agents for each resource. The latter two PMs induce higher com-
petition between agents for resources.

The next subsection explains the study’s different experimental se-
tups.

4.2.2 Experimental Setups

The four following experimental variations were analysed:
Experiment 1 (Effect of n on ECR, SACR and EEE for fixed k):
This experiment fixed the number of tasks k = 5, λ = 0.5 and varied
n = 8 → 20.
Experiment 2 (Effect of k on ECR, SACR and EEE for fixed n):
This experiment fixed the number of agents n = 20, λ = 0.5 and
varies k = 2 → 20.
Experiment 3 (Effect of λ on ECR, SACR and EEE for fixed n, k):
This experiment varied the agent arrive rate (λ) on the platform for
k = 5, n = 20 and the waiting period was exponentially distributed
with mean μ = 0.5.
Experiment 4 (Effect of λ on ECR, SACR and EEE for fixed n, k):
This experiment is the same as Experiment 3 except that the agents
are impatient.

For each of the four PMs, we generated 8,000 valuation profiles
for each of the four experiments described above. For each valuation

profile, 120 random agent orderings were considered. First, the sam-
ple averages of the total valuation achieved by each auction mech-
anism for these 120 orderings were calculated. Second, ECR and
SACR were measured for the 8,000 sample valuation profiles. Also,
the sample averages of the total valuation of each auction mechanism
and the offline-optimals were calculated over 8,000 x 120 instances,
in order to measure EEE. As ECR and SACR are > 1, and indeed
may take much larger values, we plotted 1

ECR and 1

SACR to view
them in [0, 1].

These experiments used k ∈ [2, 20] and n ∈ [5, 50], as we believe
that typical online auctions for resource assignment in new market-
places will be of a similar size. For example, although there may be
a large number of Uber drivers and passengers at the same time, a
driver may only be interested in a couple of customers and there may
not be many drivers nearby interested in every single customer. If k
and n are scaled proportionately, we still believe that similar results
will hold true.

4.2.3 Experimental Results

The following observations were common to all the experiments.

• O1: Correlations between PM1-PM2 and PM3-PM4. Across all
four experiments, the three metrics for PM2 demonstrated the
same trend as under PM1, but at different scales. There was a
similar correlation between PM3 and PM4. This is attributed to
the fact that PM1 and PM2 encourage little competition, and PM3
and PM4 encourage high competition. Hence, below, we illustrate
our results w.r.t. PMs 1 and 3 only.

• O2: Correlation Across ECR, SACR, EEE. In general, the graphs
for ECR, SACR and EEE showed similar trends, though scales
and rates of change could differ. (Figure 1, Figure 2 and Figure 3).

• O3: ORCA under High Competition. In general, ORCA performed
better when preferences induced more competition for resources
(i.e., in PM3, PM4).

• O4: CR vs ECR. Worst case competitiveness across the gener-
ated samples (ECR) was much better than the theoretical CR, thus
worst cases did not occur frequently. For example, CR across all
the auctions, considering all the settings, is always > 7.38 and as
bad as 50 in some cases. However, empirically all the auctions in
our experiments were better than 5-competitive (1/ECR> 0.2).

Some of the specific observations were as follows.

• Experiment 1: Figures 1 to 3 show how ECR, SACR and EEE
change w.r.t. n for the different auction mechanisms when k = 5
and λ = 0.5 for agents following PM1. In Experiment 1 and with
all PMs, ORCA performed better for a larger agent pool on mea-
sures ECR and SACR. However, for EEE, SDV was the best auc-
tion mechanism across all PMs. These experiments clearly show
that as competition increases further, ORCA should outperform
SDV in all the PMs. Figure 4 illustrates ORCA’s superiority under
PM3. Because of the correlations in O2, we drop other plots using
PM3 to save space.

• Experiment 2: Figure 5 illustrates how ECR varies w.r.t. the num-
ber of resources, k when n = 20, λ = 0.5 under PM1. Similar be-
haviour was observed under PM3, where ORCA was superior to
the other mechanisms until k = 8. As competition reduces, (i.e.,
k increases) SDV and APSD perform better (because of O1 and
O2, not all measures under all PMs are displayed).

• Experiment 3: The arrival rate’s effect on auction mechanism per-
formance was also studied (Figures 6 and 7). Experiments demon-
strated that for λ ≤ 1, threshold-based online auctions performed
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Figure 1. Experiment 1: ECR vs n for k = 5, λ = 0.5, PM1 Figure 2. Experiment 1: SACR vs n for k = 5, λ = 0.5, PM1

Figure 3. Experiment 1: EEE vs n for k = 5, λ = 0.5, PM1 Figure 4. Experiment 1: ECR vs n for k = 5, λ = 0.5, PM3

better than APSD and SDV as measured by SACR under PM3.
However, for higher λ, i.e., when agents arrive in large numbers
at every time slot, SDV performed better, especially as measured
using EEE or ECR. APSD performed better than threshold-based
online auctions, but 5%-10% below SDV.

• Experiment 4: In Experiment 4, all the auctions showed a similar
performance trend to Experiment 3. The performances of APSD
and e-Auction are not supposed to change significantly in the pres-
ence of impatient agents. Experiments also showed that ORCA
did not change much in the presence of impatient agents. SDV
performed slightly less well in Experiment 4, but was still supe-
rior at higher λ, without changing any of our conclusions. Hence
we do not display plots for Experiment 4.

4.3 Discussion

Based on these experiments, we consider two broad settings:
(1) Low competition for resources and/or a high arrival rate.
(2) High competition for resources and/or a low arrival rate.

Low Competition If many agents log in simultaneously (high λ),
SDV is superior to all the other online auctions (Figures 6 and 7).

As the number of resources increases, the performances of SDV and
APSD improve and they become superior to threshold-based auc-
tions (Experiment 2).

Figure 5. Experiment 2: ECR vs k for n = 20, λ = 0.5, PM1
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Figure 6. Experiment 3: ECR vs λ for k = 5, n = 20, PM3 Figure 7. Experiment 3: EEE vs λ for k = 5, n = 20, PM3

Note that the empirical superiority of SDV might be attributable to
the fact that it tries to match many agents simultaneously, leading to
more efficient assignment. Threshold-based online auctions typically
drop a certain fraction of agents in order to learn which asymptoti-
cally improves worst case guarantees. Hence, they perform best only
in highly competitive settings, as explained below.

High Competition If there is strong competition between agents
(that is either large n for fixed k, or k

n
< 0.1), threshold-based online

auctions (especially ORCA) perform better (Figures 1 to 5) for all
types of PMs.

Overall, these experiments showed that ORCA outperforms the
other auctions when (i) agents arrive sequentially (very low λ) and
are impatient, and (ii) preferences models are of the PM3 or PM4
type.

From Table 1’s ranking of auction mechanism CRs, APSD ≺ SDV
≺ e-Auction ≺ ORCA. However, the experiments presented here
rank the four auction mechanisms, by measure, as shown in Table 3.

Recommendations If there are few resources and a large pool of
agents, the auction platform should choose threshold-based online
auctions. If the platform expects that (i) all agents put the same valu-
ation on each different resource or, (ii) some resources are preferred
over others, then the platform can implement ORCA. If the agents’
valuations of resources are independent of each other, then the plat-
form can use eAuction.

If there are large numbers of resources or large numbers of agents
logging in to the system at every time period, then the platform can
use SDV. However, SDV can be manipulated for arrival-departure. If
the platform prefers not to charge the agents for resource assignment
and/or prefers to work using no-early-arrival-no-late-departure do-
mains, then it can use APSD. APSD is simple to implement but has
a cost of a 5%-10% loss in performance compared to SDV. However,
in many settings and preference models, it is better than threshold-
based online auctions.

5 Summary

This paper addressed the resource assignment problem for dynamic
agents and proposed a new Online Ranked Competition Auction
(ORCA) mechanism to deal with this. We hypothesised that the auc-
tions targeted for worst case guarantees perform better in practice

APSD SDV eAuction ORCA
CR 4 3 2 1

Low Competition and High λ
ECR 2 1 4 3

SACR 2 1 4 3
EEE 2 1 4 3

High Competition and Low λ
ECR 3 2 4 1

SACR 3 2 4 1
EEE 3 1 4 2

Table 3. Comparison of APSD, SDV, eAuction and ORCA: relative
rankings using CR, ECR, SACR and EEE from empirical analysis

only when there is strong competition for resources between agents,
i.e., the degree of competition between agents plays an important
role in the trade-off between properties such as truthfulness, expres-
siveness, efficiency and average case performance. Our experiments
validated this hypothesis.

We studied the application of four different online auctions to the
resource assignment problem, namely APSD, SDV, eAuction and
ORCA. We compared their theoretical properties (Table 1). Instead
of relying exclusively on the competitive ratio to evaluate average
case online auctions, we proposed three new measures, namely ECR,
SACR and EEE. Furthermore, experimental worst cases generated
from samples were much better than theoretical worst cases (Table
3). In the last section, we provided suggestions as to how a platform
should choose its online auction mechanism based on the size of the
agent pool, the size of the resource pool and how frequently agents
log in to the system.

The ORCA and eAuction mechanisms were only observed to give
better average-case performances in specific preference models. Oth-
erwise, overall, SDV is a very good online auction mechanism when
compared to the others studied in this paper. Future research might
attempt to design a better model-free resource assignment mech-
anism (online auction), one that is more efficient than SDV and
is truthful in no-early-arrival-no-late-departure domains for a broad
class of preference models.
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