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Abstract. In this paper, we provide a new algorithm for the prob-
lem of stochastic global optimization where only noisy versions of
the objective function are available. The algorithm is inspired by
the well known cross entropy (CE) method. The algorithm takes
the shape of a multi-timescale stochastic approximation algorithm,
where we reuse the previous samples based on discounted averag-
ing, and hence it saves the overall computational and storage cost.
We provide proof of the stability and the global optimization prop-
erty of our algorithm. The algorithm shows good performance on the
noisy versions of global optimization benchmarks and outperforms
a state-of-the-art algorithm for non-linear function approximation in
reinforcement learning.

1 Introduction and Preliminaries

In this paper, we solve the following problem: For a latent probability
measure Py over Y ⊂ R

a,

Find x∗ ∈ argmax
x∈X⊂Rm

L(Ey [J(y)] , x), (1)

where L : R
b × R

m → R is a bounded continuous function
and J : Y → R

b is a bounded function (hence Ey[|J |] < ∞).
Here Ey [·] is the expectation w.r.t. Py. The region X referred as
the solution space is a compact subset of R

m. For brevity, we let
H(x) � L(Ey [J(y)] , x). In this paper, we assume x∗ is unique and
x∗ ∈ interior(X ).

In this paper, we consider a “black-box” setting, where neither
a closed form expression nor structural properties of the objective
function H are available. However, for a given x ∈ X , a noisy
measurement H̄(x) of the objective function H is available, where
H̄(x) = H(x) + ε(x). Here ε(x) is the noise incurred during the
measurement of H(x) which is primarily attributed to the inability
to measure accurately the quantity Ey[·]. The intractability of Ey[·]
is due to the hidden probability measure Py. Problems of the above
kind are found in areas of engineering and in discrete-event system
simulation [11, 13].

Intuitively, it follows directly from the definition of the problem
that any algorithm which solves the problem of the above kind has to
be a zero-order method. Since the higher order values of the objective
function are unavailable, the algorithm relies only on the function
values. These methods are generally called gradient free methods.
A few prominent algorithms of this kind are simultaneous perturba-
tion stochastic approximation method (SPSA) [26], model reference
adaptive search method (MRAS) [8], cross entropy method (CE)
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[25], estimation of distribution algorithms (EDA) [29] and gradient
based adaptive search (GASSO) [30]. The advantage of the above
methods is the non-dependency on the structural properties of the
objective function and hence can be applied in a generalized setting.

In this paper, we consider the well known cross entropy method.
The cross entropy method was motivated by the rare event probabil-
ity estimation method proposed in [22], which is a variance reduction
technique. Later, an iterative procedure based on the above method
was applied in various combinatorial optimization problems [23].
Cross entropy method also found successful applications in continu-
ous multi-extremal optimization [21]. A few other applications of the
CE method include buffer allocation [1], queuing models [3], DNA
sequence alignment [14], control and navigation [6], reinforcement
learning [17, 19] and several NP-hard problems [24, 21].

In this paper, we apply a stochastic approximation variant of the
CE method to the continuous multi-extremal stochastic optimization
problem defined in (1). This particular version of the algorithm is
designed to overcome the drawbacks arising due to the inordinate
computational and storage requirements of the original CE method.
The stochastic approximation nature of our algorithm also helps to
adapt naturally to the stochastic optimization setting.

2 The Cross Entropy Method

Notation: We use x for random variable and x for deterministic
variable. Let �a� denote the smallest integer greater than a. Let
supp(f) � {x|f(x) �= 0} and interior(A) be the interior of set
A. Let fθ(·) denote the probability density function parametrized by
θ and Eθ[·] be the expectation w.r.t. fθ . Let γρ(H(·), θ) denote the
(1− ρ)-quantile of H(x) w.r.t. fθ , i.e.,

γρ(H(·), θ) � sup{l : Pθ(H(x) ≥ l) ≥ ρ}. (2)

For x, y ∈ R, define χ(x, y) =

{
1 if x ≥ y
0 otherwise.

(3)

The Cross Entropy (CE) method [25, 9, 4] is a zero-order optimiza-
tion method to solve optimization problems where the objective func-
tion does not posses smooth differentiable structural properties. CE
method belongs to a broader class of methods called the model based
search methods. The goal of the CE method is to find an optimal
“model” or probability distribution over the solution space X which
concentrates on the global maxima of the objective function. The
CE method is an iterative procedure where at each iteration k, a
search is conducted on a space of parametrized probability distri-
butions {fθ|θ ∈ Θ} on X , where Θ is the parameter space, to find a
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distribution parameter θk which reduces the Kullback-Leibler (KL)3

distance from the optimal model. The most commonly used distribu-
tion family here is the exponential family of distributions.
Exponential Family of Distributions: These distributions are rep-
resented by C � {fθ(x) = h(x)eθ

�Γ(x)−K(θ) | θ ∈ Θ ⊂
R

d}, where h : Rm −→ R, Γ : Rm −→ R
d and K : Rd −→ R

and K(θ) = log
∫
h(x)eθ

�Γ(x)dx. The Gaussian distribution with
mean vector μ ∈ R

m and the covariance matrix Σ ∈ R
m×m belongs

to C. In this case,

fθ(x) =
1√

(2π)m|Σ|e
−(x−μ)�Σ−1(x−μ)/2, (4)

and so one may let h(x) = 1/(2π)m/2, Γ(x) = (x, xx�)� and

θ = (Σ−1μ, −1

2
Σ−1)� .

Assumption (A1): The parameter space Θ is a compact set.

2.1 CE Method (Ideal Version)

The CE method aims to find a sequence of model parame-
ters {θk ∈ Θ}k∈Z+ and an increasing sequence of thresholds
{γk ∈ R}k∈Z+ with the property that the support of fθk satisfies
supp(fθk ) ⊆ {x|H(x) ≥ γk}. By assigning greater weight to
the higher values of H at each iteration, the expected behaviour
of the probability distribution sequence should improve. This is
achieved by solving at each instant k + 1, the following optimiza-
tion problem: θk+1 = argminθ∈Θ KL(f̂θk , fθ), where f̂θk (x) =
ϕ(H(x))χ(H(x), γk+1)fθk (x). Further simplification yields,

θk+1 = argmax
θ∈Θ

Eθk [ϕ(H(x))χ(H(x), γk+1) log fθ(x)] , (5)

where ϕ : R → R+ is positive and strictly monotonically increasing.
The most common choice for γk+1 is γρ(H(·), θk): the (1 − ρ)-
quantile of H(x) w.r.t. fθk , where ρ ∈ (0, 1) is set a priori. Also,
the parameter space Θ is large enough so that the solution of (5) is
contained in interior(Θ).

We take Gaussian distribution as the preferred choice for fθ(·) in
this paper. In this case, the model parameter is θ = (μ,Σ)�, where
μ ∈ R

m is the mean vector and Σ ∈ R
m×m is the covariance matrix.

We obtain a closed-form expression for μk+1 and Σk+1 by equating
to 0 the gradient w.r.t. (Σ−1μ, − 1

2
Σ−1)� of the objective function

in (5) and using (4) for fθ(·). We obtain

μk+1 =
Eθk

[
g1

(H(x),x, γk+1

)]
Eθk [g0(H(x), γk+1)]

, (6)

Σk+1 =
Eθk

[
g2

(H(x),x, γk+1, μk+1

)]
Eθk

[
g0

(H(x), γk+1

)] , (7)

where g0(H(x), γ) � ϕ(H(x))χ(H(x), γ),

g1(H(x), x, γ) � ϕ(H(x))χ(H(x), γ)x and

g2(H(x), x, γ, μ) � ϕ(H(x))χ(H(x), γ)(x− μ)(x− μ)�.

Remark 1: Note that in the expression of μk+1 in (6), x is being
weighted with ϕ(H(x)) in the region {x|H(x) ≥ γk+1}. Since the
function ϕ is positive and strictly monotonically increasing, the re-
gion where H(x) is higher (hence ϕ(H(x)) is also higher) is given
more weight and hence μk+1 concentrates in the region where H(x)
takes higher values. In case where H(·) is positive, we can choose

3 The Kullback-Leibler distance between two probability distributions g1 and
g2 is KL(g1, g2) � Eg1

[
log g1

g2

]

ϕ(x) = x. However, in general scenarios, where H(·) takes posi-
tive and negative values, the identity function is not an appropriate
choice since the effect of the positive weights is reduced by the neg-
ative ones. In such cases, we take ϕ = exp(rx), r ∈ R+.

2.2 CE Method (Monte-Carlo Version)

It is hard in general to evaluate Ey [·]. Hence the objective function
values H(x) might not be available for every value of x ∈ X . To
overcome this, estimates obtained using sample averages are used.
The algorithm utilizes a user configured observation allocation rule
{Mk ∈ Z+}k∈Z+ to decide the sample size, where Mk ↑ ∞. This
means at each iteration k, for a given x ∈ X , the estimate H̄(x) is
obtained as follows:

H̄(x) = L(
1

Mk

Mk∑
i=1

J(yi), x), where yi ∼ Py. (8)

Also hard to compute are the terms Eθk [·] and γk+1 (=
γρ(H(·), θk)) in equations (6) and (7). To overcome this, their cor-
responding stochastic counterparts are employed. Here also we use
a user configured observation allocation rule {Nk ∈ Z+}k∈Z+ to
decide the sample size, where Nk ↑ ∞. In this Monte-Carlo ver-
sion, the algorithm generates sequences {θ̄k = (μ̄k, Σ̄k)

�}k∈Z+

and {γ̄k}k∈Z+ as follows: At each iteration k, Nk samples Λk =
{x1,x2, . . . ,xNk} are chosen using fθ̄k and the threshold γ̄k+1 is
obtained as follows:

γ̄k+1 = H̄(�(1−ρ)Nk�), (9)

where H̄(i) is the ith-order statistic of {H̄(xi)}Nk
i=1. The model pa-

rameter update also uses sample averages. The model parameter
θ̄k+1 = (μ̄k+1, Σ̄k+1)

� is updated as follows:

μ̄k+1 =

1
Nk

∑Nk
i=1 g1(H(xi),xi, γ̄k+1)

1
Nk

∑Nk
i=1 g0(H(xi), γ̄k+1)

, (10)

Σ̄k+1 =

1
Nk

∑Nk
i=1 g2(H(xi),xi, γ̄k+1, μ̄k+1)

1
Nk

∑Nk
i=1 g0(H(xi), γ̄k+1)

. (11)

The Monte-Carlo version is given in Algorithm 1.

Algorithm 1: The Monte-Carlo CE Algorithm

Step 0: Choose an initial p.d.f. fθ̄0(·) on X , where θ̄0 = (μ̄0, Σ̄0)
�

and fix an ε > 0 (dependent on H).

1. [ Sampling Candidate Solutions ]: Sample Nk i.i.d. solutions
Λk = {x1, . . . ,xNk} using fθ̄k .

2. [ Performance Evaluation ]: For each x in Λk, take Mk

observations {yi}Mk
i=1, where yi ∼ Py and calculate the sample

average H̄(x) = L( 1
Mk

∑Mk
i=1 J(yi),x).

3. [ Threshold Evaluation ]: Calculate the sample (1− ρ)-quantile
γ̄k+1 = H̄(�(1−ρ)Nk�), H̄(i) is the ith-order statistic of the
sequence {H̄(xi)}Nk

i=1.

4. [ Threshold Comparison ]

if γ̄k+1 ≥ γ̄∗
k + ε then

γ̄∗
k+1 = γ̄k+1,

else
γ̄∗
k+1 = γ̄∗

k .

5. [Model parameter update]: Update θ̄k+1 = (μ̄k+1, Σ̄k+1)
�

using (10) and (11) with γ̄∗
k+1 instead of γ̄k+1.

6: If the stopping rule is satisfied, then return θ̄k+1and terminate,
else set k := k + 1 and go Step 1.
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2.3 Drawbacks of the CE Method

• Inefficient use of prior information: The naive approach of the
Monte-Carlo CE does not utilize prior information efficiently. Note
that Monte-Carlo CE possesses a stateless behaviour. At each itera-
tion k, a completely new collection of samples are drawn using the
distribution fθk . The samples are used to derive the estimates γ̄k+1,
μ̄k+1 and Σ̄k+1. The algorithm does not utilize the estimates gener-
ated prior to k.

• Computational limitations: These arise due to the dependence on
the sample size Nk. One does not know a priori the best value for the
sample size Nk. Higher values of Nk while resulting in higher ac-
curacy also require more computational resources. One often needs
to apply brute force in order to obtain a good choice of Nk. Also
as m, the dimension of the solution space X , takes large values,
more samples are required for better accuracy, making Nk large
as well. This makes finding the ith-order statistic H̄(i) in Step 3
harder. Note that the order statistic H̄(i) is obtained by sorting the list
{H̄(x1), H̄(x2), . . . H̄(xNk )}. The computational effort required in
that case is O(Nk logNk) which is expensive. Also note that Nk

diverges to infinity and hence this super linear relationship is compu-
tationally very costly.

• Storage limitations: The storage requirement for storing sample Λk

is Nk ∗size(xk). In situations when m and Nk are large, the storage
requirement is a major concern.
Note that similar issues are expected to arise with the sample size
Mk also.

An illustration in Figure 1 demonstrates the dependency of the per-
formance of Monte-Carlo CE on the sample size schedules {Nk} and
{Mk}. We consider here, the Griewank function on R

100-cf. (36). We
take Mk+1 = �α1Mk�, α1 > 1 and Nk+1 = �α2Nk�, α2 > 1. So
a particular schedule can be identified by M0, α1 and N0, α2. Here
we take α1 = 1.01 and α2 = 1.005 for all the schedules, how-
ever they differ in their initial values M0 and N0. From the Figure
1, note that for (M0, N0) ∈ {(100, 100), (150, 150), (200, 200)},
the convergence behaviour is close, however for (M0, N0) ∈
{(500, 500), (1000, 1000), (2000, 2000)}, Monte-Carlo CE con-
verges to a better value. Also when observed carefully, we can notice
a significant difference in the limit point of each individual trajectory.

Different variants of the naive Monte-Carlo CE have been pro-
posed in the literature, such as the gradient based Monte-Carlo cross
entropy method (GMCCE) [10] and the modified Monte-Carlo cross
entropy method [28]. All the variants differ only in the model updat-
ing step, the other steps remain the same. Hence they also suffer from
the above drawbacks.

3 Proposed Algorithm

In this paper, we resolve the shortcomings of the Monte-Carlo CE
method with regards to the concerns mentioned in the previous sec-
tion, by remodelling the same in the stochastic approximation frame-
work. We follow the same sequence of steps as in Algorithm 1,
but differ in their implementation. The stochastic approximation ap-
proach streamlines the batch processing of the Monte-Carlo CE. We
provide a multi-timescale stochastic approximation algorithm which
is efficient, stable, incremental in nature and imposes minimal re-
striction on the objective function. We avail ourselves of the continu-
ity relationship that holds between the (1 − ρ)-quantile γρ(H(·), θ)
and the model parameter θ. We also exploit the continuity that holds
between μk+1 and Σk+1 w.r.t. θk. The bootstrapping property inher-
ent in the stochastic approximation algorithms helps to utilize these
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Figure 1: Plot of H(μ̄k), where H is the Griewank function. The plot
shows the dependency of Monte-Carlo CE on the schedules {Nk}
and {Mk}.

relationships efficiently.
Stochastic approximation algorithms [2, 15, 20] are a natural way

of utilizing prior information. It does so by discounted averaging of
the prior information and are usually expressed as recursive equa-
tions of the following form:

zk+1 = zk + αk+1Δz(zk, bk, Dk+1)), (12)

where Δz(z, b,D) = h(z) + b+D is the increment term, bk is the
bias term with bk → 0, Dk is a random noise with zero-mean and
h(·) a Lipschitz continuous function. The learning rate αk satisfies
Σαk = ∞,Σα2

k < ∞.
In our algorithm, we do not apply the naive order statistic to esti-

mate the (1 − ρ)-quantile. Rather we employ a stochastic recursion
which serves the same purpose, but efficiently. To achieve this, we
make use of the following lemma from [7]. This lemma provides a
characterization of the quantile in terms of an optimization problem.

Lemma 1 The (1 − ρ)-quantile of a bounded real-valued function
H(·) (

with H(x) ∈ [H1, H2]
)

w.r.t the probability distribution
fθ(·) is reformulated as the optimization problem

Find γρ(H(·), θ) = min
u∈[H1,H2]

Eθ [ψ(H(x), u)] , (13)

where ψ(H(x), u) = (1 − ρ)(H(x) − u)χ(H(x), u) + ρ(u −
H(x))χ(u,H(x)).

We develop a stochastic gradient recursion which solves the opti-
mization problem in (13). The increment term for the recursion is the
sub-differential of ψ w.r.t. u, and is given by

∇uψ(H(x), u) = −(1− ρ)χ(H(x), u) + ρχ(u,H(x)). (14)

The model parameter update step involves three stochastic recur-
sions. For this we introduce two new variables, ξ(0) and ξ(1), which
estimate the RHS of equations (6) and (7) respectively. We also re-
quire two increment functions which are defined as follows:

Δξ(0)(x, ω, γ) = g1(L(ω, x), x, γ)− ξ(0)g0(L(ω, x), γ), (15)

Δξ(1)(x, ω, μ, γ) = g2(L(ω, x), x, γ, μ)− ξ(1)g0(L(ω, x), γ). (16)

The algorithm is formally presented in Algorithm 2.
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Algorithm 2:

Data: αk, βk, λk, c ∈ (0, 1), ε1 ∈ (0, 1);
Init: k = 0, γ0 = 0, γ∗

0 = −∞, T0 = 0, λ = λ0, θold = NULL,
θ0 = (μ0,Σ0)

�, ξ(0)k = 0m×1, ξ(1)k = 0m×m, ω0 = 0b×1;

while stopping criteria is not satisfied do

yk+1 ∼ Py;

• [
Estimating the objective function

]
ωk+1 = ωk + αk+1 (J(yk+1)− ωk) ; (17)

• [
Generating the mixture distribution

]
f̃θk = (1− λ)fθk + λfθ0 ;

xk+1 ∼ f̃θk ;

• [
Estimating the (1− ρ)-quantile

]
γk+1 = γk − βk+1∇uψ(L(ωk,xk+1), γk); (18)

• [
Estimating the RHS of equations (6) and (7)

]
ξ
(0)
k+1 = ξ

(0)
k + βk+1Δξ(0)(xk+1, ωk, γk); (19)

ξ
(1)
k+1 = ξ

(1)
k + βk+1Δξ(1)(xk+1, ωk, ξ

(0)
k , γk); (20)

if θold �= NULL then

f̃θold = (1− λ)fθold + λfθ0 ; xold
k+1 ∼ f̃θold ;

γ∗
k+1 = γ∗

k − βk+1∇uψ(L(ωk,x
old
k+1), γ

∗
k); (21)

• [
Threshold comparison

]
Tk+1 = Tk + c (χ(γk+1, γ

∗
k+1)− χ(γ∗

k+1, γk+1)− Tk) ;
(22)

• [
Updating the model parameters

]
if Tk+1 > ε1 then

θold = θk;

θk+1 = θk + αk+1

(
(ξ

(0)
k , ξ

(1)
k )� − θk

)
; (23)

γ∗
k+1 = γk; Tk = 0; λ = λk; (24)

else
γ∗
k+1 = γ∗

k ; θk+1 = θk;
k := k + 1;

Note that the algorithm uses only 3 samples per iteration:

yk+1,xk+1 and xold
k+1. This is a big improvement both compu-

tational and storage wise, compared to the original CE method.

Mixture Distribution: In the algorithm, we use a mixture distribu-
tion f̃θk to generate the sample xk+1, where f̃θk = (1−λ)fθk+λfθ0
with λ the mixing weight. λ takes its values from a pre-defined de-
caying sequence {λk}k∈Z+ , with assignment happening in (24) dur-
ing the model parameter update step. The initial distribution param-
eter θ0 is chosen s.t. the density function fθ0 is strictly positive on
every point in the solution space X , i.e., fθ0(x) > 0, ∀x ∈ X . The
mixture approach facilitates exploration of the solution space and
prevents the iterates from getting stranded in suboptimal solutions.

Learning Rates: The learning rates αk, βk and the mixing weight

λk are deterministic, non-increasing and satisfy the following:

λk > 0, αk > 0, βk > 0, lim
k→∞

λk = 0,

∞∑
k=1

αk =
∞∑

k=1

βk = ∞,
∞∑

k=1

(
α2
k + β2

k

)
< ∞, lim

k→∞
αk

βk
= 0.

(25)

Since αk → 0 faster than βk, the timescale obtained from βk, k ≥ 0
is faster as compared to the other.

Threshold Comparison Step: The threshold comparison is achieved
using the recursion (22) of the random variable Tk. The model pa-
rameter θk is not updated at each k. Rather it is updated whenever
Tk arches over ε1, where ε1 ∈ (0, 1) is a constant. So the update of
θk only happens along a subsequence {k(n)}n∈Z+ of {k}k∈Z+ . Be-
tween k = k(n) and k = k(n+1), the variable γk estimates (1 − ρ)-
quantile of L(ωk, ·) w.r.t. f̃θk(n)

. The threshold γ∗
k is also updated in

(24) during the ε1 crossover. Thus γ∗
k(n)

is the estimate of (1 − ρ)-

quantile w.r.t. f̃θk(n−1)
.

Notation: We denote by γρ(L(ω, ·), θ̃)), the (1 − ρ)-quantile of
L(ω, ·) w.r.t. the mixture distribution f̃θ and let E

˜θ[·] be the expecta-
tion w.r.t f̃θ .
Proposition 1: Tk belongs to (−1, 1), ∀k > 0.
Proof: By rearranging (22) we get,

Tk+1 = (1− c)Tk + c(χ(γk+1, γ
∗
k+1)− χ(γ∗

k+1, γk+1)),

where c ∈ (0, 1) . In the worst case, either χ(γk+1, γ
∗
k+1) = 1, ∀k

or χ(γ∗
k+1, γk+1) = 1, ∀k . Since the two events are mutually ex-

clusive, we will only consider the former event {χ(γk+1, γ
∗
k+1) =

1, ∀k} . In this case

lim
k→∞

Tk = lim
k→∞

(
c+ c(1− c) + · · ·+ c(1− c)k−1) = 1.

Similarly for {χ(γ∗
k+1, γk+1) = 1, ∀k} , we have Tk → −1. �

Tk in (22) serves two purposes: first, it is a delay mechanism,
whereby it stalls the θk-recursion so that ξ

(0)
k and ξ

(1)
k are suffi-

ciently close to their true values. Second, it ensures that the estimates
γk eventually become greater than the current threshold γ∗

k(n)
, i.e.,

γk > γ∗
k(n)

for all but finitely many k.

Remark 2: The recursion (21) is not addressed in the discussion
above. The assignment of γ∗

k+1 in (24) happens along a subsequence
{k(n)}n≥0. Hence γ∗

k(n)
is the estimate of γρ(L(ωk(n)

, ·), θ̃k(n−1)
).

But at time k(n) < k ≤ k(n+1) , γ∗
k is compared with γk in (22).

But γk is derived from a better estimate of L(ωk, ·). Equation (21)
ensures that γ∗

k is updated using the latest estimate of L(ωk, ·). The
variable θold holds the model parameter θk(n−1)

and the update of

γ∗
k in (21) is performed using xold

k+1 sampled from f̃θold .

3.1 Convergence Analysis

Assumption (A2): The sequences {ωk}k∈Z+ and {γk}k∈Z+ in (17)
and (18) resp. satisfy supk |ωk| < ∞ and supk |γk| < ∞ a.s..

Remark 3: The assumption (A2) is a technical requirement to prove
convergence of the algorithm. A commonly used procedure to ensure
almost sure boundedness of iterates in a stochastic iterative scheme
is to project these after each update to an a priori chosen (large
enough) compact and convex set. In this case, the bound on the com-
pact set can be derived from the bound on L(·, ·).
Note that the recursion (17) is independent of other recursions and
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hence can be analysed independently. For the recursion (17) we have
the following result.

Lemma 2 Let the step-sizes αk and βk , k ∈ Z+ satisfy (25). Also
let (A2) hold. Then the iterates ωk in (17) satisfy ωk → ω∗ =
Ey [J(y)] as k → ∞ w.p. 1.

As noted above, the update of θk only happens along a subsequence
{k(n)}n∈Z+ of {k}k∈Z+ . So between k = k(n) and k = k(n+1)

, θk is constant. The lemma and the theorems that follow in this
paper depend on the timescale difference in the step-size schedules
{αk}k∈Z+ and {βk}k∈Z+ . The step-size {βk}k∈Z+ decays to 0 at
a slower rate than {αk}k∈Z+ and hence the increments in the recur-
sions (18), (19) and (20) which are controlled by βk are larger and
hence converge faster than the recursions (17) and (23) which are
controlled by αk. So the relative evolution of the variables from the
slower timescale αk i.e. ωk, θk is slow and can be considered con-
stant when viewed from the faster timescale βk. See Chapter 6, [2]
for a description on multi-timescale algorithms.

Hence, when viewed from the timescale of the recursion (18), one
may consider ωk and θk to be fixed. For recursion (18) we have the
following result:

Lemma 3 Let L(ωk, ·) ≡ L(ω, ·), θk ≡ θ,∀k. Also let (A2) hold.
Then γk in (18) satisfy limk→∞ γk = γρ(L(ω, ·), θ̃) w.p. 1 .

Again, when viewed from the timescale of the recursions (19) and
(20), one may consider ωk and θk to be fixed as before. For the re-
cursions (19) and (20), we have the following:

Lemma 4 Assume L(ωk, ·) ≡ L(ω, ·) , θk ≡ θ,∀k . Then a.s.,

(i) lim
k→∞

ξ
(0)
k = ξ(0)∗ =

E
˜θ

[
g1

(
L(ω,x),x, γρ(L(ω, ·), θ̃)

)]
E

˜θ

[
g0

(
L(ω,x), γρ(L(ω, ·), θ̃)

)]

(ii) lim
k→∞

ξ
(1)
k = ξ(1)∗ =

E
˜θ

[
g2

(
L(ω,x),x, γρ(L(ω, ·), θ̃), ξ(0)∗

)]
E

˜θ

[
g0

(
L(ω,x), γρ(L(ω, ·), θ̃)

)] ,

(iii) If γρ(L(ω, ·), θ̃) > γρ(L(ω, ·), θ̃old), then Tk, k ≥ 0 in (22)
satisfy limk→∞ Tk = 1 a.s.

Notation: For the subsequence {k(n)}n>0 of {k}k∈Z+ , we denote
k−
(n) � k(n) − 1 for n > 0.

Along the subsequence {k(n)}n≥0 with k0 = 0 the updating of θk
can be expressed as follows:

θk(n+1)
= θk(n)

+ αk(n+1)
Δθk(n+1)

, (26)

where Δθk(n+1)
= (ξ

(0)

k−
(n+1)

, ξ
(1)

k−
(n+1)

)� − θk(n)
. We will prove now

that the increment term Δθk(n+1)
in equation (26) is indeed an esti-

mate of ∇ϑ(θ)Ψ(θ, ω∗)
∣∣
θ=θk(n)

, where

Ψ(θ, ω) = logEθ [g0 (L(ω,x), γρ(L(ω, ·), θ))] (27)

with θ = (μ,Σ)� and ϑ(θ) = (Σ−1μ,− 1
2
Σ−1)�. Before proving

this, we state a key lemma about the gradient of Ψ.

Lemma 5 For the given function L(ω, ·) ∈ R, θ = (μ,Σ)� and
ϑ(θ) = (ϑ1, ϑ2)

� = (Σ−1μ,− 1
2
Σ−1)�, we have

∇ϑ1Ψ(θ, ω) =
Eθ

[
g1

(
L(ω,x),x, γρ (L(ω, ·), θ)

)]
Eθ

[
g0

(
L(ω,x), γρ(L(ω, ·), θ)

)] − μ.

∇ϑ2Ψ(θ, ω) =
Eθ

[
g2

(
L(ω,x),x, γρ (L(ω, ·), θ) , μ

)]
Eθ

[
g0

(
L(ω,x), γρ (L(ω, ·), θ)

)] − Σ.

We now state our main theorem. The following theorem guarantees
the convergence of the model sequence {θk}k∈Z+ generated by Al-
gorithm 2 and it further provides a characterization of its limit points.
It also shows that by imposing additional structural restrictions on the
objective function H, the convergence of the algorithm to the degen-
erate distribution concentrated on the global maximum x∗ is ensured.

Theorem 6 Let ϕ(x) = exp(rx), r ∈ R. Assume that the objective
function H satisfies the following two conditions: (i) ∇2H exists and
(ii) ∂2H

∂xi∂xj
is continuous for 1 ≤ ∀i, ∀j ≤ m. Let the learning rates

αk and βk , k ∈ Z+ satisfy (25). Let {θk = (μk,Σk)
�}k∈Z+ be the

sequence generated by Algorithm 2 and assume θk ∈ interior(Θ),
∀k ∈ Z+. Also, let (A1) and (A2) hold. Then

lim
k→∞

θk = lim
k→∞

(μk,Σk)
� = (x∗, 0m×m)�w.p.1,

where x∗ is defined in (1).

Proof: Rewriting the equation (23) along the subsequence
{k(n)}n∈Z+ , we have for n ∈ Z+,

θk(n+1)
= θk(n)

+ αk(n+1)

(
(ξ

(0)

k−
(n+1)

, ξ
(1)

k−
(n+1)

)� − θk(n)

)
. (28)

Also supn ‖θk(n)
‖ < ∞ a.s. Rearranging the equation (28) we get,

for n ∈ Z+,

θk(n+1)
= θk(n)

+αk(n+1)

(
E

[
∇ϑ(θ)Ψ(θk(n)

, ω∗)
∣∣∣θk(n)

]
+ o(1)

)
,

(29)
where the o(1) term corresponds to errors in the estimation of ξ(0)k

and ξ
(1)
k that decays to zero a.s. from Lemma 4.

Now consider the gradient flow ODE

dθ(t)

dt
= ∇ϑ(θ)Ψ(θ(t), ω∗), t ∈ R+, (30)

where ω∗ is defined in Lemma 2.
By appealing to Theorem 2, Chapter 2 of [2], the asymptotic

equivalence between the equations (29) and (30) can be easily estab-
lished. Therefore, the recursion (23) reduces to a stochastic gradient
ascent procedure which optimizes the objective function Ψ(θ, ω∗).
Hence the limiting behaviour of the model sequence {θk}k∈Z+ can
be obtained by analysing the same of the above ODE. The fixed
points of the ODE (30) can be obtained by equating ∇Ψ to 0.
Equating ∇ϑ1Ψ(θ, ω∗) to 0m×1, we get,

μ =
Eθ

[
g1

(H(x),x, γρ(L(ω
∗, ·), θ))]

Eθ

[
g0

(H(x), γρ(L(ω∗, ·), θ))] . (31)

Equating ∇ϑ2Ψ(θ, ω∗) to O (= 0m×m), we get,

Eθ

[
g2

(H(x),x, γρ(L(ω
∗, ·), θ), μ)]

Eθ

[
g0

(H(x), γρ(L(ω∗, ·), θ))] − Σ = O. (32)

To further simplify the notation, let γ∗
ρ(θ) � γρ(L(ω

∗, ·), θ). Also,
for brevity let S(θ) � Eθ

[
g0

(H(x), γ∗
ρ(θ)

)]
and ĝ0(x, θ) �

g0

(H(x), γ∗
ρ(θ)

)
. Substituting the expression for μ from (31) in (32)

and after further simplification we get,

(1/S(θ))Eθ

[
ĝ0(x, θ)xx

�
]
− μμ�− Σ = O.

Since Σ = Eθ

[
xx�]− μμ�, the above equation implies

(1/S(θ))Eθ

[
ĝ0(x, θ)xx

�
]
− Eθ

[
xx�

]
= O

=⇒1 (1/S(θ))Eθ

[
(ĝ0(x, θ)− S(θ))xx�

]
= O

=⇒2 ΣΣEθ

[∇2
xg0(x, θ)

]
= O
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=⇒3 Σ2
Eθ

[
ϕ(H(x))G(x)χ(H(x), γ∗

ρ(θ))
]
= O, (33)

where G(x) � r2∇H(x)∇H(x)� + r∇2H(x). Note that =⇒2

follows from “integration by parts” rule for multivariate Gaussian
and =⇒3 follows from the assumption ϕ(x) = exp(rx). Note that
for each x ∈ X , G(x) is a m×m square matrix. Since (∇iH)2 ≥ 0,
we can find an r ∈ R and 1 ≤ i ≤ m s.t. Gii(x) > 0, ∀x ∈ X .
This further implies that Eθ[ϕ(H(x))G(x)χ(H(x), γ∗

ρ(θ))] �= O,
∀θ ∈ Θ. Hence, from (33) we get Σ = O. This proves that for
any x ∈ R

m, the degenerate distribution concentrated on x given
by θx = (x, 0m×m)� is an equilibrium point of the ODE (30). Also
note that the ODE (30) is asymptotically stable at all local maxima of
Ψ(·, ω∗). The existence of the Lyapunov function Vx : Ux → R+ on
the open neighbourhood Ux of θx, defined as Vx(θ) � Ψ(θx, ω

∗)−
Ψ(θ, ω∗) is enough to prove the local asymptotic stability.

To prove that the limit is indeed θ∗, the degenerate distribution
concentrated at x∗, we use proof by contradiction technique. So
assume to the contrary, i.e., θk → θ̂ = (x̂,O)�, where x̂ �=
x∗. Note that Eθ

[
ĝ1

(
x, θ

)]
, Eθ0

[
ĝ1

(
x, θ

)]
, Eθ

[
ĝ0

(
x, θ

)]
and

Eθ0

[
ĝ0

(
x, θ

)]
are all continuous on θ. This implies that we can find

scalars ε2 > 0, δ2 > 0 and k ∈ Z+ s.t.

∥∥θk − θ̂
∥∥
∞ < δ2,∥∥E

̂θ

[
ĝ1

(
x, θ̂

)]− Eθk

[
ĝ1

(
x, θk

)] ∥∥
∞ < ε2,∥∥Eθ0

[
ĝ1

(
x, θ̂

)]− Eθ0

[
ĝ1

(
x, θk

)] ∥∥
∞ < ε2,∥∥E

̂θ

[
ĝ0

(
x, θ̂

)]− Eθk

[
ĝ0

(
x, θk

)] ∥∥
∞ < ε2,∥∥Eθ0

[
ĝ0

(
x, θ̂

)]− Eθ0

[
ĝ0

(
x, θk

)] ∥∥
∞ < ε2,

(34)

where ‖ · ‖∞ is the sup norm, i.e., ‖x‖∞ = maxi |xi|, x ∈ R
m.

Now consider

∇ϑ1Ψ(θ, ω∗)|θ=˜θk
= (1/S(θ))Eθ

[
ĝ1

(
x, θ

)]− μ
∣∣∣
θ=˜θk

(35)

We denote by e = (1, . . . , 1)� ∈ R
m. Applying sup norm on either

side of (35) and using the inequalities in (34) we get,∥∥∥∇ϑ1Ψ(θ, ω∗)|θ=˜θk

∥∥∥
∞

≥
∥∥∥∥∥
(1− λk)Êθ

[
ĝ1

(
x, θ̂

)]
+ λkEθ0

[
ĝ1

(
x, θ̂

)]− ε2e

(1− λk)Êθ

[
ĝ0

(
x, θ̂

)]
+ λkEθ0

[
ĝ0

(
x, θ̂

)]
+ ε2

− x̂− δ2e

∥∥∥∥∥
∞

≥
∥∥∥ (1− λk)x̂ϕ(H(x̂)) + λkEθ0

[
g1

(H(x),x,H(x̂)
)]− ε2e

(1− λk)ϕ(H(x∗)) + λkEθ0

[
g0

(H(x),H(x̂)
)]

+ ε2

−x̂− δ2e
∥∥∥
∞

≥
∥∥∥∥∥(K1(x̂, ε2)− 1)x̂+K2(x̂, ε2)

Eθ0

[
g1

(H(x),x, γ∗
ρ(θ̂)

)]
Eθ0

[
g0

(H(x), γ∗
ρ(θ̂)

)]

−(ε2 + δ2)e

∥∥∥∥∥
∞

> K3 > 0,

where K2(·, ·) > 0 and 0 < K1(·, ·) < 1 with K1(x1, x2) → 1
as x1 → x∗ and x2 → 0. This is a contradiction since Ψ(θ, ω∗) is
continuously differentiable (easily verifiable). �

4 Experimental Results

For empirical evaluation, we use two settings: (1) Global optimiza-
tion benchmarks and (2) Nonlinear function approximation setting
in reinforcement learning. In each setting, the results shown are aver-
ages over 10 independent sample trajectories obtained with the same
initial distribution θ0.

Experiment 1: Global Optimization Benchmarks [12, 5]

We consider here 4 global optimization benchmark functions from
[12, 5]. We use their noisy versions to evaluate our algorithm. The
function ϕ(·) is chosen as ϕ(x) = exp (rx), where r ∈ R+. We
compare the performance of our algorithm with the original Monte-
Carlo CE (MCCE), simultaneous perturbation stochastic approxima-
tion (SPSA) and the gradient based Monte-Carlo CE (GMCCE) [10]
which is a modified version of MCCE. We consider here the noise
injected version of SPSA, which is shown to have global optimiza-
tion properties [18].

(1) Levy function [m = 50][Continuous, Differentiable]

H1(x) = 0.1 ∗G1(x)‖E [Y ] ‖2 − E [Y ]� E [Z] , where

G1(x) = −1− sin2 (πy1)− (ym − 1)2(1 + sin2 (2πym))−
m−1∑
i=1

[(yi − 1)2(1 + 10 sin2 (πyi + 1))] and yi = 1 +
xi − 1

4
.

Here, Y, Z ∈ R
50 with Y ∼ N ([2.0, 2.0, . . . 2.0]�, 40∗I50×50) and

Z ∼ N ([4.0, 4.0, . . . 4.0]�, 40 ∗ I50×50). The function has global
maximum at the point xi = 1, 1 ≤ ∀i ≤ m with value H∗

1 =
401.4142135.

0 20 40 60 80 100 120 140

−12000

−10000

−8000

−6000

−4000

−2000

0

MCCE
Algorithm 2
SPSA
GMCCE

(a) The trajectory of H1(μk). The dot-
ted horizontal line is H∗

1 . x-axis is the
time in secs relative to the start of the
algorithm. y-axis is the function value.

(b) Plot of 3-dimensional G1(·)

Figure 2: Levy Function

(2) Qing function [m = 20][Continuous, Differentiable, Separable,
Scalable, Multimodal]

H2(x) = 10−3 ∗G2(x)‖E [Y ] ‖2 − E [Y ]� E [Z] ,

where G2(x) = −
m∑
i=1

(x2
i − i)2.

Here, Y, Z ∈ R
20 with Y ∼ N ([2.0, 2.0, . . . 2.0]�, 40 ∗ I20×20)

and Z ∼ N ([4.0, 4.0, . . . 4.0]�, 40 ∗ I20×20).
The function has global maximum at the point xi =

√
i, ∀i, 1 ≤ i ≤

m with value H∗
2 = −160.0.
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(a) The trajectory of H2(μk). The dot-
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(b) Plot of 3-dimensional G2(·)

Figure 3: Qing Function

(3) Griewank function [m = 20][Continuous, Differentiable, Non-
Separable, Scalable, Multimodal]

H3(x) = G3(x)‖E [Y ] ‖2 − E [Y ]� E [Z] , where

G3(x) = −1− 1

4000

m∑
i=1

x2
i +

m∏
i=1

cos (xi/
√
i).

(36)

Y, Z ∈ R
20 with Y ∼ N ([2.0, 2.0, . . . 2.0]�, 40 ∗ I20×20) and Z ∼

N ([4.0, 4.0, . . . 4.0]�, 40 ∗ I20×20). The global maximum is H∗
3 =

−160.0 and is achieved at the origin.
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(a) The trajectory of H3(μk). The dot-
ted horizontal line is H∗

3 . x-axis is the
time in secs relative to the start of the
algorithm. y-axis is the function value.
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(b) Plot of 3-dimensional G3(·)

Figure 4: Griewank Function.

(4) Rosenbrock function[m = 30][Continuous, Differentiable, Non-
Separable, Scalable, Unimodal]

H4(x) = 10−6 ∗G4(x)− E[Y ]�E[Z],

where G4(x) = −1 − ∑m/2
i=1 [100(x2i − x2

2i−1 + (1 − x2i−1)
2].

Y, Z ∈ R
30 with Y ∼ N ([2.0, 2.0, . . . 2.0]�, 10 ∗ I30×30) and Z ∼

N ([4.0, 4.0, . . . 4.0]�, 10 ∗ I30×30). and H∗
4 = 240.000001 and is

achieved at the point xi = 1, 1 ≤ i ≤ m.

To understand the behaviour of our algorithm w.r.t. the quantile
parameter ρ, we plot the performance of the algorithm for various
values of ρ. The results are shown in Figure 6. To demonstrate the
advantages of our algorithm with regards to memory utilization, we
plot the real time memory usage of our algorithm and GMCCE. The
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(a) The trajectory of H4(μk). The dot-
ted horizontal line is H∗

4 . x-axis is the
time in secs relative to the start of the
algorithm. y-axis is the function value.
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(b) Plot of 3-dimensional G4(·) .

Figure 5: Rosenbrock Function

Table 1: The parameter values used in experiment 1

L(·, ·) αk βk λk c ε1 ρ r

H3
1
k

0.1 k−3.0
(n)

0.06 0.9 0.1 0.01

H2
1
k

0.09 k−3.0
(n)

0.06 0.9 0.01 0.002

H4
1
k

0.09 k−3.0
(n)

0.06 0.9 0.01 0.001

H1
1
k

0.09 k−3.0
(n)

0.06 0.9 0.01 0.002

comparison is shown in Figure 7.

From the experiments, we make the following observations:

• Our algorithm shows good performance compared to GMCCE,
MCCE and SPSA. Our algorithm also exhibits good global conver-
gence behaviour in all the test cases. These illustrations corroborate
the findings of Theorem 6. Note that GMCCE performs better
than MCCE in the experiments. The better rate of convergence
of GMCCE when compared to MCCE is already shown in [10].
However, the slower rate of these two algorithms when compared
to our algorithm is primarily attributed to the insufficient samples.
Even though we have chosen reasonably large sample size, it
seems insufficient to match the performance of our algorithm. The
algorithm also exhibits robustness w.r.t. the initial distribution θ0. An
initial distribution which weighs the solution space reasonably well,
seems to be sufficient. The values of the parameters λk, c and ε1 are
same for all test cases. This implies that these parameters require
minimal tuning in most cases. However, as with any stochastic
approximation algorithm, the choice of the learning rates αk, βk is
vital.

• We studied the sensitivity of the algorithm with regards to the
quantile factor ρ. See Figure 6. For ρ ∈ {0.4, 0.3, 0.2, 0.1},
the convergence of the algorithm is fast. However for
ρ ∈ {0.5, 0.01, 0.001, 0.0001}, the convergence is very slow.
Theoretically, the algorithm should converge for all values of ρ.
However, in most practical cases, choosing ρ in the range [0.3, 0.1]
is highly recommended. Similar observation about the Monte-Carlo
CE is mentioned in [8], and this needs further investigation.

• The computational and storage requirements of the algorithm
are minimal. See Figure 7. This is attributed to the streamlined
and incremental nature of our algorithm. This attribute makes the
algorithm suitable in settings where the computational and storage
resources are scarce.
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Figure 6: Comparison of our algorithm for various values of ρ.

Figure 7: Memory usage comparison.

Experiment 2: Nonlinear Function Approximation for Value
Function in Reinforcement Learning [27]

Setup: We consider here a discrete time Markov Chain with state
space S = {1, 2, 3}, discount factor γ = 0.9 and transition
probability matrix

P =

⎡
⎣1/2 0 1/2
1/2 1/2 0
0 1/2 1/2

⎤
⎦ .

Problem: Given a sample path {sk, rk+1, sk+1, k ≥ 0}, with s0
sampled using an arbitrary initial distribution, sk+1 ∼ P (sk, ·) and
the transition payoff rk+1 = 0, ∀k, solve the optimization problem
given by:

λ∗ ∈ argmin
λ∈Q⊂Rl

G(λ) � E
[
E
2 [δk] |sk

]
, (37)

where δk = rk+1 + γVλ(sk+1) − Vλ(sk). We also
have Vλ(s) = (a(s) cos (τλ) − b(s) sin (τλ))eελ, where
a = [100,−70,−30]�, b = [23.094,−98.15, 75.056]�, τ = 0.01
and ε = 0.001. The true value function4 is V = (0, 0, 0)�. The
challenge is to best approximate V using the family of nonlinear
parameterized functions Vλ by solving the optimization problem
(37). It is easy to see that V−∞ = V and hence is a degenerate
setting. This particular setting is designed in [27] to show the diver-
gence of the standard TD(0) algorithm in Reinforcement Learning
under a nonlinear approximation architecture. A stable non-linear
function approximation method called GTD2 [16] converges to the
local optima. We believe this is the perfect setting to demonstrate

4 Value function V ∈ R|S| and V (s) = E[
∑∞

k=1 γ
krk+1|s0 = s].

the global convergence property of our algorithm.

The objective function G(·) in (37) can be rearranged as

G(λ) = [a11, a21, a31][1.0, 2.0 ∗ eελ,−2.0 ∗ eελ]�+

[eελ,−eελ]

[
a22 a23

a32 a33

]
[eελ,−eελ]�,

where A = (aij)1≤i,j≤3 � E[hkh
�
k ] and

hk = [rk+1, a(sk)− a(sk+1), b(sk)− b(sk+1)]
�.

The various parameter values we used are as follows:

ϕ(·) αk βk λk c ε1 ρ

exp (rx), r = 10−6 1
k

0.9 k−3.0
(n)

0.03 0.95 0.1

The results of the experiment are shown in Figure 8. The x-axis
is the iteration number k. The performance measure used is Mean
Squared Error (MSE) given by:

MSE(λ) =

i=|S|∑
i=1

(V (i)− Vλ(i))
2μ(i), (38)

where μ(·) ∈ R
|S| is the stationary distribution of the Markov

chain, i.e. μ satisfies μ�P = μ�.

Figure 8: Nonlinear Function Approximation. The plot shows the tra-
jectory of

√
MSE generated by TD(0), GTD2 and our algorithm

against the iteration number k. Our algorithm returns the true

value function V which follows from the observation that
√
MSE

converges to 0. TD(0) slowly diverges, while GTD2 converges to

a sub-optimal solution.

5 Conclusion

In this paper, we provided a novel multi-timescale stochastic approx-
imation algorithm for the problem of stochastic optimization, where
only noisy versions of the objective function are available. The con-
vergence and the global optimization property of our algorithm are
proven using the ODE method. The algorithm shows good perfor-
mance on noisy versions of benchmark global optimization problems
and gives promising results when nonlinear function approximators
are used in the setting of Reinforcement Learning.
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