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Markov Logic Networks with Numerical Constraints

Melisachew Wudage Chekol and Jakob Huber and Christian Meilicke and Heiner Stuckenschmidt'

Abstract. Markov logic networks (MLNs) have proven to be useful
tools for reasoning about uncertainty in complex knowledge bases. In
this paper, we extend MLNs with numerical constraints and present
an efficient implementation in terms of a cutting plane method. This
extension is useful for reasoning over uncertain temporal data. To
show the applicability of this extension, we enrich log-linear descrip-
tion logics (DLs) with concrete domains (datatypes). Thereby, allow-
ing to reason over weighted DLs with datatypes. Moreover, we use
the resulting formalism to reason about temporal assertions in DB-
pedia, thus illustrating its practical use.

1 Motivation

Recent advances in data mining and information extraction have
paved the way for the automatic construction of knowledge bases
(KBs) from different sources, for instance, the NELL KB [26]. Of-
ten, the extraction tools used to construct such KBs produce weighted
(or probabilistic) facts, due to the awareness that the implemented
techniques cannot guarantee the completeness, correctness or con-
sistency of the generated facts. Moreover, a large fraction of these
facts can be temporal and may contain concrete data values, for ex-
ample dates, times, latitudes/longitudes, numerical values measured
in different units, and so on. Besides, the set of rules used to consoli-
date the KB will also be a set of weighted and unweighted rules with
datatypes (numerical constraints). In this work, we propose an exten-
sion of Markov logic networks (MLNs) [32] that supports reasoning
on numerical constraints.

We extend an MLNs inference approach (cutting plane [33]) to
handle numerical constraints. This is difficult because numerical con-
straints may be infinite or continuous and reasoning about compar-
isons of two constraints is difficult to handle natively in MLNs. As
an example, consider the following hard constraints which express:
(1) a person whose age is between 13 and 19 is a teenager, and (2) a
valid life span of a person is between 0 and 150 years:

1Vz,y:Person(z) A age(z,y) Ny > 13 Ny < 19 = Teen(z)
2 Vp, bd, dd:bdate(p, bd) A ddate(p, dd) = lifeSpan(bd, dd),
lifeSpan(bd, dd) = ((dd — bd) > 0) A ((dd — bd) < 150)

To the best of our knowledge, MLNs do not support numerical con-
straints (like the rules in the above example). Therefore, we propose
an extended cutting plane approach to MLNs inference to introduce
just the necessary constraint violations for the current MAP hypoth-
esis taking also violated numerical constraints into account.

The proposed extension is useful for reasoning over uncertain tem-
poral KBs as well as weighted Horn DLs with concrete domains. In
this paper, we show that this extension is powerful enough to reason

I Data and Web Science Group, University of Mannheim, 68161 Mannheim,
Germany, email: mel|jakob|christian|heiner @informatik.uni-mannheim.de

over log-linear description logics (DLs) with concrete domains. Log-
linear DLs [27] have been proposed as a way to combine tractable
DLs with uncertainty reasoning while preserving the semantics of the
DL part. They have also proven to be useful in situations where con-
flicting information from different sources has to be integrated into
a coherent model. Successful applications include ontology match-
ing [31] and information fusion [27]. So far the applicability of the
combined model has been limited by the fact that it only supported
reasoning on the schema level. In our work, we extend log-linear DLs
to overcome its restriction to schema-level reasoning by introducing
instances and numerical concrete domains (datatypes).

In DL, a concrete domain (CD) is a construct that can be used
to define new classes by specifying constraints on attributes that
have literal values (as opposed to relationships to other abstract enti-
ties). For instance, the axiom Teenager = Person M >13(age) M
<19(age) defines a teenager as a person whose age is at least 13
and at most 19. While CDs, also referred to as datatypes, are a well-
studied construct in classical DL (see for instance [22, 24]), this is
barely the case in the probabilistic or log-linear extensions of DLs
that have been proposed more recently (e.g. [7, 16, 11, 27, 21, 6, 35].
The contribution of this paper is the following:

e an extension of MLN with numerical constraints (MLNxc),

e an extension of log-linear ££ with nominals and CDs by making
use of MLNnc,

e an application of MLNnc for reasoning about a specific sub-
domain in the DBpedia knowledge base that contains numerical
datatypes.

e an application of MLNnc for debugging weighted temporal KBs.

Outline: In the next section we present the preliminaries: log-
linear models, the lightweight ontology language ££%, and log-
linear £L obtained by combining log-linear models with ££%. In
order to reason over uncertain temporal KBs, in Section 3, we extend
MLNSs with numerical constraints. In order to demonstrate additional
benefits of this framework, we (1) extend log-linear ££ with CDs (in
Section 4 and Section 5), and (2) present experimental results on de-
bugging temporal KBs and computing the MAP state of an uncertain
KB which contains datatypes (Section 6). Finally, we summarize the
related work in Section 6, before making concluding remarks in Sec-
tion 7.

2 Preliminaries

In this section, we present a brief summary of: Log-linear models,
ELTT, and log-linear £L. For a detailed discussion on these sub-
jects, we refer the reader to [2, 32, 34, 27] and the references therein.
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2.1 Log-Linear Models

A log-linear model is a compact representation of a probability dis-
tribution over assignments to a set of discrete-valued random vari-
ables X = {X1,...,Xxn} [17, 9]. The log-linear model is defined
in terms of a set of feature functions F' = {f1(X1),..., fx(Xk)},
each of which is a function that defines a numerical value for each
assignment X to some subset X C AX. Given a set of feature
functions F', the parameters of the log-linear model are weights
W = {ws : fr € F}. The overall distribution is then defined as:
P(x) = Z "exp( > feer Wefk (xk)), where xy is the assignment
to X within x, and Z is the normalization constant. A log-linear
model induces a Markov network over X, where there is an edge be-
tween every pair of variables X;, X; € X}, that appear together in
some feature fi(Xy) and Xy, is a clique. Markov networks can also
be encoded as a log-linear models by defining a feature function for
every assignment of variables x. to a clique X..

Markov Logic Networks (MLNSs) can be seen as a first-order tem-
plate language for log-linear models with binary variables. MLNs
combine Markov networks and first-order logic (FOL) by attach-
ing weights to first-order formulas and viewing these as templates
for features of Markov networks [32]. An MNL L is a set of pairs
(F3,w;) where F; is a formula in FOL and wj is a real number rep-
resenting a weight. Together with a finite set of constants C, it defines
a Markov Network My, ¢, where M7, ¢ contains one node for each
possible grounding of each predicate appearing in L. The value of the
node is 1 if the ground predicate is true, and O otherwise. The prob-
ability distribution over possible worlds x specified by the ground
Markov network M7, ¢ is given by:

P(X =z)= %exp(Zwmi(a@))

where F' is the number of formulas in the MLN and n;(z) is the
number of true groundings of F; in x. The groundings of a formula
are formed simply by replacing its variables with constants in all
possible ways. The Herbrand base HB is the set of all ground pred-
icates (atoms) that can be constructed using the predicates in L and
the constants in C'. Each subset of the Herbrand base is a Herbrand
interpretation specifying which ground atoms are true. A Herbrand
interpretation H is a Herbrand model of L, written =g L, iff it sat-
isfies all groundings of formulas in L.

There are two principal reasoning tasks in MLN, namely, MAP in-
ference and Marginal inference. MAP inference is the task of finding
the most probable world given some observations also referred to as
evidence. Given the observed variables £ = e, the MAP problem
aims to find an assignment of all non-evidence (hidden) variables
X = z such that I = argmax, P(X = z | E = e). We denote by
I, the assignment  which leads P to be maximal, i.e., a MAP state.
In order to compute a MAP state of an MLN, the problem can be
formulated as an integer linear program (ILP) using the cutting plane
inference algorithm.

22 ECtT
ELTT is the DL underlying the OWL 2 profile OWL-EL?.

Syntax: Given a set of concept names N, role names N, individ-
uals N, and feature names Ng, E£TF concepts and roles are formed

2 http://www.w3.0rg/TR/owl2-profiles/

according to the syntax given in Table 1. A concept in ELT T is ei-
ther a top, bottom concept, an atomic concept, a concrete concept
or a complex concept (formed by conjunction and existential restric-
tion). A concrete domain D is a pair (AP, PP) with AP a set and
PP a set of predicate names. Each p € P is associated with an ar-
ity n > 0 and an extension p? C (AP)™. The abstract and con-
crete domains are linked via a set of feature names Ng. In Table 1,
p denotes a predicate of some concrete domain D; and f1,..., fn
are feature names. In this work, we consider only numerical CDs.
However, our approach can easily be extended to handle other CDs.
An £LTT TBox contains a set of GCI (General Concept Inclusion)
axioms, i.e., C T D, as well as (RI) role inclusion axioms, i.e.,
riorg C .

Semantics: The semantics of ££7 concepts and roles, shown in
Table 1, is given by an interpretation function Z = (A%, .7) which
consists of a non-empty (abstract) domain AZ and a mapping .7 that
assigns to each atomic concept A € Nc a subset of AT, to each
abstract role R € Ng a subset of AZ x AZ, to each concrete relation
f € N a subset of AT x D, and to each individual a € N; an
element of AZ. The mapping -7 is extended to all concepts and roles
as shown in Table 1.

Table 1. The ££1 71 with concrete domains.

Name l Syntax l Semantics
top T AT
bottom 1 0
nominal {a} {a’}
conjunction cnb ctnpt
existential 2O {zxe AT|Fy e AT:
restriction (z,y) €erT Ay e CT}
T D, .
fr(l);liirete do- p(frs e fn) {x € A" |Fy1,...,yx € A5 :
forp € PP fEz) =yifor1 <i<kA
(w1, yk) €p°7}
GCI CLCD ctcCp?
RI rrorg Cr TIIOT%QTI
wertion | €@ o € O
role assertion | r(a,b) (a,bt) e r?

Knowledge about specific objects can be expressed using concept
and role assertions of the form C'(a) and R(a,b). The axioms and
assertions are contained in the TBox and ABox, respectively, which
together form a knowledge base (KB). An ££1T knowledge base
KB = (T, .A) consists of a set 7 of general concept inclusion ax-
ioms (TBox) and role inclusion axioms, and possibly a set A of as-
sertional axioms (ABox). Despoina et al [8] have extended the infer-
ence/completion rules of ££T for the concrete domains by exploit-
ing the notion of safety which keeps tractability of reasoning while
enhancing expressivity. We will make use of these rules to provide
datatype reasoning in log-linear £L.

To simplify the translation of weighted ££ " KBs into FOL, we
first obtain the normal form of the KB in such a way that satisfiability
is preserved [2, 18]. An £L£T1 KB is in normal form 7(KB) if its
axioms are in the following form:

C(a)

r(a,b) ACC AnBLCC
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IrACC AC3dr.B
ACp(fr,....fu) p(fr,-..,fa) EB

where A,B,C € NcU{T} and C € {L}; r,ri,72 € Ng;
fi,..., fn € Np;and a, b, ¢ € N,. For a finite set N C N¢ U Ng of
concept and role names the set of all normalized axioms constructible
from N is the union of (a) all normalized GClIs constructible from
concept and role names in N and the top and bottom concepts; and
(b) all normalized RIs constructible from role names in N.

Axioms of the form C' C {o} are shown to be problematic for
practical reasoning in the ££ family with nominals. However, exper-
iments have shown that such axioms are rarely found in real world
ontologies [14, 15]. In addition, by restricting their usage efficient
practical reasoning can be achieved. Furthermore, for safe ELTT,
the inference rules given in [2] and proved in [15] are sound and
complete. Therefore, for this study, we consider safe nominals as de-
fined below.

Definition 1 (Kazakov et al [15]) An EL1 concept C is safe if
C' has only occurrences of nominals in subconcepts of the form
JR.{o},; C is negatively safe if C is either safe or a nominal. A
GCI C C D is safe if C is negatively safe and D is safe. An ELTT
ontology is safe if all its concept inclusions are safe.

riCry rmoraCr

For instance, the axioms {a} C C and {a} C 3r.{b} are safe. In this
study, we consider safe ££7F. It is possible to provide a probabilis-
tic extension of safe ££1 1 using MLNs. In which, a safe ££* KB
can be seen as a set of hard constraints on the set of possible inter-
pretations: if an interpretation violates even one axiom or assertion,
it has zero probability. The basic idea in MLNSs is to soften these con-
straints, i.e., when an interpretation violates one axiom or assertion
in the KB it is less probable, but not impossible. The fewer axioms
an interpretation violates, the more probable it becomes. Each ax-
iom and assertion has an associated weight that reflects how strong a
constraint is: the higher the weight, the greater the difference in log
probability between an interpretation that satisfies the axiom and one
that does not, other things being equal [32].

2.3 Log-Linear £L£

Log-linear ££ (LogEL) is an extension of ££1 with log-linear
models that enables reasoning over uncertain ££7 TBoxes [27].

Syntax: A LogEL knowledge base KB = (KB, KBY) consists
of a deterministic knowledge base KBP and an uncertain knowledge
base KBY with KBP }£, L. and KB® N KBY = ) for some logic £
that supports a valid entailment relation =, and notion of contradic-
tion L. The uncertain KB is defined as KBY = {(c;, w,)} where
¢; 18 an axiom or assertion in £ and w,; is a real-valued weight as-
signed to ¢;. The syntax of an axiom (resp. assertion) is similar to the
underlying logic where an uncertain axiom (resp. assertion) has an
associated weight as {(c;, we, ) }.

Semantics: The semantics of a LogEL knowledge base is based

on joint probability distributions over the uncertain KB. Formally,
for a given log-linear KB = (KBP KBY) and some KB’ over the
same signature, the probability of KB’ is defined as:

% exp Z We,
{(cs,we,; ) EKBY:KB' [=c; }

P(KB')= if KB e Lr AKB' = KBP,

0 otherwise

where Z is the normalization constant of the log-linear probability
distribution P. Note that in MAP inference (i.e., obtaining the most
probable KB) Z is not computed.

Example 1 Consider the following uncertain LogEL axioms: (1) a
researcher is (probably) someone who published something, and (2)
a famous researcher influenced (probably) someone who in turn has
influenced someone else.

(1) (Researcher T Jpublished.T,0.8)
(2) (FamousResearcher C Jinfluenced.(Jinfluenced.T)
M Researcher, 0.6)

A LogEL KB can be normalized into an equivalent KB, thus, it can
be mapped into first order predicates using a function ¢ as follows:

ALC Cw~sub(4,0)
ANBECCw~int(A,B,C)
A C 3r.B— rsup(A,r, B)

Ir.AC C +— rsub(A,r,C)
r1 C ro +— psub(ri, 72)

riors Cr— pcom(ri,ra,r)

The predicates in this listing are typed, r, 71,72 are role names, A
and B are concept names, and C' is a concept name or the bottom
concept (). Note that ¢ is incomplete given an LogEL as defined
above. In this work we will extend ¢ in order to deal with both ABox
assertions and CDs (i.e., p(fi,. .., fn)).

The translation of KBP and KBV results in unweighted (hard) and
weighted first order formulas respectively. The hard formulas are
used, together with the TBox completion rules (F;) — (Fy) to en-
force KB’ Fpr, Lgr and KB’ |=gr KBP for any possible TBox
KB’. Computing the MAP state of a LogEL knowledge base will al-
ways result in the most probable non contradictory subset of KBY
that entails the previously known axioms KBP.

o2}
=1
o

H
—

/

Asub(c’, d) = sub(c,d)

A sub(c, c2) Aint(c1, ¢z, d) = sub(c, d)
¢, c) Arsup(c,r,d) = rsup(c, r, d)

¢,m,d) Asub(d,d’) Arsub(d’,r, e) = sub(c,e)
¢,r,d) A psub(r, s) = rsup(c, s, d)

)
)
)
)

/

= =

rsup
rsup(c, r1,d) Arsup(d, ra,e) A

pcom(r1,r2,73) = rsup(c, 3, €)
(Fo)—sub(c, L)

The above formulas (collectively denoted by F') are universally quan-
tified over all variables. They are partially derived from the comple-
tion rules of ££7F [2]. T and L are constant symbols representing
the top and bottom concepts. Note that rule Fy does not belong to the
completion rules for ££7 . This rule takes the notion of incoherence
into account. An incoherent ontology is an ontology that contains an
unsatisfiable concept, i.e., a concept that is subsumed by _L. Usually,
an unsatisfiable concept indicates that the ontology contains a con-
tradictory set of axioms. An incoherent ontology is not necessarily
inconsistent, Thus, we added rule Fy which allows us to extend the
notion of contradiction L g7, from inconsistency to incoherence. For
more technical details on applying the principle of log-linear logic to
OWL-EL, we refer the reader to [27]. We will extend these comple-
tion rules in order to deal with ABox assertions and CDs.
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3 MLN with Numerical Constraints

We extend MLN with numerical constraints resulting in a formalism
denoted MLNpc. The constraints are predicates of the form 6 > ),
where 6 and v denote variables, numerical constants or algebraic
expressions (that might contain elementary operators), and < is a
binary operator which returns a truth value under some grounding.

Definition 2 (MLN with Numerical Constraints (MLNnc)) A nu-
merical constraint NC is composed of numerical constants (such as
elements of N, 1, and so on), variables, elementary operators or func-
tions (such as, +, *, —, +, %, v/ ), standard relations (>, <, =, #,
>, <), and boolean operators (A, V, —). An MLNnc is a set of pairs
(FCi, w;) where FC; is a formula in FOL that may contain a NC and
w; is a real number representing the weight of formula FC;.

Example 2 Using MLNyc it is possible to represent the hard con-
straint: people born before 1850 are probably not alive: {Va,y :
person(a) Aborn(a,y) ANC(y) = dead(y), NC(y) = y < 1850}.

MAP Inference in MLNnc. A common inference task over
MLNS is finding the most probable state of the world, i.e., finding
a complete assignment to all ground atoms which maximizes the
probability. A MAP query corresponds to an optimization problem
with linear constraints and a linear objective function. Hence, it can
be formulated and solved as an instance of an integer linear pro-
gram (ILP) using the cutting plane approach, proposed in [34] and
extended in [29]. Consequently, we extend the approach in [30] to
compute a MAP state for a MLNnc knowledge base. Cutting plane
inference (CPI) operates between the grounding algorithm and the
ILP solver. Instead of immediately adding one linear constraint for
each ground clause to the ILP formulation, the ILP is initially formu-
lated so as to enforce the evidence to hold in any solution. Based on
the solution of this more compact ILP, one determines the violated
constraints, adds these to the ILP, and solves the ILP again. This pro-
cess is repeated until no constraints are violated by an intermediate
solution. To elaborate, at the beginning of each CPI iteration it is
necessary to determine the violated ground clauses G that are spec-
ified by the MLN and are in conflict with the intermediate solution.
A binary ILP variable x, € {0, 1} gets assigned to each grounded
predicate occurring in a violated clause g € G. The value of the
variable x, is 1 if the respective literal ¢ is true and O if it is false.
These variables are used to generate ILP constraints that are added
to the ILP for each violated ground clause. For each clause g € G,
we define Lt (g) as the set of ground atoms that occur unnegated in
g and L~ (g) as the set of ground atoms that occur negated in g. The
transformation scheme depends on the weight wy, € R of the vio-
lated clause g. It is also necessary to create a binary variable z, for
every g with wg # oo that is used in the objective of the ILP. For
every ground clause g with wy > 0, the following constraint has to
be added to the ILP.

Z X + Z l—m >zg

LeL*t(g) LeL—(g)

A ground atom ¢ that is set to false (or true if it appears negated)
by evidence will not be included in the ILP as it cannot fulfill the
respective constraint. For every g with weight w, < 0, we add the
following constraint to the ILP:

D wt )

LeL*(g) LeL=(g)

(L—20) < (IL(9)| + IL7(9)]) 2

Algorithm 1 Extended cutting planes algorithm

Input: G: ground clauses; E: evidence clauses

Input: Gyc : ground clauses with NC

Input: L;C U Ly : ground (positive or negated) numerical literals
Output: H®): MAP state

1: procedure COMPUTEMAP(G, E)

22 G+ EU {lzteml( ) € Gand wy > 0}

3 Initial solution H® « all atoms in Gy.p

4: ILP «+ into[LP(Vg S G||_p)

5: t<«<0

6 repeat

7 Grew < 0

8 fOI‘gGG\G|Lpd0

9 if (wy > 0 orw, = co)and H® £ g)

10: or (wy < 0and HY = g) then

11: if g € Gne and g contains g, and

12: ((comp(gp) = 1 and g, € L) or
13: (comp(gp) = 0and g, € L)) then
14: add g \ gp t0 Gnew

15: else add g to Ghew

16: end if

17: end if

18: end for

19: if Gpew # () then

20: t—t+1

21: ILP « intoILP (Vg € Gnew)

22: add g € Gpew to Gy p

23: H® + solution of ILP

24: end if

25: until G,e,, = () return H®
26: end procedure

The variable z, expresses if a ground formula g is true considering
the optimal solution of the ILP. However, for every g with weight
wy = oo this variable can be replaced with 1 as the respective for-
mula cannot be violated in any solution:

D wet D

LeLt(g) LeL=(g)

(1—m)>1

Finally, the objective of the ILP sums up the weights of the (satisfied)

ground formulas:
maxg WgZg.

geg

The MAP problem can be solved as an ILP problem. Thus, the MAP
state corresponds to the solution of the ILP in the last CPI iteration.
It can be directly obtained from the solution as the assignment of
the variables x, can be directly mapped to the optimal truth values
for the ground predicates, i.e., z; = true if the corresponding ILP
variable is 1 and x; = false otherwise.

We have extended the cutting planes algorithm proposed by Riedel
[33] and optimized in [34] to the truth value of numerical predicates
on-demand during each CPI iteration. This extension is sketched in
Algorithm 1. The first initial MAP hypothesis is the set H). It con-
tains all evidence clauses and ground clauses (containing only a sin-
gle literal) with positive weights. These clauses have been added to
the ILP and are denoted by G p. At each CPI iteration, the violated
constraints are identified and added to Gnew. Thus, depending on the
numerical predicates and the weight of the ground clauses, the vi-
olated constraints are determined (Lines 9-13). Consequently, for
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every ground clause g € G\ Gyp, if g is not satisfied by the cur-
rent hypothesis H® and wyg > 0 orwy = 00, or g is satisfied and
wg < 0, we test if g contains a NC. If g contains a NC (i.e., g € Gne)
and the numerical predicate g, is in g, then we compute the numer-
ical constraints corresponding to the predicate g, with the current
grounding, i.e., comp(gp). If comp(gp) is true and g, is a negated
literal g, € Ly or if comp(gp) is false and g, is a positive literal
gp € L?\}C, we remove the numerical predicate from g and add g
to Grew. Note that we do not introduce ILP variables for numerical
predicates as they will not be added to the Gnew, hence, to the ILP.
Note also that our approach computes the truth value of numerical
predicates on-demand, i.e., only when g is not satisfied by the cur-
rent hypothesis. If g does not contain a numerical predicate, we add
g t0 Grew. If Grew is empty, then the current hypothesis is optimal
and we return it as MAP state. Otherwise, it iterates until an optimal
solution is found.

Theorem 1 Given a ground MLNnc network, a set of observed vari-
ables E and a set of hidden variables X, an interpretation1is a MAP
state iff

I=argmaxP(X | E) = argmaxz:wmi(E7 X).
X X -

Proof 1 (sketch) It is proved that the MAP problem in MLN can be
reduced to ILP using the CPI approach [34]. Likewise, we reduce
MLNnc’s MAP inference into a maximization problem in ILP using
cutting planes. In Algorithm 1, if G contains no ground numerical
predicates, then the MAP inference in MLNNc coincides with MAP
inference in MLN. Otherwise, it is possible to compute a MAP state
by transforming G into ILP and integrating the truth value of the nu-
merical predicates to the ILP by computing it outside the CPI setting
as shown in Algorithm 1.

4 Extending LogEL with Concrete Domains

We extend LogEL with uncertain knowledge expressed through nu-
merical CDs.

Definition 3 A numerical concrete domain D is a pair (AP, PP)
with AP € {N,Z,Q,R} and PP a set of predicate names. Each
p € P is associated with an arity n and an extension p" C (AD)”.

4.1 Unary concrete domains

We call a CD D unary if all predicates p € PP are unary,
ie., n = 1. In this section, we consider the unary predicates
{<v, <4, >v, >4, =v} where v € R. The DL underlying LogEL ad-
mits safeness of CDs to retain tractability of reasoning. We present a
unary CD R inspired by safe numerical CDs introduced in [8]. Safe-
ness is defined in terms of the position in which a predicate appears
with respect to the subsumption (C) relation in an axiom. If a predi-
cate p appears on the right side of C, then we call it a positive pred-
icate (p € PJDF) and if on the left side, then it is a negative predicate
(p € P2).

Definition 4 A safe unary numerical CD R is a triple (AR, PR PR)
with AR C R a set and P} PR C {<,, <y, >v, >y, =v} are sets
of positive and negative predicate names respectively.

In the following, we consider an extension of LogEL with a safe
unary numerical CD R and refer to it as LogEL(R).

Example 3 We extend Example 1 with axioms that use safe numeri-
cal CDs where <150 € P® and <1s00 € PR.
(University M <iss0(foundedIn)
C DistinguishedUniversity, 0.4)
(OldUniversity T <iso0(foundedIn) M University, 0.6)

Inference involving axioms that contain the CD R can be done
according to the following deduction/completion rules. In Defini-
tion 6, we will transform them into FOL formulas for reasoning over
LogEL(R) KB.

AC B BELp(f)
AT po(f)

A Epﬂ(f) p;’(f) C B eval(p,v,p',v')
ACB

where p, € PY,pl, € P2 andv,v’ € R. In addition, the eval func-
tion checks if all possible values of the first operator-value pair (p, v)
are covered by the possible values of the second operator-value pair
(p’,v"), when so, it evaluates to true otherwise false. The function
eval is defined based on the domain R and algebraic operators in R.
Some of the inequalities that are computed using the eval function
are listed below:

eval(=,v,=,v") :=v =1

eval(=,v,>,v") :=v >

Example 4 From the axioms of Example 3, it is possible to infer that
OldUniversity T DistinguishedUniversity because eval(<
, 1800, <, 1850) = 1800 < 1850 = true.

In Section 5, we will see that the computation of the eval function
integrates well with the proposed extension of the cutting planes al-
gorithm.

4.2 Binary concrete domains

Unary CDs are not expressive enough to enable to describe the
relationship between concrete values [22]. For instance, to de-
scribe a person that passed away at birth, we can use a binary CD
as: DeadAtBirth T =(birthDate, deathDate). Next, we introduce
such expressive binary CDs. The main advantage of binary CDs over
unary ones is that the former provides for a richer set of predicates
[23]. Consequently, we introduce a CD T which is based on real
numbers and a set of unary and binary predicates. T is defined as
follows: T = (AT,PT) where AT = R and P" is defined as the
smallest set containing the following predicates:

e unary predicates Tt with (T1)" = Rand Lt with (L7)" =0,

e a unary predicate p, for each p € {<,<,=,#,> >} and each
r € Rwith (p,)" = {+' € R |+’ pr},and

e binary predicates p € {<, <, =, #, >, >} with (p)" = {(r,7') €
R? |rpr'}).

We will use the ¢ T for temporal reasoning over weighted LogEL(T)
KBs as shown in Section 6.2. In order to reason over such KBs, we
design a set of domain specific rules which are used either for infer-
ring a new knowledge or checking conflicts (aka. debugging). This
is partly due to most of the current KBs do not contain TBox axioms
that involve binary CDs. Note that it is possible to define a temporal
CD based solely on Allen’s interval relations which are often used in
temporal reaoning [1]. Allen’s relations describe the relationship be-
tween any two intervals over some temporal structure (for instance,
a set of time points under a strict total ordering relation <) and can
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be defined in terms of the interval endpoints. And thus, they can be
expressed via the binary predicates of the CD T. Hence, the CD T is
more expressive than a CD obtained by using Allen relations.

For the binary CDs we do not provide TBox completion rules,
instead for the purpose of experimentation, we design a set of KB
specific constraints. Examples of such rules are the following:

(1) Vz,t1,t2 : Person(x) A birthDate(x,t1) A
graduationDate(x,t2) = <(t1,12) 0.9
(2) Vz,y,tl : YoungAuthor(x) A age(z,tl) = <(t1,20) 0.8

These rules are used in the experiments as discussed in Section 6.2.

5 Translating LogEL(R) and LogEL(T) into
MLNyc

As shown in previous work, the MAP state for a LogEL KB can be
computed using a MLN that represents the first order transformation
of the KB and entailment rules.

We have already presented the function ¢ for the translation of
LogEL TBox axioms into FOL predicates. We now extend this func-
tion to map the CDs and ABox assertions of a LogEL KB into ground
FOL predicates. Since the DL, ££ T, underlying LogEL is equipped
with nominals, ABox assertions can be converted into TBox axioms.
Thus, with nominals, the ABox becomes syntactic sugar as shown
below:

C(a) & {a} CC, r(a,b) < {a} C Ir{b}

Instance checking in turn is directly reducible to subsumption check-
ing in the presence of nominals. Thereby reducing ABox reasoning
into TBox reasoning. Thus, in LogEL(R) and LogEL(T), we trans-
form the ABox assertions into TBox axioms using nominals. We also
extend the definition of normal forms for LogEL KBs with CDs as
follows: for a LogEL KB = (KBP, KBY), its normal form is given

by: 7'(KB) = 7(KBP) U U(ci,wci)GKBU 7(ci).

Definition 5 ¢ translates a normalized LogEL(R) and LogEL(T)
KB’s ABox and CDs into FOL formulas in MLNyc as follows:

C(a) —  sub({a},C)

r(a,b) —  rsup({a},r, {b})
Agpv(f) = Sub+(A7p7U7f)
po(f)EB +— sub_(p,v, f,C)

Definition 6 The translation of LogEL(R) TBox completion rules
into FOL formulas F in MLNnc is given below:

(F1o0)
(F11)

Sub(a7 b) A Sub+ (b7p7 v, f) = sub+ (a7p7 v, f)
SUb+(a’7p3 v, f) A sub_ (plv Ul? f7 b) A
eval(p,v,p’,v") = sub(a, b)

Note that the FOL formulas F' corresponding to the translation of the
completion rules are hard constraints. As the translation function ¢
is bijective, a possible world of F and a given KB can be turned into
a classified and consistent ££7 T (R) KB and vice versa as shown in
the following lemma.

Lemma 1 Let KB be a normalized LogEL(R) (resp. LogEL(T))
knowledge base over a finite set N of concept, role, and feature
names and let HB be the Herbrand base of F with respect to N. If
KB’ C KBiis a classified and coherent knowledge base, then p(KB')
is a Herbrand model of F. If HB' C HB is a Herbrand model of F
then o' (HB') is a classified and coherent knowledge base.

For a finite set of concept, role, individual and feature names F, every
normalized KB over the signature N which is classified and coherent,
corresponds to exactly one Herbrand model of F.

MAP Inference Computing the MAP state of a given LogEL(R)
(resp. or LogEL(T)) KB requires to translate the KB with the func-
tion ¢ (see Definition 5) to the equivalent Markov logic formaliza-
tion. Then the completion rules of Definition 6 are added to this trans-
lation. The MAP state is computed with the help of Algorithm 1 ap-
plied to this input data. To do so, the evidence clauses ¢ (KB) and the
grounding of F with respect to o (KB) are given as input to the algo-
rithm. Besides, Algorithm 1 uses the external comp function when-
ever one of the grounding of the completion rules (F1o) and (F11) re-
quires to check a concrete grounding of the eval predicate. Note that
the comp function can be easily implemented for the specified set of
unary and binary numerical predicates (corresponding to a particular
CD). Moreover, further extension of the proposed approach will also
benefit from the fact that the externally defined comp function can be
easily extended to deal with other predicates, for example, to support
string comparisons. Applying the inverse translation function ¢ ! to
the MAP state, yields the most probable, classified, and consistent
ELTT(R) (resp. ELTH(T)) KB.

Theorem 2 Given the following:

o a LogEL(R) (resp. LogEL(T)) normalized KB = (KBP,KBY)
over a finite set N of concept, role, individual and feature names,

o the Herbrand base HB of the formulas ¥ with respect to N,

e the set of ground formulas G1 constructed from KBP, and

o the set of ground formulas G constructed from KBV,

The most probable coherent and classified ontology is obtained with:

argmax( > wj)

HB2TEGIUEN (g w))€Gaiug;

e (1) =

From Theorem 2 and the results in [27], the problem of com-
puting the most probable, classified and coherent LogEL(R) (resp.
LogEL(T)) KB is NP-hard.

6 Experiments

In the following we report about two types of experiments: temporal
reasoning in LogEL(R) and LogEL(T) KBs.

6.1 Reasoning in LogEL(R)

In this experiment, we first illustrate in how far our formalism can
be applied to a scenario where we reason with a knowledge base
KB = (KBP, KBY) with KB = (. In the second set of experiments
we add weights to all assertions in KBP, while adding at the same
time a set of weighted erroneous assertions. We show that we achieve
similar reasoning results in this noisy setting, while automatically
detecting and removing erroneous numerical assertions.

6.1.1 Deterministic Temporal Reasoning

We apply our method to a specific subdomain of DBpedia that deals
with researchers, their alma mater, their birth and death date, their
publications together with the publishing date, and the influence rela-
tionships between researchers. For our experiments we worked with



M.W. Chekol et al. / Markov Logic Networks with Numerical Constraints 1023

Trinity College, Dublin

} | U. of California (Berkeley)

p————— U. of Nottingham

f { U. of Vienna

1800 1825 1850 1875 1900 1925

Figure 1. A part of the elite universities from 1800 to 1925.

a slightly simplified signature. For example, we used the object prop-
erty influenced for all assertions using one of the DBpedia proper-
ties influenced, academic advisor, and notable student. We extracted
a dataset from DBpedia containing >11K persons, > 1K universities,
>10K books, and ~10K birth and death dates, >19K influenced as-
sertions, and >700 publishing dates.

Then we added the axiom FamousResearcher = Jinfluenced
.(Jinfluenced.T) as well as a set of axioms for which the following
axiom is an example.

JhasStudent.(FamousResearcher I
>1830 (born) M JauthorOf .<1910(published))

E EliteUniversity,gso_1900

The first axiom defines a famous researcher as someone has influ-
enced someone who in turn has influenced someone else. The sec-
ond axiom states that an elite or distinguished university is one which
had a student who was a famous researcher born after 1830 and pub-
lished some work before 1910. With the help of these two axioms
we can entail which academic institutions had a significant impact
on the research community during the period 1850-1900. We cre-
ated the same type of axioms for all 50 year periods starting in 1700
using a step size of 25 years. Then we computed the MAP state and
retrieved the instances for all Elite University concepts. A subset
of the results of our query, with respect to the periods in the range
from 1800 to 1925, is shown in Figure 1. Note that the number of
EliteUniversity increases over time, which might also be caused by
the fact that DBpedia is more complete with respect to more recent
publications. Nevertheless, all of the universities from the results ob-
tained are well known and distinguished universities.

6.1.2 Uncertain Temporal Reasoning

In this set of experiments we generated erroneous assertions spec-
ifying the publishing date of a book and the birth and death dates
of persons. We injected a fraction of 20%, 40%, 60%, 80%, and
finally 100% incorrect statements to the dataset. For instance, inject-
ing 20% erroneous facts means that we added 20% additional wrong
assertions for each of the three datatype properties. We randomly as-
signed weights in the range [0.5,1.0] to the injected assertions and
[0.8,1.0] to each of the originally stated assertions.

We added a set of axioms which allow to detect that some com-
binations of birth, death and publishing dates are inconsistent. For
instance, the following axiom expresses the fact that a person who is
younger than 15 years of age cannot publish something.

FamousResearcher = Jinfluenced.(Jinfluenced. T) 0.6
> 1850 (born) M JauthorOf .< 1565 (published) T L 0.82
JhasStudent.(FamousResearcher N
>1830(born) M JauthorOf .<1910(published))

C EliteUniversitygso_1900 0.75

We added similar axioms to express, e.g., that nobody can be born
after he died. All these axioms use only unary predicates. Thus we
had to generate the axioms for different time points. We did this with
a step size of 25, i.e., for each type of axiom we generated a set of
axioms to cover the time span from 1700 to 2000.

The MAP state for this input data will be a subset of the weighted
input assertions, which might contain incorrect and correct asser-
tions. The MAP state will also contain the instantiations of all
Elite University concepts. We compare the outcome of our approach
against a gold standard, by assuming that each originally stated fact
in DBpedia is correct, and each added fact is incorrect. Furthermore,
we treat the Elite University query result of the first experiment as
a gold standard to measure in how far the results are negatively af-
fected by the noisy setting.

Table 2. Precision (P) and recall (R) scores for computing the MAP state
with an increasing number of injected erroneous assertions.

Injection | 0%  20%  40%  60%  80%  100%

%‘ P 1.00 0.92 0.81 0.76 0.66 0.61
& | R 1.00 0.93 0.86 0.79 0.76 0.70
‘g P - 0.83 0.83 0.83 0.83 0.83
~ R - 0.62 0.62 0.61 0.61 0.60
Time (s) l 390 631 1313 2351 3336 4599

The results of our experiments are shown in Table 2. Since we
randomly assigned weights, we repeated each experiment 10 times
and present average scores. We were able to compute meaningful
results in highly inconsistent settings. Even in a setting where we
added 100% incorrect assertions (as much correct assertions as in-
correct assertions), we are still able to achieve a query precision of
61% and a recall of 70%. The good query results are caused by the
relatively good results for the repair, where we computed the fraction
of incorrect statements that have been removed (recall of repair) and
the fraction of correct removal decisions (precision of repair). Both
values are stable for different injection rates. The measured runtimes
do not increase linearly with respect to the size of the input data. This
is in line with our expectation, since the original data (0% injection)
set will only require a materialization, while each added incorrect as-
sertion might be involved in a conflict resulting finally in a non trivial
optimization problem.

6.2 Debugging LogEL(T) KBs

The objective of this experiment is debugging temporal LogEL(T)
KBs. We define a set of domain specific temporal rules (similar to
those in the example of Section 4.2) based on a common sense un-
derstanding of this dataset. Typical examples of such rules are the
following ones.

(3) Vz,t1,t2 : person(z) A birthDate(z,t1) A

deathDate(z,12) = <(t1,t2) 0.7
(4) Vz,y,t1,t2 : almaMater(x,y) A established(y,t1) A
deathDate(z,12) = <(t1,12) 0.5

Besides, we injected several types of erroneous facts to the ex-
tracted dataset. The results of our experiments are depicted in Ta-
ble 3. The first column informs about the precision of the generated
dataset. We have injected a fraction of 1%, 10%, 25%, 50%, 75%,
and finally 100% incorrect statements to the dataset. Thus, the pre-
cision of the generated dataset varies from 0.99 (260K facts) to 0.5
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(520K facts). For example, the last row of the table refers to a dataset
where every second fact is incorrect. The recall of this dataset is al-
ways 1.0, because we never removed a fact of the extracted dataset.
For all datasets, we have computed the MAP state, which corre-
sponds to the repaired dataset. In doing so we computed precision,
recall and F-measure for the debugging process and for the final out-
come. The precision of the debugging process refers to the fraction of
removed axioms or assertions that were indeed incorrect; recall refers
in this context to the fraction of incorrect axioms or assertions that
have been removed. The precision and recall of the repaired dataset
is computed by comparing it to the originally extracted dataset. The
rightmost column (AF) informs about the gain in F-measure that we
computed by comparing the F-measure of the input dataset with the
F-measure of the repaired dataset.

Table 3. Precision (P), Recall (R) and F-measure (F) for debugging
process and repaired dataset.

Input Debugging Repaired Dataset AF
P PIR[F|P]RIJF

0.99 {| 0.80 | 0.63 | 0.70 || 1.00 | 1.00 | 1.00 || 0.002
0.91 | 0.80 | 0.64 | 0.71 || 0.97 | 0.98 | 0.97 || 0.022
0.80 [| 0.81{0.65 | 0.72 ][ 0.92 | 0.96 | 0.94 || 0.050
0.67 || 0.8210.65 | 0.73 |/ 0.84 | 0.93 | 0.88 || 0.084
0.57 {| 0.83]0.65 | 0.73 ][ 0.78 | 0.90 | 0.83 || 0.106
0.50 {| 0.8410.65|0.73 ]/ 0.72 | 0.87 | 0.79 || 0.119

The results show that we are able to improve the data quality of
an erroneous dataset. This is depicted in the increase of F-measure in
the AF column for all test cases. With respect to the test case where
every second fact is incorrect, we are able to increase the precision
by 0.22 (from 0.5 up to 0.72), while recall is only reduced to 0.87
(from 1.0). Most of the removed facts are indeed incorrect (a repair
precision of > 0.8 means that at least for 4 of 5 removals are proper
removals), while we are able to detect more than half of the incorrect
facts (debugging recall of the repair is > 0.5).

7 Related Work

Since in MLNs all variables and features are discrete, Hybrid MLNs
that allow for both discrete and continuous variables in addition to
limited numerical constraints have been introduced [36]. While our
approach does not support continuous variables, the numerical con-
straints that we consider here are more expressive and the ability to
compute them outside the cutting planes algorithm, enables us for far
more richer constraints and functions. In the context of probabilistic
programming, supporting numerical constraints in probablisitic rea-
soning is also explored [5, 4, 3].

The study of extending DLs to handle uncertainty and vagueness
has gained momentum recently. There have been several proposals to
add probabilities to various DLs. Probabilistic DLs can be classified
in several dimensions. One possible classification is on the reasoning
mechanism used: Markov logic networks (MLNs) and Bayesian net-
works. There exist some studies that employ MLNs to extend various
DLs. The study in [21] extends ££T T with probabilistic uncertainty
based on the annotation of axioms using MLNs. The main focus of
this work is ranking queries in descending order of probability of
atomic inferences which is different from the objective of this pa-
per. Another study in [27], presents a probabilistic extension of the
DL ££* without nominals and CDs in MLN in order to find the
most probable coherent ontology. In doing so, they have developed a

reasoner for probabilistic OWL-EL called ELOG [29]. In this study,
we extend this work in order to deal with CDs in addition to nom-
inals and instances. In databases, MLNs have been used to create a
probabilistic datalog called Datalog+/-. It is an extension of datalog
that allows to express ontological axioms by using rule-based con-
straints [10]. The probabilistic extension of Datalog+/- uses MLNs
as the underlying probabilistic semantics. The focus of this work is
on scalable threshold query answering which is different from that of
this work.

Other literatures extend DLs with Bayesian networks. Some no-
table works include: an extension of ££ with Bayesian networks
called BEL is presented in [6]. They study the complexity of rea-
soning under BEL to show that reasoning is intractable. However,
their work does not discuss probabilities in the ABox and concrete
domains are excluded. On the other hand, in [7], they added uncer-
tainty to DL-Lite based on Bayesian networks. Additionally, they
have shown that satisfiability test and query answering in probabilis-
tic DL-Lite can be reduced to satisfiability test and query answering
in the DL-Lite family. Further, it is proved that satisfiability checking
and union of conjunctive query answering can be done in LogSpace
in the data complexity. Query answering in probabilistic OWL QL,
where ABox assertions are probabilistic and TBox axioms are deter-
ministic, has been studied in [13]. They prove that only very simple
conjunctive queries can be answered in PTime, while most queries
are #P-hard.

It is possible to extend DLs with uncertainty by using Halpern’s
probabilistic first order logic [12]. These studies include Prob-
ALC [25], P-SHOIN (D) [35]. On the other hand, P-SHZ Q(D)
uses probabilistic lexicographic entailment from probabilisitc default
reasoning [19]. P-SHOZN (D) and P-SHZ Q(D) support datatype
reasoning in a probabilistic setting. While these logics are different
from the one studied in this paper, they also do not support expres-
sive CDs. In addition, while LogEL is based on log-linear models,
P-SHZQ(D) is based on Nilsson’s probabilistic logic [28] and P-
SHOIN (D) is based on Halpern’s probabilisitc FOL; both of these
formalisms are different from log-linear models. A survey of proba-
bilistic extensions of DLs can be found in [20].

Consequently, as discussed above, most of the studies that involve
extending DLs to deal with uncertainty by using either Bayesian or
MLNs often excluded CDs. This is partly due to either the lack of
supporting features or the difficulty in dealing with them. In this pa-
per, we studied a novel way of dealing with uncertainty involving
CDs by log-linear models extended with numerical constraints.

8 Conclusion

In this paper, we extended MLN with numerical constraints. To show
its usefulness, we have applied this framework to extend LogEL with
instances and CDs. This work can be seen as a first step towards
more practical uses of log-linear models with numerical constraints.
We have illustrated the practical merits of the approach using an ex-
ample application. What needs to be done is a systematic evaluation
of the approach. Furthermore, there are two directions for improving
the formalism. On the one hand, we can further extend the model-
ing capabilities by including other kinds of datatypes and probability
distributions over attribute values. On the other hand, we will inves-
tigate tractable subsets of extended MLNs to enable polynomial time
reasoning.
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