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Abstract. We study the complexity of threshold query answering
in the logical framework for probabilistic ontological data exchange,
which is an extension of the classical probabilistic data exchange
framework with (1) probabilistic databases compactly encoded with
several different annotations according to three different probability
models used and (2) existential rules of different expressiveness. The
ontological data exchange framework provides a logical formaliza-
tion of exchanging probabilistic data and knowledge from one ontol-
ogy to another via either deterministic or probabilistic mappings. We
define the threshold query answering task in this framework and pro-
vide a thorough analysis of its computational complexity for different
classes of existential rules and types of complexity. We also delineate
several classes of existential rules and a probability model along with
a compact encoding in which the threshold query answering problem
can be solved in polynomial time in the data complexity.

1 INTRODUCTION

Being able to process uncertainty attached to data is becoming in-
creasingly important in many areas such as information extraction,
data cleaning, and Web data integration. Applications in these ar-
eas produce large volumes of uncertain data. At the moment, the
best way to model, store, and process uncertain data can be con-
sidered to be in probabilistic databases [27]. At the same time, the
field of databases enriched with ontological knowledge has gained
importance through ontology-based data access (OBDA) [26]. Cru-
cial challenges of such ontologically enhanced databases are the in-
tegration and the exchange of data and knowledge. There is currently
also a huge need for combining the latter two areas in ontology-based
probabilistic databases, especially due to important applications in
the Semantic Web and in ontology-based access to Big Data.

In this paper, we tackle these challenges by studying an extension
of the well-known framework of data exchange [14], which is an im-
portant and powerful theoretical framework used for studying data-
interoperability tasks that require data to be transferred from source
databases to a target database that comes with its own (independently
created) ontological schema (and schema constraints). The data is
translated from one database to the other via schema mappings,
which are declarative specifications that describe the relationship be-
tween two database schemas. In [13], a probabilistic extension of
the classical deterministic framework of data exchange has been pro-
posed. Recently, the works [23, 24] have extended this probabilistic
data exchange framework towards probabilistic ontological data ex-
change where source and target ontology-based data access systems
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have been considered for data exchange. While research in (deter-
ministic and probabilistic) data exchange has only considered weakly
acyclic existential rules (see, e.g., [6]), in [23, 24], several other
classes of existential rules from Datalog+/– have been considered as
ontology and source-to-target mapping languages. In addition, com-
pared to [13], where only the elementary-event-independent proba-
bilistic model has been considered together with full Boolean for-
mulas as annotations, in [23, 24], an additional probabilistic model
based on Bayesian networks, as well as annotations consisting of
positive Boolean formulas without negation, and annotations con-
sisting of a single positive literal have been considered.

This paper continues this line of research. We consider answer-
ing threshold queries in probabilistic ontological data exchange with
different classes of existential rules, representing both ontological
rules and mapping rules, as well as different probabilistic models and
compact encodings for the probabilistic ontological data and map-
pings. Probabilities of annotations with Boolean events are specified
via either pairwise independent random variables or with Bayesian
networks. We study the data and combined complexity of thresh-
old query answering, obtaining a detailed picture of the data com-
plexity and the general, bounded-arity, and fixed-program combined
complexity for the main classes of existential rules from Datalog+/–
along with the considered probability models.

Note that annotations with Boolean events are widely used for
encoding probabilities in probabilistic logical knowledge represen-
tation [15, 27] and are also known as data provenance and lineage
[19, 15, 18, 27]. Note also that closely related to ontological data as
studied in [23, 24] is exchanging incomplete databases as proposed
in [3], which considers incomplete deterministic source and target
databases in the data exchange problem and deterministic mappings.
Also related is the approach to knowledge base exchange between
deterministic DL-LiteRDFS and DL-LiteR ontologies in [2, 1].

The main contributions of this paper are briefly as follows.

• We define the problem of threshold query answering in the
(probabilistic) ontological data exchange framework and study its
data complexity, fixed-program-combined complexity, bounded-
arity-combined complexity, and general combined complexity.
For the complexity analysis, we consider the following main
Datalog+/– languages: acyclic (full), weakly acyclic, linear (full),
full, guarded (full), weakly guarded, sticky (full), and weakly
sticky existential rules together with negative constraints.

• Besides considering different Datalog+/– languages, the complex-
ity analysis for threshold query answering also investigates the
impact of different probabilistic models on the complexity. More
specifically, probabilities of annotations with Boolean events are
specified via either pairwise independent random variables or
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with Bayesian networks. Furthermore, we investigate the im-
pact of compact encodings for pairwise independent random vari-
ables: compact encodings via fully expressive Boolean formulas
(elementary-event-independent) and via positive Boolean formu-
las without negation (PosBool and tuple-independence).

• We obtain a complete picture of the complexity of threshold
query answering for the elementary-event-independent and the
Bayesian-network encoding of probabilistic models. In particular,
even in the data complexity, all considered Datalog+/- languages
but weakly guarded existential rules (which have EXP-complete
data complexity) for ontologies and mappings are PP-complete.
In the fixed-program- and the bounded-arity-combined complex-
ity, we obtain a complexity of PPNP for Datalog+/- languages for
which Boolean conjunctive query answering is NP-complete.

• For tuple-independent probabilistic databases and databases an-
notated with positive Boolean formulas, we obtain the same
upper bounds as for the elementary-event-independent and the
Bayesian-network encoding, and in many cases also the same
lower bounds. In addition, we delineate the first-order rewritable
classes of existential rules as an interesting case, where we obtain
special-case tractability in the tuple-independent case in the data
complexity, and where we conjecture a dichotomy of threshold
query answering of either polynomial time or PP-hard queries.

The rest of this paper is organized as follows. In Section 2, we
provide the preliminaries on Datalog+/- and the main terminology. In
Section 3, we describe the ontological data exchange framework with
probabilistic databases and with both deterministic mappings (Sec-
tion 3.1) and probabilistic mappings (Section 3.2); we also present
the probabilistic models and the compact encodings that we consider
(Section 3.3). In Section 4, we define the threshold query entailment
problem and provide its complexity analysis. Finally, in Section 5,
we conclude with a summary and an outlook to future work.

2 PRELIMINARIES

We now recall the basics of Datalog+/– [8, 9], including especially
relational databases, tuple-generating dependencies (TGDs, or exis-
tential rules), and (Boolean) conjunctive queries ((B)CQs).

We assume infinite sets of constants C, (labeled) nulls N, and
variables V. A term t is a constant, null, or variable. An atom has
the form p(t1, . . . , tn), where p is an n-ary predicate, and t1, . . . , tn
are terms. Conjunctions of atoms are often identified with the sets
of their atoms. An instance I is a (possibly infinite) set of atoms
p(t), where t is a tuple of constants and nulls. A database D is a
finite instance that contains only constants. A homomorphism is a
mapping h : C ∪N ∪V → C ∪N ∪V that is the identity on C.
We assume familiarity with conjunctive queries (CQs). The answer
to a CQ q over an instance I is denoted q(I). A Boolean CQ (BCQ)
q evaluates to true over I , denoted I |= q, if q(I) �=∅.

A tuple-generating dependency (TGD, or existential rule) σ is
a first-order formula ∀X∀Y ϕ(X,Y)→∃Z p(X,Z), where X ∪
Y ∪ Z ⊆ V, ϕ(X,Y) is a conjunction of atoms, and p(X,Z) is
an atom. We call ϕ(X,Y) the body of σ, denoted body(σ), and
p(X,Z) the head of σ, denoted head(σ). A copy TGD is of the
form ∀X p(X)→ p(X), where p(X) is an atom with the variables
X ⊆ V as pairwise different arguments. We consider only TGDs
with a single atom in the head, but our results can be extended to
TGDs with a conjunction of atoms in the head. An instance I satis-
fies σ, written I |=σ, if whenever there exists a homomorphism h

such that h(ϕ(X,Y))⊆ I , then there exists h′ ⊇h|X∪Y , where
h|X∪Y is the restriction of h to X ∪ Y, such that h′(p(X,Z))∈ I .
A negative constraint (NC) ν is a first-order formula ∀Xϕ(X)→⊥,
where X⊆V, ϕ(X) is a conjunction of atoms, called the body of ν,
denoted body(ν), and ⊥ denotes the truth constant false . An instance
I satisfies ν, denoted I |= ν, if there is no homomorphism h such that
h(ϕ(X))⊆ I . Given a set Σ of TGDs and NCs, I satisfies Σ, denoted
I |=Σ, if I satisfies each TGD and NC of Σ. For brevity, we omit the
universal quantifiers in front of TGDs and NCs.

Given a database D and a set Σ of TGDs and NCs, the answers
that we consider are those that are true in all models of D and Σ.
Formally, the models of D and Σ, denoted mods(D,Σ), is the set
of instances {I | I ⊇D and I |=Σ}. The answer to a CQ q rela-
tive to D and Σ is defined as the set of tuples ans(q,D,Σ) =⋂

I∈mods(D,Σ){t | t∈ q(I)}. The answer to a BCQ q is true, de-
noted D∪Σ |= q, if ans(q,D,Σ) �=∅. The problem of CQ an-
swering is defined as follows: given a database D, a set Σ of
TGDs and NCs, a CQ q, and a tuple of constants t, decide whether
t∈ ans(q,D,Σ). It is well-known that such CQ answering can be
reduced in LOGSPACE to BCQ answering, and we thus focus on
BCQ answering only. Following Vardi’s taxonomy [29], the com-
bined complexity of BCQ answering is calculated by considering all
the components, i.e., the database, the set of dependencies, and the
query, as part of the input. The bounded-arity combined complexity
(ba-combined complexity) is calculated by assuming that the arity of
the underlying schema is bounded by an integer constant. Notice that
in the context of description logics (DLs), whenever we refer to the
combined complexity in fact we refer to the ba-combined complex-
ity, since, by definition, the arity of the underlying schema is at most
two. In the data complexity, only the database is part of the input;
the fixed-program combined complexity (fp-combined complexity) is
calculated by considering the set of TGDs and NCs as fixed.

3 ONTOLOGICAL DATA EXCHANGE

The source (resp., target) of the ontological data exchange problem
that we consider here in this paper is a probabilistic database (resp.,
probabilistic instance), each relative to a deterministic ontology.

A probabilistic database (resp., probabilistic instance) over a
schema S is a probability space Pr = (I, μ) such that I is the set
of all (possibly infinitely many) databases (resp., instances) over S,
and μ : I → [0, 1] is a function that satisfies (i) μ(I) > 0 for only
finitely many I ∈ I and (ii)

∑
I∈I μ(I) = 1.

We next provide the definitions of deterministic and probabilistic
ontological data exchange (as proposed in [23, 24]).

3.1 Deterministic Ontological Data Exchange

Ontological data exchange formalizes data exchange from a proba-
bilistic database relative to a source ontology Σs (consisting of TGDs
and NCs) over a schema S to a probabilistic target instance Prt rel-
ative to a target ontology Σt (consisting of TGDs and NCs) over a
schema T via a (source-to-target) mapping (also TGDs and NCs).

More specifically, an ontological data exchange (ODE) problem
M = (S,T,Σs,Σt,Σst) consists of (i) a source schema S, (ii) a
target schema T disjoint from S, (iii) a finite set Σs of TGDs and
NCs over S (called source ontology), (iv) a finite set Σt of TGDs
and NCs over T (called target ontology), and (v) a finite set Σst of
TGDs and NCs σ over S∪T (called (source-to-target) mapping) such
that body(σ) and head(σ) are defined over S∪T and T, respectively.
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Ontological data exchange with deterministic databases is based
on defining a target instance J over T as being a solution for a de-
terministic source database I over S relative to the ODE problem
M = (S,T,Σs,Σt,Σst) iff (I ∪ J) |= Σs ∪ Σt ∪ Σst. We denote
by SolM the set of all such (I, J).

Among the possible deterministic solutions J to a deterministic
source database I relative to M in SolM, we prefer universal so-
lutions, which are the most general ones carrying only the necessary
information for data exchange, i.e., those that transfer only the source
database along with the relevant implicit derivations via Σs to the tar-
get ontology. A universal solution can be homomorphically mapped
to all other solutions leaving the constants unchanged. A determinis-
tic target instance J over S is a universal solution for a deterministic
source database I over T relative to a schema mapping M iff (i) J is
a solution, and (ii) for each solution J ′ for I relative to M, there is
a homomorphism h : J → J ′. We denote by USolM (⊆ SolM) the
set of all pairs (I, J) of deterministic source databases I and target
instances J such that J is a universal solution for I relative to M.

When considering probabilistic databases and instances, a joint
probability space Pr over the solution relation SolM and the univer-
sal solution relation USolM must exist.

A probabilistic target instance Prt =(J , μt) is a probabilistic
solution (resp., probabilistic universal solution) for a probabilistic
source database Prs =(I, μs) relative to an ODE problem M =
(S,T,Σs,Σt, Σst) iff there exists a probability space Pr=(I × J ,
μ) such that (i) the left and right marginals of Pr are Prs and Prt, re-
spectively, i.e., (i.a)

∑
J∈J (μ(I, J))=μs(I) for all I ∈I and (i.b)∑

I∈I(μ(I, J))=μt(J) for all J ∈J , and (ii) μ(I, J)= 0 for all
(I, J) �∈ SolM (resp., (I, J) �∈ USolM). Intuitively, this says that all
non-solutions (I, J) have probability zero, and that even if a solution
exists, there still may be some zero-probability source database(s)
without corresponding target instance(s).

Example 1 An ontological data exchange (ODE) problem M=(S,
T, Σs, Σt, Σst) is given by the source schema S= {Researcher/2,
ResearchArea/2, Publication/3} (the number after the relation name
denotes its arity), the target schema T= {UResearchArea/3, Lec-
ture/2}, the source ontology Σs = {σs, νs}, the target ontology
Σt = {σt, νt}, and the mapping Σst = {σst, νm}, where:

σs : Publication(X,Y,Z) → ResearchArea(X,Y),
νs : Researcher(X,Y) ∧ ResearchArea(X,Y) → ⊥,

σt : UResearchArea(U,D,T) → ∃Z Lecture(T,Z),
νt : Lecture(X,Y) ∧ Lecture(Y,X) → ⊥,

σst : ResearchArea(N,T)∧
Researcher(N,U) → ∃D UResearchArea(U,D,T),

νm : ResearchArea(N,T) ∧ UResearchArea(U,T,N) → ⊥.

Given the probabilistic source database in Table 1, two possible prob-
abilistic solution instances are shown in Table 1: Prt1 =(J1, μt1)
and Prt2 =(J2, μt2). While both Prt1 and Prt2 are probabilistic
solutions, only Prt1 is also a probabilistic universal solution.

For a deterministic source database D relative to an ODE problem
M=(S,T,Σs, Σt,Σst) and a CQ q(X)= ∃Yφ(X,Y) over T, the
set of answers for q to D relative to M is defined as ans(q,D,Σs ∪
Σt ∪ Σst). We now generalize this to probabilistic source databases
relative to ODE problems and unions of CQs (UCQs).

A union of CQs (or UCQ) has the form q(X)=
∨k

i=1 ∃Yi

φi(X,Yi), where each ∃Yi φi(X,Yi) with i∈{1, . . . , k} is
a CQ with exactly the variables X and Yi. Given an ODE
problem M=(S,T,Σs,Σt,Σst), probabilistic source database

Prs =(I, μs), UCQ q(X) =
∨k

i=1 ∃Yi φi(X,Yi), and tuple t
(a ground instance of X in q) over C, the confidence of t relative
to q, denoted conf q(t), in Prs relative to M is the infimum of
Prt(q(t)) subject to all probabilistic solutions Prt for Prs relative to
M. Here, Prt(q(t)) for Prt = (J , μt) is the sum of all μt(J) such
that q(t) evaluates to true in the instance J ∈ J (i.e., some BCQ
∃Yi φi(t,Yi) with i ∈ {1, . . . , k} evaluates to true in J).

3.2 Probabilistic Ontological Data Exchange

Probabilistic ontological data exchange extends deterministic onto-
logical data exchange by turning the deterministic source-to-target
mapping into a probabilistic source-to-target mapping, i.e., we now
have a probability distribution over the set of all subsets of Σst.

A probabilistic ontological data exchange (PODE) problem
M=(S,T,Σs,Σt,Σst, μst) consists of (i) a source schema S, (ii)
a target schema T disjoint from S, (iii) a finite set Σs of TGDs
and NCs over S (source ontology), (iv) a finite set Σt of TGDs and
NCs over T (target ontology), (v) a finite set Σst of TGDs and NCs
σ over S ∪ T, and (vi) a function μst : 2

Σst → [0, 1] such that∑
Σ′⊆Σst

μst(Σ
′) = 1 (probabilistic (source-to-target) mapping).

The notion of a probabilistic (universal) solution is defined as fol-
lows. A probabilistic target instance Prt =(J , μt) is a probabilistic
solution (resp., probabilistic universal solution) for a probabilis-
tic source database Prs =(I, μs) relative to a PODE problem
M=(S,T,Σs,Σt, Σst, μst) iff there exists a probability space
Pr=(I × J × 2Σst , μ) such that: (i) the three marginals of μ are
μs, μt, and μst, such that (i.a)

∑
J∈J ,Σ′⊆Σst

μ(I, J,Σ′)=μs(I)

for all I ∈I, (i.b)
∑

I∈I,Σ′⊆Σst
μ(I, J,Σ′)=μt(J) for all

J ∈J , and (i.c)
∑

I∈I, J∈J μ(I, J,Σ′)=μst(Σ
′) for all

Σ′ ⊆Σst; and (ii) μ(I, J,Σ′)= 0 for all (I, J) �∈Sol (S,T,Σ′)
(resp., (I, J) �∈USol (S,T,Σ′)).

Using probabilistic (universal) solutions for probabilistic source
databases relative to PODE problems, the semantics of UCQs is lifted
to PODE problems as follows. Given a PODE problem M=(S, T,
Σs,Σt,Σst, μst), a probabilistic source database Prs =(I, μs), a
UCQ q(X) =

∨k
i=1 ∃Yi φi(X,Yi), and a tuple t (a ground in-

stance of X in q) over C, the confidence of t relative to q, denoted
conf q(t), in Prs relative to M is the infimum of Prt(q(t)) subject to
all probabilistic solutions Prt for Prs relative to M. Here, Prt(q(t))
for Prt =(J , μt) is the sum of all μt(J) such that q(t) evaluates to
true in the instance J ∈ J .

3.3 Compact Encoding

We use a compact encoding of both probabilistic databases and prob-
abilistic mappings, which is based on annotating database atoms,
TGDs, and NCs by probabilistic Boolean events rather than explic-
itly specifying the whole probability space. That is, database atoms,
TGDs, and NCs are annotated with Boolean combinations of ele-
mentary events, where every annotation describes when the anno-
tated item is true and is associated with a probability. We first define
general annotations and general annotated atoms.

Let e1, . . . , en be n≥ 1 elementary events. A world w is a con-
junction �1∧· · ·∧�n, where each �i, i∈{1, . . . , n}, is either the ele-
mentary event ei or its negation ¬ei. An annotation λ is any Boolean
combination of elementary events (i.e., all elementary events are
annotations, and if λ1 and λ2 are annotations, then also ¬λ1 and
λ1∧λ2); as usual, λ1∨λ2 abbreviates ¬(¬λ1∧¬λ2). An annotated
atom has the form a : λ, where a is an atom, and λ is an annotation.
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Possible source database facts
ra Researcher(Alice, UnivOfOxford)
rp Researcher(Paul, UnivOfOxford)
paml Publication(Alice, ML, JMLR)
padb Publication(Alice, DB, TODS)
ppdb Publication(Paul, DB, TODS)
ppai Publication(Paul, AI, AIJ)

Derived source database facts
aaml ResearchArea(Alice, ML)
aadb ResearchArea(Alice, DB)
apdb ResearchArea(Paul, DB)
apai ResearchArea(Paul, AI)

Probabilistic source database Prs = (I, μs)
I1 = {ra, rp, paml, ppdb, aaml, apdb} 0.3
I2 = {ra, rp, paml, ppai, aaml, apai} 0.3
I3 = {ra, rp, padb, ppai, aadb, apai} 0.2
I4 = {ra, rp, padb, ppdb, aadb, apdb} 0.1
I5 = {ra, padb, aadb} 0.1

Possible target instance facts
uml UResearchArea(UnivOfOxford, N1, ML)
uai UResearchArea(UnivOfOxford, N2, AI)
udb UResearchArea(UnivOfOxford, N3, DB)
lml Lecture(ML, N4)
lai Lecture(AI, N5)
ldb Lecture(DB, N6)

Prob. target instance Prt1 = (J1, μt1)

J1 = {uml, udb, lml, ldb} 0.3
J2 = {uml, uai, lml, lai} 0.3
J3 = {uai, udb, lai, ldb} 0.2
J4 = {udb, ldb} 0.2

Prob. target instance Prt2 = (J2, μt2)

J5 = {uml, udb, lml, ldb} 0.35
J6 = {uml, uai, lml, lai} 0.2
J7 = {uml, uai, udb, lml, lai, ldb} 0.45

Table 1. Probabilistic source database Prs and two probabilistic target instances Prt1 and Prt2 (with nulls Ni) for Example 1.

The compact encoding of probabilistic databases is then defined
as follows. This encoding is also underlying our complexity anal-
ysis below. A set A of annotated atoms along with a probability
μ(w)∈ [0, 1] for every world w compactly encodes a probabilistic
database Pr = (I, μ) whenever:

1. the probability μ of every annotation λ is the sum of the probabil-
ities of all worlds in which λ is true, and

2. the probability μ of every subset-maximal database {a1, . . . ,
am}∈I such that {a1 : λ1, . . . , am : λm} ⊆ A for some annota-
tions λ1, . . . , λm is the probability μ of λ1 ∧ · · · ∧ λm (and the
probability μ of every other database in I is 0).

We assume that all annotations are in disjunctive normal form
(DNF), i.e., disjunctions of conjunctions of literals, and we consider
the following four cases:

Elementary-event-independence: elementary events and their
negations are pairwise probabilistically independent (i.e., the
probability of worlds �1 ∧ · · · ∧ �n of elementary events (�i = ei)
and their negations (�i = ¬ei) is defined as Πn

i=1ν(�i), where
ν(�i) = μ(ei) for �i = ei, and ν(�i) = 1− μ(ei) for �i = ¬ei);

PosBool: a special case of elementary-event-independence where
all annotations are arbitrary many disjunctions of arbitrary many
conjunctions of positive elementary events. Again, elementary
events are pairwise probabilistically independent (i.e., the prob-
ability of worlds �1 ∧ · · · ∧ �n of elementary events (�i = ei) is
defined as Πn

i=1ν(�i), where ν(�i) = μ(ei));

Tuple-independence: special case of PosBool where annotations
are elementary and worlds have positive probability.

Elementary-event-dependence encoded by a Bayesian network:

Here, we assume that the probability distributions for the under-
lying elementary events are given by a Bayesian network.

Note that in the tuple-independent case, annotations consist of as
many elementary events as database atoms, and each database atom
is annotated with a different single elementary event. The following
example illustrates the encoding of a probabilistic database.

Example 2 In Table 2, an annotation encoding of a probabilistic
source database is shown. It has four elementary events e1, e2, e3,

and e4 along with their probabilities p(e1) = 3/10, p(e2) = 3/7,
p(e3) = 1/2, and p(e4) = 1/2, respectively. The encoding com-
pactly represents the probabilistic source database in Table 1.

If also the mapping is probabilistic, then we use two disjoint sets of
elementary events, one for encoding the probabilistic source database
and the other one for the mapping. In this way, the probabilistic
source database is independent from the probabilistic mapping. We
now define the compact encoding of probabilistic mappings.

An annotated TGD (resp., NC) has the form σ : λ, where σ is
a TGD (resp., NC), and λ is an annotation. A set Σ of annotated
TGDs and NCs σ : λ with σ ∈ Σst along with a probability μ(w) ∈
[0, 1] for every world w compactly encodes a probabilistic mapping
μst : 2

Σst → [0, 1] whenever:

1. the probability μ of every annotation λ is the sum of the probabil-
ities of all worlds in which λ is true, and

2. the probability μst of every subset-maximal {σ1, . . . , σk}⊆Σst

such that {σ1 : λ1, . . . , σk : λk}⊆Σ for some annota-
tions λ1, . . . , λk is the probability μ of λ1 ∧ · · · ∧ λk (and the
probability μst of every other subset of Σst is 0).

4 COMPUTATIONAL COMPLEXITY

We now analyze the computational complexity of deciding threshold
query answering for deterministic and probabilistic ontological data
exchange problems. We also delineate some tractable special cases.

More precisely, we consider the following decision problem. We
query the target ontology and ask whether a Boolean UCQ (BUCQ)
is entailed with a probability of at least a given threshold τ ∈ [0, 1].

Definition 3 (Threshold Query Answering) Given a (P)ODE pro-
blem M, a probabilistic source database Prs, a UCQ q(X), a ground
instance a of X over C, and a threshold τ ∈ (0, 1], decide whether
conf q(a)≥ τ in Prs relative to M; we then say that a is a τ -
threshold answer to q(X).

W.l.o.g., the underlying ontologies and the mapping are in the
same language, as the more expressive one always defines the com-
plexity class of the ontological data exchange problem as a whole.
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Possible source database facts Annotation
ra Researcher(Alice, UnivOfOxford) true
rp Researcher(Paul, UnivOfOxford) e1∨ e2∨ e3∨ e4
paml Publication(Alice, ML, JMLR) e1∨ e2
padb Publication(Alice, DB, TODS) ¬ e1 ∧ ¬ e2
ppdb Publication(Paul, DB, TODS) e1∨ (¬ e2 ∧ ¬ e3∧ e4)
ppai Publication(Paul, AI, AIJ) (¬ e1∧ e2) ∨ (¬ e1∧ e3)

Table 2. Left: Annotation encoding of the probabilistic source database in Table 1. A possible elementary-event-independent interpretation is presented in
Example 2. Right: An elementary-event-dependent interpretation represented by a polytree Bayesian network.

4.1 Complexity Classes

We assume some elementary background in complexity theory; see
[20, 25]. We now briefly recall the complexity classes that we
encounter in our complexity results below. The complexity class
PSPACE (resp., P, EXP, 2EXP) contains all decision problems that can
be solved in polynomial space (resp., polynomial, exponential, dou-
ble exponential time) on a deterministic Turing machine, while the
complexity classes NP and NEXP contain all decision problems that
can be solved in polynomial and exponential time on a nondetermin-
istic Turing machine, respectively, and coNP and coNEXP are their
complementary classes, where “Yes” and “No” instances are inter-
changed. The complexity class AC0 is the class of all languages that
are decidable by uniform families of Boolean circuits of polynomial
size and constant depth. Finally, the complexity class PP (resp., PPNP)
contains the problems decidable by a polynomial-time Turing ma-
chine (resp., polynomial-time Turing machine with an oracle for NP)
that accepts an input iff the majority of its runs halt in an accept-
ing state. The functional analog of PP is the well-known class #P,
which is the class of all functions f (from strings to the nonnegative
integers) for which there exists a nondeterministic polynomial-time
Turing machine T such that for every input string w, it holds that
f(w) is the number of accepting runs of T on w. The above (deci-
sion) complexity classes and their inclusion relationships (which are
all currently believed to be strict) are shown below:

AC0 ⊆ P ⊆ NP, coNP ⊆ PP ⊆ PPNP

⊆ PSPACE ⊆ EXP ⊆ NEXP, coNEXP ⊆ 2EXP.

4.2 Decidability Paradigms

The main (syntactic) conditions on TGDs that guarantee the decid-
ability of CQ answering are guardedness [7], stickiness [10], and
acyclicity. Each of them has its “weak” counterpart: weak guarded-
ness [7], weak stickiness [10], and weak acyclicity [14], respectively.

A TGD σ is guarded, if there exists an atom in its body that con-
tains (or “guards”) all the body variables of σ. The class of guarded
TGDs, denoted G, is defined as the family of all possible sets of
guarded TGDs. A key subclass of guarded TGDs are the so-called
linear TGDs with just one body atom (which is automatically a
guard), and the corresponding class is denoted L. Weakly guarded
TGDs extend guarded TGDs by requiring only “harmful” body vari-
ables to appear in the guard, and the associated class is denoted WG.
More specifically, weakly guardedness requires guards to cover all
variables occurring in affected positions only, where affected posi-
tions are positions in predicates that may contain some fresh labeled
nulls that are generated during the construction of the chase [7].

It is easy to verify that L⊂G⊂WG. Note that guardedness and
weak guardedness are generalized by the notions of frontier-guarded-
ness and weak frontier-guardedness, respectively [4]. More precisely,
frontier-guardedness relaxes the guardedness condition of TGDs by
requiring the guard atom to contain only the frontier of a TGD, which
is the set of all variables that appear in both the body and the head of
the TGD. Generalizing frontier-guardedness, a set of TGDs is weakly
frontier-guarded, if each TGD has an atom in its body that contains
all affected variables from the frontier of the TGD.

Stickiness is inherently different from guardedness, and its central
property can be described as follows: variables that appear more than
once in a body (i.e., join variables) are always propagated (or “stick”)
to the inferred atoms. A set of TGDs that enjoys the above property
is called sticky, and its class is denoted S. Weak stickiness is a re-
laxation of stickiness where only “harmful” variables are taken into
account. A set of TGDs that enjoys weak stickiness is weakly sticky,
and the associated class is denoted WS. Observe that S⊂WS.

A set Σ of TGDs is acyclic if its predicate graph is acyclic, and
the underlying class is denoted A. In fact, an acyclic set of TGDs can
be seen as a nonrecursive set of TGDs. We say Σ is weakly acyclic
if its dependency graph enjoys a certain acyclicity condition, which
actually guarantees the existence of a finite canonical model; the as-
sociated class is denoted WA. Note that A⊂WA⊂WS.

Another key fragment of TGDs are full TGDs, i.e., TGDs with-
out existentially quantified variables, and the corresponding class is
denoted F. If we further assume that full TGDs enjoy linearity, guard-
edness, stickiness, or acyclicity, then we obtain the classes LF, GF,
SF, and AF, respectively. Note that F⊂WA and F⊂WG.

4.3 Overview of Complexity Results

Our complexity results for deciding threshold query answering in
the elementary-event-independent and the Bayesian-network case for
both ODE and PODE problems are summarized in Table 4, while
our complexity results for deciding threshold query answering in the
tuple-independent and the PosBool case are summarized in Table 5.

More precisely, in the elementary-event-independent and the
Bayesian-network case (see Table 4), threshold query answering
is complete for PP (resp., PPNP) in the data (resp., fp-combined)
complexity for all fragments of existential rules, except for WG⊥,
where it is complete for EXP. The ba-combined complexity in
the elementary-event-independent and the Bayesian-network case is
among PPNP (for L, LF, AF, S, SF, F, and GF), EXP (for G and WG),
NEXP (for A), and 2EXP (for WS and WA), while the combined com-
plexity is among PSPACE (for L, LF, and AF), EXP (for S, SF, F, and
GF), NEXP (for A), and 2EXP (for G, WG, WS, and WA).
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Note that the same complexity results hold for other fragments of
TGDs where standard BCQ answering has the same complexity, e.g.,
since standard BCQ answering in the frontier-guarded fragment is
complete for P, 2EXP, and 2EXP (EXP, 2EXP, and 2EXP in the weakly
frontier-guarded case) in the data, ba-combined, and combined com-
plexity, respectively [4], in the elementary-event-independent and the
Bayesian-network case, threshold BUCQ answering in the frontier-
guarded fragment is complete for PP, 2EXP, and 2EXP (EXP, 2EXP,
and 2EXP in the weakly frontier-guarded case) in the data, ba-
combined, and combined complexity, respectively.

In the tuple-independent and the PosBool case, we obtain the same
complexity classes, except that the matching lower bounds for the PP

and PPNP cases are still open; though, we were able to provide a #P

completeness result for the function problem of computing the exact
probability of a BUCQ for the PP cases in the data complexity.

Thus, as for the complexity cases above PSPACE, the complexity
of threshold BUCQ answering coincides with the complexity of stan-
dard BCQ answering (see Table 3).

Data fp-comb. ba-comb. Comb.

L, LF, AF in AC0 NP NP PSPACE
G P NP EXP 2EXP
WG EXP EXP EXP 2EXP
S, SF in AC0 NP NP EXP
F, GF P NP NP EXP
A in AC0 NP NEXP NEXP

WS, WA P NP 2EXP 2EXP

Table 3. Complexity of BCQ answering [22]. All entries except for the
“in” ones are completeness results; hardness for all entries but the

fp-combined ones holds even for ground atomic BCQs.

Data fp-comb. ba-comb. Comb.

L, LF, AF PP PPNP PPNP PSPACE
G PP PPNP EXP 2EXP
WG EXP EXP EXP 2EXP
S, SF PP PPNP PPNP EXP
F, GF PP PPNP PPNP EXP
A PP PPNP NEXP NEXP

WS, WA PP PPNP 2EXP 2EXP

Table 4. Complexity of threshold query entailment (for both ODE and
PODE problems) in the elementary-event-independent and the Bayesian-

network case. All entries are completeness results.

Data fp-comb. ba-comb. Comb.

L, LF, AF in PP in PPNP in PPNP PSPACE
G in PP in PPNP EXP 2EXP
WG EXP EXP EXP 2EXP
S, SF in PP in PPNP in PPNP EXP
F, GF in PP in PPNP in PPNP EXP
A in PP in PPNP NEXP NEXP

WS, WA in PP in PPNP 2EXP 2EXP

Table 5. Complexity of threshold query entailment (for both ODE and
PODE problems) for tuple-independent and PosBool annotated probabilis-
tic databases. All entries except for the “in” ones are completeness results.

4.4 Deterministic Ontological Data Exchange

We first consider threshold query answering on target ontologies
relative to an ODE problem in Datalog+/– languages where BCQ

answering is complete for C ⊇ PSPACE (see also Table 3 [22]). The
following result shows that in these cases, threshold query answer-
ing is complete for C in all four annotation cases. This proves all
completeness entries in Tables 4 and 5 above PSPACE.

Theorem 4 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst ∪ Σt belongs to a class of TGDs and NCs for
which BCQ answering is complete for a deterministic complexity
class C ⊇ PSPACE or nondeterministic complexity class C = NEXP,
(ii) a probabilistic source database Prs w.r.t. Σs, (iii) a UCQ q(X)
over T, (iv) a ground instance a of X over C, and (v) τ ∈ (0, 1], de-
ciding whether a is a τ -threshold answer to q(X) is complete for C.

Proof (sketch). As for membership, with annotations consisting of
n variables, we create a full valuation of an annotation at a time and
compute its probability, which is in PSPACE. Then, we check whether
q(a) is true in the corresponding world, which is in C. As we exam-
ine one valuation after another, we also add up its probability, if q(a)
is true in the corresponding world, until we reach the threshold τ , or
we have examined all valuations. Hence, if standard BCQ answering
belongs to the deterministic complexity class C ⊇ PSPACE, then the
upper bound is C. If standard BCQ answering belongs to the non-
deterministic complexity class C = NEXP, we guess a set of worlds
where q(a) evaluates to true, and verify this guess. Since both steps
are in NEXP, the computation is overall also in NEXP.

Hardness is shown by a reduction from BCQ answering in
Datalog+/– ontologies to threshold query answering. Consider a
source schema S and a target schema T, as well as a set of n source
relations RS,i, 1 ≤ i ≤ n, and a set of n target relations RT,i,
1 ≤ i ≤ n, where each RS,i has the same arity as RT,i. We also
assume a source database with each tuple having the probability 1.
The target database is empty. By employing a simple copy mapping
from the source database to the target database RS,i(x1, . . . , xni) →
RT,i(y1, . . . , yni), and Σs being empty, while Σt contains a set of
TGDs and NCs in the language we consider. Then, a ground instance
a is a τ -threshold answer to q(X) with τ = 1 in the ODE problem
iff the BCQ q(a) is true for the ontology Σs ∪ Σst ∪ Σt with the
source database. �

The next result shows that in the elementary-event-independent
and in the Bayesian-network case, if the language of the ontologies
and the mappings belongs to a class of TGDs and NCs for which
standard BCQ answering is complete for NP in the fp-combined and
the ba-combined complexity, then threshold query answering is com-
plete for PPNP in the fp-combined and the ba-combined complexity.
This proves all PPNP completeness entries in Table 4.

Theorem 5 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst ∪ Σt belongs to a class of TGDs and NCs
for which BCQ answering is NP-complete in the fp-combined and
the ba-combined complexity, and which includes copy TGDs, (ii)
an elementary-event-independent or a Bayesian-network-annotated
probabilistic source database Prs relative to Σs, (iii) a UCQ q(X)
over T, (iv) a ground instance a of X over C, and (v) τ ∈ (0, 1], de-
ciding whether a is a τ -threshold answer to q(X) is PPNP-complete
in the fp-combined and the ba-combined complexity.

Proof (sketch). As for membership in PPNP, intuitively, we first create
multiples of each world (which then correspond to the nondetermin-
istic branches of a Turing machine), so that the probability distribu-
tion over all thus generated worlds is the uniform distribution. Then,
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for thresholds properly below (resp., above) 0.5, we introduce artifi-
cial success (resp., failure) worlds (which correspond to other non-
deterministic success (resp., failure) branches of a Turing machine),
so that satisfying the resulting threshold corresponds to having a ma-
jority of success worlds. We thus only have to verify whether for the
majority of the worlds, the query evaluates to true. As query evalua-
tion is in NP, the computation is overall in PPNP.

Hardness for PPNP holds by a reduction from the PPNP-com-
plete problem of deciding, given n ≥ 0 and a quantified Boolean
formula (QBF) Φ= ∀x1 . . . xl∃y1 . . . ym φ1 ∧ φ2 ∧ · · · ∧ φk,
where l,m, k≥ 1, and every φi is a disjunction of literals over
x1, . . . , xl, y1, . . . , ym, whether there are at least n truth assign-
ments τ to x1, . . . , xl such that ∃y1 . . . ym τ(φ1) ∧ τ(φ2) ∧ · · · ∧
τ(φk) is satisfiable [30]. W.l.o.g., every φi is a disjunction of three
literals over x1, . . . , xl, y1, . . . , ym. For every φi, let ui, vi, wi de-
note its variables, and let the source database contain the proba-
bilistic facts r(i, ν(ui), ν(vi), ν(wi)) : ψ such that (i) ν is a truth
assignment to ui, vi, wi that satisfies φi, and (ii) ψ is a conjunc-
tion of literals over {x1, . . . , xl} ∩ {ui, vi, wi} that exactly repre-
sents the restriction of ν to x1, . . . , xl. Here, every variable xi has
the probability μ(xi) = 0.5, and thus every world over x1, . . . , xl

has the probability 2−l. Let Σs and Σt be empty, and let Σst con-
tain the copy mapping rule r(I, U, V,W ) → r′(I, U, V,W ). Then,
∃x1 . . . xl∃y1 . . . ym r′(1, u1, v1, w1) ∧ r′(2, u2, v2, w2) ∧ · · · ∧
r′(k, uk, vk, wk) holds with the probability of at least n · 2−l iff
there are at least n truth assignments τ to x1, . . . , xl such that
∃y1 . . . ym τ(φ1) ∧ τ(φ2) ∧ · · · ∧ τ(φk) is satisfiable. Observe that
the above reduction can clearly be done in polynomial time in the
size of Φ, and that the set of TGDs and NCs is fixed (fp-combined
case), and that the arity of all predicates is 4 (ba-combined case). �

The next theorem shows that in the elementary-event-independent
and in the Bayesian-network case, if the language of the ontologies
and the mappings belongs to a class of TGDs and NCs for which
standard BCQ answering is in P in the data complexity, then thresh-
old query answering is complete for PP in the data complexity. This
proves all PP completeness entries in Table 4.

Theorem 6 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst ∪ Σt belongs to a class of TGDs and NCs for
which BCQ answering is in P in the data complexity, and which
includes copy TGDs, (ii) an elementary-event-independent or a
Bayesian-network-annotated probabilistic source database Prs rel-
ative to Σs, (iii) a UCQ q(X) over T, (iv) a ground instance a of
X over C, and (v) τ ∈ (0, 1], deciding whether a is a τ -threshold
answer to q(X) is PP-complete in the data complexity.

Proof (sketch). The PP-membership proof is similar to the PPNP-
membership proof for Theorem 5, except that the standard BCQ
query answering oracle is now in P and not in NP.

Hardness for PP holds by a reduction from the PP-complete
#3SAT(≥ 2n/2) decision problem [5]: given a 3CNF formula φ with
n variables, does φ have at least 2n/2 satisfying truth assignments?
Given an instance φ of #3SAT(≥ 2n/2), we construct an ODE prob-
lem as follows. We assume a source database with a source schema
S consisting of a binary relation symbol RS and to contain a single
tuple with φ as annotation in 3CNF. Each of the n variables of the an-
notation has the probability 0.5. The schema T of the target database
consists of a binary relation symbol RT ; the target database is empty.
The sets Σs and Σt are empty as well. The set Σst contains the fol-
lowing mapping rule RS(x, y) → RT (x, y), which copies the tuple

of the source relation to the target relation. Then, the transferred tu-
ple has a probability higher than 2−n/2 iff the 3CNF formula has at
least 2n/2 satisfying truth assignments, which proves PP-hardness. �

The following theorem says that in the tuple-independent and the
PosBool case, if the language of the ontologies and the mappings be-
longs to a class of TGDs and NCs for which standard BCQ answer-
ing is complete for NP in the fp-combined and the ba-combined com-
plexity, then threshold query answering is in PPNP in the fp-combined
and the ba-combined complexity. The theorem follows from the
membership in PPNP of the problem in the more general elementary-
event-independent case (see Theorem 5). This result proves all PPNP

membership entries in Table 5.

Theorem 7 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst ∪ Σt belongs to a class of TGDs and NCs for
which BCQ answering is in NP in the fp-combined and the ba-
combined complexity, (ii) a tuple-independent or PosBool probabilis-
tic source database Prs relative to Σs, (iii) a UCQ q(X) over T,
(iv) a ground instance a of X over C, and (v) τ ∈ (0, 1], deciding
whether a is a τ -threshold answer to q(X) is in PPNP in the fp-
combined and the ba-combined complexity.

The next theorem shows that in the tuple-independent and the Pos-
Bool case, if the language of the ontologies and the mappings be-
longs to a class of TGDs and NCs for which standard BCQ answering
is in P in the data complexity, then threshold query answering is in PP

in the data complexity, proving all PP membership entries in Table 5.
The theorem also shows that the function problem of computing the
exact probability is #P-complete in the data complexity for ontolo-
gies and mappings encoded as NCs and full and guarded TGDs (i.e.,
this #P-completeness holds for the classes G, F, GF, WS, and WA).

Theorem 8 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst ∪ Σt belongs to a class of TGDs and NCs for
which BCQ answering is in P in the data complexity, (ii) a tuple-
independent or PosBool probabilistic source database Prs relative
to Σs, (iii) a UCQ q(X) over T, (iv) a ground instance a of X over
C, and (v) τ ∈ (0, 1], deciding whether a is a τ -threshold answer
to q(X) is in PP in the data complexity. Given (i) to (iv), where
Σs ∪Σst ∪ Σt is full and guarded, computing conf q(a) in Prs rel-
ative to M is #P-complete in the data complexity.

Proof (sketch). Membership in PP is immediate by the member-
ship in PP of the problem in the more general elementary-event-
independent case (see Theorem 6). Membership in #P of the func-
tion problem follows by a similar line of argumentation.

Hardness for #P follows from a reduction from the #P-complete
monotone 2SAT problem [28]: given a Boolean formula φ = φ1 ∧
φ2 ∧ · · · ∧ φk over the variables x1, x2, . . . , xl, where each φi is a
disjunction of two variables, compute the number of truth assign-
ments to x1, x2, . . . , xl that satisfy φ. For every variable xi, let
the source database contain the probabilistic facts s(xi) : xi, along
with the probability μ(xi) = 0.5. Furthermore, for every φi, let
ui and vi denote its variables, and let the source database contain
the probabilistic facts r(i, ui) : er(i,ui) and r(i, vi) : er(i,vi), along
with the probabilities μ(er(i,ui)) = 1 and μ(er(i,vi)) = 1. For ev-
ery i, j ∈ {1, . . . , k} with i < j, let the source database contain
the probabilistic facts succ(i, j) : esucc(i,j), along with the probabil-
ity μ(esucc(i,j)) = 1. Furthermore, let the source database contain
the probabilistic fact max(k) : emax(k), along with the probability
μ(emax(k)) = 1. Let Σt be empty, and let Σs contain the full and

T. Lukasiewicz and L. Predoiu / Complexity of Threshold Query Answering in Probabilistic Ontological Data Exchange1014



guarded rules r(I,X) ∧ s(X) → t(I), max(X) ∧ t(X) → t′(X),
and t′(I)∧succ(J, I)∧r(J) → t′(J). Let Σst contain the mapping
rule t′(X) → t′′(X). Observe that the query and the set of TGDs
and NCs are both fixed, and that the TGDs are full and guarded.
Furthermore, t′′(1) holds with the probability m iff φ has m · 2l
satisfying truth assignments τ to x1, . . . , xl. �

The following theorem shows that in the tuple-independent and
the PosBool case, if the language of the ontologies and the mappings
is in a class of TGDs and NCs where standard BCQ answering is in
AC0 in the data complexity, then the function problem of computing
the exact probability is also #P-complete in the data complexity (i.e.,
this #P-completeness holds for the classes L, LF, AF, S, SF, and A).

Theorem 9 Given (i) an ODE problem M=(S,T,Σs,Σt,Σst)
such that Σs ∪Σst∪Σt is in a class of TGDs and NCs for which BCQ
answering is in AC0, (ii) a tuple-independent or PosBool probabilis-
tic source database Prs relative to Σs, (iii) a UCQ q(X) over T, and
(iv) a ground instance a of X over C, computing conf q(a) in Prs
relative to M is #P-complete in the data complexity.

Proof (sketch). Membership in #P of the function problem follows
by a similar line of argumentation as in the proof of Theorem 8.

Hardness for #P follows from the observation that the #P-com-
plete evaluation of unsafe UCQs in [12] is actually a special case of
our function problem of computing the probability of a query. �

4.5 Tractable Cases

In the tuple-independent case, if the language of the ontologies and
the mappings is in a class of TGDs and NCs where standard BCQ
answering is in AC0 in the data complexity, we arrive at a tuple-
independent source database with a rewritten first-order UCQ qΣ
(e.g., by applying the algorithm XRewrite from [17] to the initial
query q(X) on the target database and Σ = Σt ∪ Σst ∪ Σs). This
is now exactly the problem handled in [27, 12], which has impor-
tant tractable cases (called safe queries): they are those queries that
can be computed by extensional query evaluation, i.e., solely by the
query syntax or its annotation. Extensional query evaluation consists
of extending the relational operators with a probabilistic semantics.
An example of tractable queries are hierarchical queries. A query is
hierarchical, if for each existential sub-query expression ∃x qsub, the
quantified variable x occurs in all atoms of qsub. Every hierarchical
query has a read-once Boolean formula as query annotation. Further
examples for tractable cases can be found in [27, 12]. In particu-
lar, [27] delineates six syntactical rules to check whether UCQs are
tractable, and calls a UCQ q R6-safe, if it adheres to one of them;
if a UCQ is not R6-safe, it is #P-hard. In [27, 12], a polynomial
algorithm for R6-safe UCQs is given involving Möbius’ inversion
function, which ensures that it also covers UCQs, and not just CQs.
If the query is not R6-safe, it may be approximated.

4.6 Probabilistic Ontological Data Exchange

All the results in Theorems 4, 5, 6, 7, 8 and 9 carry over to PODE
problems. Clearly, the hardness results carry over immediately, as de-
terministic ontological data exchange is a special case of probabilis-
tic ontological data exchange. As for the membership results, we also
have to consider and iterate through the worlds for the probabilistic
mapping. However, iterating through these worlds in addition to the
worlds for the probabilistic source database does not increase the
overall complexity of threshold query answering.

5 SUMMARY AND OUTLOOK

We have studied the impact of different probabilistic models and
compact encodings on the computational complexity of the prob-
lem of threshold query answering in ontological data exchange with
the main Datalog+/– languages for representing the source and tar-
get ontologies as well as the mappings. We have considered the data
complexity, the fp-combined complexity, the ba-combined complex-
ity, and the combined complexity. We have provided a complete pic-
ture for the elementary-event-independent and the Bayesian network
case with a compact encoding with Boolean formulas. For tuple-
independent and PosBool-annotated probabilistic databases, we have
provided either completeness results or upper bounds.

While ontology and mapping languages with BCQ answering
complexity above PSPACE dominate the complexity of threshold
query answering, for ontology languages with BCQ answering com-
plexity below PSPACE, we obtain interesting results, one of them
being a potential dichotomy of either an upper bound of P or PP-
hardness in the data complexity for threshold query answering in the
first-order-rewritable cases. A similar dichotomy of either an upper
bound of P or #P-hardness in the data complexity exists for query an-
swering in probabilistic databases (see [27, 12]) and has been lifted
to OWL QL in [21], which is also first-order-rewritable. Note that
OWL QL corresponds to DL-LiteR, which is strictly less expressive
than most of the Datalog+/– languages considered here.

Another interesting result is PP-completeness for threshold query
answering in the data complexity for most of the Datalog+/– lan-
guages that we considered for the elementary-event-independent and
the Bayesian network case. Furthermore, we have obtained PPNP-
completeness in the fp-combined and ba-combined complexity for
the elementary-event-independent and the Bayesian-network case
for threshold query answering for several Datalog+/– languages.
This complexity class is mostly known from a blow-up in succinct
representations of problems (see [30]).

There is no related work on threshold query entailment in prob-
abilistic data exchange or probabilistic ontological data exchange.
Most other works on probabilistic databases and ontologies do not
consider threshold query answering, but consider the function prob-
lem of query answering, mostly in the data complexity, such as the
works [27, 12, 21]. Perhaps closest to our work is [11], where thresh-
old query answering has been studied under the name “probabilistic
query entailment” for the ontology language EL, annotated with an-
notations that are related to our Bayesian-network annotations. Our
work goes beyond that, as most of the ontology languages that we
are considering here are strictly more expressive than EL. In addi-
tion, we also consider a probabilistic model where the events are
elementary-event-independent annotations and PosBool annotations,
as well as tuple-independent and mapping-independent annotations.
In addition, our complexity analysis for threshold query entailment
with Bayesian networks as probabilistic model contains also com-
pleteness results for the languages we considered, while this is not
the case in [11]. Threshold query answering with probabilistic on-
tologies has also been studied in [16], but the probabilistic uncer-
tainty models used there are Markov logic networks.

An interesting topic for future research is a more detailed analysis
of the tractable case for threshold query answering, especially also
in combination with ontological query rewriting. Based on the com-
plexity results and membership proofs of this paper, another topic for
future research is to explore whether there are other (special-case or
approximation) tractable cases for threshold query answering.
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Michaël Thomazo, ‘Walking the complexity lines for generalized
guarded existential rules’, in Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI 2011), pp. 712–717.
IJCAI/AAAI Press, (2011).

[5] Delbert D. Bailey, Victor Dalmau, and Phokion G. Kolaitis, ‘Phase tran-
sitions of PP-complete satisfiability problems’, Discrete Applied Math-
ematics, 155(12), (2007).

[6] Pablo Barcelo, ‘Logical foundations of relational data exchange’, SIG-
MOD Record, 38(1), 49–58, (2009).

[7] Andrea Calı̀, Georg Gottlob, and Michael Kifer, ‘Taming the infinite
chase: Query answering under expressive relational constraints’, Jour-
nal of Artificial Intelligence Research, 48, (2013).

[8] Andrea Calı̀, Georg Gottlob, and Thomas Lukasiewicz, ‘A general
Datalog-based framework for tractable query answering over ontolo-
gies’, Journal of Web Semantics, 14, 57–83, (2012).

[9] Andrea Calı̀, Georg Gottlob, Thomas Lukasiewicz, Bruno Marnette,
and Andreas Pieris, ‘Datalog+/–: A family of logical knowledge rep-
resentation and query languages for new applications’, in Proceedings
of the 25th Annual IEEE Symposium on Logic in Computer Science
(LICS 2010), (2010).

[10] Andrea Calı̀, Georg Gottlob, and Andreas Pieris, ‘Towards more ex-
pressive ontology languages: The query answering problem’, Artificial
Intelligence, 139, (2012).

[11] Ismail Ilkan Ceylan and Rafael Penaloza, ‘Probabilistic query answer-
ing in the Bayesian description logic BEL’, in Proceedings of the 9th
International Conference on Scalable Uncertainty Management (SUM
2015), (2015).

[12] Nilesh Dalvi and Dan Suciu, ‘The dichotomy of probabilistic inference
for union of conjunctive queries’, Journal of the ACM, 59(6), (2012).

[13] Ronald Fagin, Benny Kimelfeld, and Phokion G. Kolaitis, ‘Probabilis-
tic data exchange’, Journal of the ACM, 58(4), (2011).

[14] Ronald Fagin, Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa,
‘Data exchange: Semantics and query answering’, Theoretical Com-
puter Science, 336(1), 89–124, (2005).

[15] Norbert Fuhr and Thomas Rölleke, ‘A probabilistic relational algebra
for the integration of information retrieval and database systems’, ACM
Transactions on Information Systems, 15(1), 32–66, (1997).

[16] Georg Gottlob, Thomas Lukasiewicz, Maria Vanina Martinez, and Ger-
ardo I. Simari, ‘Query answering under probabilistic uncertainty in
Datalog+/– ontologies’, Annals of Mathematics and Artificial Intelli-
gence, 69(1), (2013).

[17] Georg Gottlob, Giorgio Orsi, and Andreas Pieris, ‘Query rewriting
and optimization for ontological databases’, ACM Transactions on
Database Systems, 39(3), (2014).

[18] Todd J. Green, Grigoris Karvounarakis, and Val Tannen, ‘Provenance
semirings’, in Proceedings of the 26th Symposium on Principles of
Database Systems (PODS 2007), (2007).

[19] Tomasz Imielinski and Witold Lipski, ‘Incomplete information in rela-
tional databases’, Journal of the ACM, 31(4), 761–791, (1984).

[20] David S. Johnson, ‘A catalog of complexity classes’, in Handbook of
Theoretical Computer Science, 67–161, MIT Press, (1990).

[21] Jean Christoph Jung and Carsten Lutz, ‘Ontology-based access to prob-
abilistic data with OWL QL’, in Proceedings of the 11th International
Semantic Web Conference (ISWC 2012), (2012).

[22] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Ger-
ardo I. Simari, ‘From classical to consistent query answering under ex-
istential rules’, in Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence (AAAI 2015), (2015).

[23] Thomas Lukasiewicz, Maria Vanina Martinez, Livia Predoiu, and Ger-
ardo I. Simari, ‘Existential rules and Bayesian networks for proba-
bilistic ontological data exchange’, in Rule Technologies: Foundations,
Tools, and Applications, pp. 294–310, (2015).

[24] Thomas Lukasiewicz, Maria Vanina Martinez, Livia Predoiu, and Ger-
ardo I. Simari, ‘Basic probabilistic ontological data exchange with exis-
tential rules’, in Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI 2016), (2016).

[25] Christos H. Papadimitriou, Computational Complexity, Addison Wes-
ley Longman, 1994.

[26] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De
Giacomo, Maurizio Lenzerini, and Riccardo Rosati, ‘Linking data to
ontologies’, Journal on Data Semantics, 10, 133–173, (2008).

[27] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch, Proba-
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