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Abstract. Space and time are basic categories of any top-level ontology. They ac-
count for fundamental assumptions of the modes of existence of those individuals
that are said to be in space and time. The present paper is devoted to GFO-Space,
the ontology of space in the General Formal Ontology (GFO). This ontology is in-
troduced by a set of axioms formalized in first-order logic and further elucidated
by consequences of the axiomatization.

The theory is based on four primitives: the category of space regions, the rela-
tions of being a spatial part and being a spatial boundary, as well as the relation
of spatial coincidence. The presence of boundaries and the notion of coincidence
witness an inspiration of the ontology by well-motivated ideas of Franz Brentano
on space, time and the continuum. Taking up a line of prior investigations of his ap-
proach, the present work contributes a further step in establishing a corresponding
ontology of space, employing rigorous logical methods.
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1. Introduction

Space and time are very basic notions for many domains. Accordingly, their ontological
analysis is a subject matter for top-level ontologies. Theories of space and time account
for fundamental assumptions underlying the modes of existence of those individuals that
are said to be in space and time. This paper contributes to the overarching aim of pro-
viding ontologies of space, in the form of axiomatic theories, for the top-level ontology
General Formal Ontology (GFO) [1]. These space ontologies will complement the time
ontologies of GFO presented in [2]. They rest on the same principles, which originate
from ideas on space, time and the continuum by Franz Brentano [3]. The investigation
and exploration of Brentano’s ideas on space and time began about twenty years ago by
work of Roderick M. Chisholm [4] as well as Barry Smith and Achille C. Varzi, cf. e.g.
[5]. The present paper takes up this research and makes a further step in establishing an
ontology of space along these lines, proposed as a basic module for GFO. This mod-
ule results from the continuation as well as a substantial reworking of earlier theories
devoted to applying Brentano’s ideas to space [6].

We argue that space has a double nature. On the one hand, space is generated and
determined by material objects and the relations that hold between them. This space ap-
pears to the mind and provides the frame for visual and tactile experience. We call it the
phenomenal space of material objects and claim its subject-dependence. On the other

1Corresponding Author: P.O. Box 100920, 04009 Leipzig, Germany. frank.loebe@informatik.uni-leipzig.de

Formal Ontology in Information Systems
R. Ferrario and W. Kuhn (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-660-6-53

53



hand, any material object has a subject-independent disposition, called extension space,
which unfolds in the mind/subject as phenomenal space.2 The basic entities of phenom-
enal space are called space regions which are abstracted from aggregates of material
objects generating them. Hence, phenomenal space can be understood as a category the
instances of which are space regions.

The present paper is devoted to the investigation and axiomatization of the category
of phenomenal space. This axiomatization of GFO-Space – expounded and specified as a
first-order theory BS – is inspired by ideas on space that are set forth by Brentano in [3],
such that we may speak of a Brentano ontology of Space3. We believe that Brentano’s
ideas on space and continuum correspond to our experience of sense data.

The paper proceeds as follows. We start with a brief survey on related work in sec-
tion 2. In section 3 basics on the relation between material entities and space are outlined,
connected with the motivation for this work. The main section 4 of the paper presents an
outline of an axiomatic system that describes GFO-Space in a formal way. Some conse-
quences of this theory are presented at the end of the section. Section 5 sketches possible
applications, followed by conclusions and future work in section 6.

2. Related Work

There is a vast literature on space and spatial theories, as there are diverse approaches to
understanding space. They can very broadly be classified into two general kinds. First,
there are container space approaches, like the foundation adopted by Isaac Newton in
[9]. The second kind accounts for relational space, e.g. in the sense of Gottfried Wilhelm
Leibniz (cf. [10] for a dispute on these opposing approaches). More recent valuable and
detailed analyses of different space ontologies are expounded in [11,12].

In connection with GFO-Space as presented in section 4, we restrict attention to
mereotopological theories, for which [13] and [14] are overviews of value. Existing the-
ories vary in their expressiveness and ontological decisions. We focus on three features
of high relevance in relation to GFO-Space:

1. the introduction and definition of mereological and topological relations,
2. the treatment of boundaries and dimensionality of entities and
3. the degree of specification of the intended model(s).

A well-known source on mereological theories is [15]. Enriching such a theory by topo-
logical primitives like self-connectedness [16] or disconnection [17] is one common way
to specify a mereotopological theory. Different kinds of connectedness are defined and
discussed in [18], a.o. regarding theories with vs. without boundaries. Another possibil-
ity is to define mereological relations like parthood in terms of topological primitives.
One well-studied representative is the Region Connection Calculus (RCC) [19], based on
the definability of parthood in terms of connection [20]. The RCC theory postulates only
two axioms, namely reflexivity and symmetry of the connection relation. Apart from the
usefulness of RCC for qualitative spatial representation and reasoning, this weak axiom-
atization is a shortcoming with respect to the third criterion above.

2To a certain extent the distinction between the extension space of material entities and the phenomenal
space relates to the one between spatiality and space, as considered by Nicolai Hartmann in [7,8].

3This motivates the acronym BS, in line with the notation in [2].
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It is a common restriction of many mereotopological theories to include only equal-
dimensional entities in a single model, e.g. in [16,19]. This restriction may be explained
by additional issues that arise when space entities of different dimensions are mixed
[21], e.g., “Has a spherical volume its surface as a part?”. Nevertheless, some approaches
highlight the utility of space entities of different dimensions and account for them,
e.g. [21,22,23]. In particular, [23] is a recent proposal of an axiomatic spatial theory
that modularly combines a theory of spatial dimensions with a dimension-independent
mereotopological account. The latter is grounded in containment as its mereological
primitive, which generalizes parthood by being applicable across dimensions.

3. Motivation and Conceptual Overview

Many intuitions and motivations underlying especially [21] and [23] in the previous
section are applicable to phenomenal space, which we intend to capture. In addition,
more particular aspects of GFO-Space arise from the notion of continuum as inspired by
Brentano [3]. Continua have two sources, phenomenal time [2] and phenomenal space.
Both can be accessed through introspection. Phenomenal space is related to the extension
of a material body, presented to the mind through the occupation of space. Space con-
tinua are wholly present at time points. We argue that space and time cannot be conflated
into a homogeneous, four-dimensional system [24]. Yet there is a natural integration of
both types of continua in GFO through its law of object-process integration [25].

Every continuum exhibits certain basic features: it has a boundary, it does not pos-
sess atomic parts, and for any division of it into two non-overlapping parts each of them
possesses a boundary, such that these boundaries are distinct and coincide. It follows that
any continuum is connected; there are no jumps or gaps in it. Moreover, in our framework
continua cannot be adequately modeled by sets of points (e.g., of the Euclidean space
R

3). Space continua are classified into being 1-dimensional, called lines, 2-dimensional,
being connected surfaces, and 3-dimensional, called topoids.

We believe that the features of continua are needed to achieve an adequate modeling
of material objects and their relation to space. A boundary of a material object, or more
briefly, a material boundary occurs if the object is demarcated from its environment. We
hold that a material boundary is a cognitive construction. It does not consist of matter
itself and depends on the granularity of the view. Note in this regard that the present
theory is oriented towards the mesoscopic world of phenomenal objects.

Boundaries of space regions must be distinguished from material boundaries. Natu-
ral boundaries, called bona fide boundaries in [5], are specific material boundaries that
exhibit a discontinuity. There are several classical puzzles that pertain to material bound-
aries, among them Leonardo da Vinci’s problem of “What is it that divides the atmo-
sphere from the water? Is it air or is it water?” [26], and Brentano’s problem of “What
color is the line of the demarcation between a red surface and blue surface being in con-
tact with each other?” [3]. In our opinion, the following is a natural solution to these
problems, which we discuss for the surface problem (also called flag problem). The red
and the blue surfaces are surfaces of material objects. Any of these material surfaces has
its own material boundary, called blue boundary and red boundary. These boundaries are
distinct and touch along certain parts, where there is nothing in between the touching
parts of them. How can this phenomenon be adequately modeled? First, we assume that
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the considered material surfaces R and B occupy corresponding closed spatial surfaces
R′ and B′. This implies that the material boundaries r of R and b of B occupy corre-
sponding spatial boundaries r′ of R′ and b′ of B′. The features of continua include the
coincidence of space boundaries. Thus we may state that the material boundaries r and b
touch if the corresponding space boundaries r′ and b′ coincide. The distinction between
material boundary and space boundary is important here: material boundaries may touch,
but cannot coincide, whereas space boundaries may coincide. Clearly, the considered sit-
uation cannot be modeled within the Euclidean space R

3, because the surfaces R′ and
B′ cannot both be represented as closed subsets of R3.

Conceptual Overview Considerations of the kind above motivated us to develop GFO-
Space, an axiomatic theory for the description of the phenomenal space. We assume
that the phenomenal space is uniquely determined, although our knowledge about it is
limited. Our source for the justification of these axioms is the pure apperception and
daily experience, but also analogies to classical mathematical theories of manifolds.

Let us preview major conceptual constituents for the axiomatization, which in par-
allel illuminates its four primitives: the category ‘space region’ and the relations ‘spatial
part of’, ‘spatial boundary of’ and ‘coincidence’. The (intended) universe of discourse
for GFO-Space is the category of space entities. It can be divided into four pairwise dis-
joint categories, namely space regions, surface regions, line regions and point regions.
They correspond to three-, two-, one-, and zero-dimensional space entities, respectively,
and the latter three are jointly referred to as lower-dimensional entities. All four cate-
gories accommodate entities sui generis, i.e. higher-dimensional entities cannot not be
defined as a set or sum of lower-dimensional entities.

An important subclass of lower-dimensional space entities are spatial boundaries.
A spatial boundary cannot exist independently and is always the boundary of a higher-
dimensional space entity. Importantly, if B is a boundary of E that does not mean that B
“fully covers” E. If E is a spatial cube, for example, solely its upper side U is a boundary
of E, but also the overall surface S of E is (more technically speaking, S is the greatest
boundary of E). U is a part of S, accordingly.

Another important property of spatial boundaries is the ability to coincide. Two sur-
face/line/point regions coincide if they are compatible and co-located, which means, in-
tuitively speaking, that they are “congruent” and there is no distance between them. In
contrast to classical topology, two coinciding boundaries may be distinct. Consider, for
example, two spatial cubes, one on top of the other. Each cube seen individually has its
own two-dimensional spatial boundaries. The upper side of the lower cube and the lower
side of the upper cube coincide, but they are different. Coincidence is stipulated to be an
equivalence relation.

The mereological sum of coincident spatial boundaries yields examples of extraor-
dinary entities, which have distinct parts that coincide, but do not overlap. Entities with-
out such parts are ordinary. Ordinary three-, two- and one-dimensional space entities
that are additionally connected are called topoids, surfaces and lines, respectively. The
co-dimension between a spatial boundary and the corresponding space entity it bounds
is 1. That means, for instance, that a line region cannot be a spatial boundary of a space
region and point regions cannot have boundaries. We postulate that every space region
has a greatest spatial boundary, whereas this cannot be justified for lower-dimensional
entities, e.g., realizing that a circle has no boundary at all.
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Spatial parthood is the final primitive notion of GFO-Space. It is assumed to exhibit a
partial ordering. Only space entities of equal dimension may be related by spatial part-
hood. Hence, a surface cannot be spatial part of a space region. However, it may be a
hyper part, which captures the connection between a space entity “inside” another of
co-dimension at least 1. Thus, containment in [23] means spatial part or hyper part here.

4. Outline of an Axiomatization of GFO-Space

GFO-Space is axiomatized as a theory BS in first-order predicate logic with equality
over a signature of four predicates for primitives, see B1–B4 below.4 In the overall effort,
we follow the principles of the Onto-Axiomatic Method presented in [2, sect. 2]. Due
to the page limit, though focusing on the axiomatization problem, we cannot present
the overall theory. Thus we select and discuss a substantial, coherent subset of crucial
definitions and axioms that suffices to show the consequences gathered in section 4.6.

4.1. Space Regions, Spatial Boundaries and Lower-Dimensional Entities

Space regions form the most fundamental category of GFO-Space, in the sense that all
other entities under consideration can be derived from space regions. The most important
relation for such derivations is that of one entity being a spatial boundary of another,
where an entity is always of one dimension higher than its boundaries. Parthood and
spatial coincidence relate entities within the same dimension. Note that parthood applies
to all space entities, whereas only spatial boundaries are subject to coincidence (A22).

We begin expounding the formal theory by introducing these four relations as pred-
icates that form the primitives of BS, which are independent of each other. For their
intended interpretation beyond the short phrases we refer to the conceptual overview in
section 3. All remaining categories and relations of BS can be defined ultimately on
their basis. This and the subsequent sections present these definitions in thematic groups,
thereby introducing predicates in parallel.

B1. SReg(x) (x is a space region)

B2. sb(x, y) (x is a spatial boundary of y)

B3. scoinc(x, y) (x and y are coincident)

B4. spart(x, y) (x is a spatial part of y)

The relation sb lends itself to a natural definition of the category SB of spatial bound-
aries. Moreover, we distinguish spatial boundaries 2DB, 1DB, and 0DB at the differ-
ent dimensions by the kind of entity that they bound. Corresponding binary relations
2db, 1db, and 0db prove widely useful, not only immediately below. The (spart-)greatest
boundary of an entity is defined because the parts of a boundary are boundaries of the
same entity (A24). Note that the theory accommodates boundaryless entities, such as a
surface of a ball, as well as bounded entities without a greatest boundary.

On a technical note, certain symbols and definitions follow a common scheme for
different dimensions. Then we use schemas with the dimension parameter d as a symbol
component. It can only be replaced by 2, 1, and 0. Unless revoked, all three values apply
to d. For example, D5 stands for three definitions, namely of 2DB, 1DB, and 0DB, e.g.,
2DB(x) := ∃y 2db(x, y). In formula remarks we follow the order 2, 1, 0 by convention.

4From here on we may refer to constituents of BS plainly by their labels.
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Figure 1. Space Regions Figure 2. Spatial Boundaries

D1. 2db(x, y) := SReg(y)∧ sb(x, y) (x is a 2-dim. boundary of y)

D2. 1db(x, y) := 2DB(y) ∧ sb(x, y) (x is a 1-dim. boundary of y)

D3. 0db(x, y) := 1DB(y) ∧ sb(x, y) (x is a 0-dim. boundary of y)

D4. SB(x) := ∃y sb(x, y) (x is a spatial boundary)

D5. dDB(x) := ∃y ddb(x, y) (x is a 2-dim./1-dim./0-dim. boundary)

D6. grsb(x, y) := sb(x, y) ∧ ∀z (sb(z, y) → spart(z, x)) (x is the greatest boundary of y)

A direct effect of these definitions is that any spatial boundary can be “traced back” via
sb to a space region. However, we consider additional entities in the domain that may not
be boundaries of other entities themselves, but which only consist of boundaries. Thus a
more relaxed notion of lower-dimensional space entity is defined. By reflexivity of spatial
parthood (A4, sect. 4.5) any spatial boundary is a lower-dimensional entity. Furthermore,
space regions and lower-dimensional entities cover all entities in the domain (A2).

D7. LDE(x) := ∃y (SB(y) ∧ spart(y,x)) (x is a lower dimensional space entity)

D8. dDE(x) := ∃y (dDB(y) ∧ spart(y, x)) (x is a surface/line/point region)

D9. eqdim(x, y) := (SReg(x)∧ SReg(y))∨ (x and y have the same dimension)
(2DE(x)∧ 2DE(y))∨ (1DE(x)∧ 1DE(y))∨ (0DE(x)∧ 0DE(y))

4.2. Mereological Notions – Parts, Hyper Parts and Inner vs. Tangential Parts

While proper parthood and spatial overlap are defined as usual, the definitions of mereo-
logical sum, intersection, relative complement and partition are introduced as schemata,
allowing for compact notation. If clear from the context we may drop the subscript. Sum,
intersection, and relative complement can be shown to be functional in the last argument,
i.e. the x is uniquely determined by the xi.

D10. sppart(x,y) := spart(x, y) ∧ x �= y (x is a proper spatial part-of y)

D11. sov(x, y) := ∃z (spart(z,x) ∧ spart(z, y)) (spatial overlap)

D12. sumn(x1, . . . , xn, x) := ∀y (sov(y, x) ↔ ∨n
i=1 sov(y, xi))

(x is the mereological sum of x1,. . . ,xn, n ≥ 2)
D13. intsectn(x1, . . . , xn, x) := ∀y (spart(y,x) ↔ ∧n

i=1 spart(y,xi))
(x is the mereological intersection of x1,. . . ,xn, n ≥ 2)

D14. rcompln(x1, . . . , xn, x) := (x is the rel. complement of xn and x1,. . . ,xn−1, n ≥ 2)∧
1≤i<j≤n eqdim(xi, x) ∧ ∀y (spart(y,x) ↔ ∧n−1

i=1 ¬sov(y, xi) ∧ spart(y,xn))

D15. partitionn(x1, . . . , xn, x) := sumn(x1, . . . , xn, x) ∧∧
1≤i<j≤n ¬sov(xi, xj)

(x1,. . . ,xn partition x, n ≥ 2)
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Figure 3. Two-, One- and

Zero-Dimensional Hyper Parts

A spatial part of a space entity has the same
dimension as the entity itself. The term hy-
per part is used for “parts” with co-dimension
greater than or equal to 1. More intuitively,
lower dimensional entities “inside” a space
entity are its hyper parts.

Figure 3 illustrates hyper parts (in each
case the entity x in dark gray) of all three
lower dimensions with respect to a cylindric
space region (y in light gray). A shadow (in
black) of the actual hyper part x is shown at
the bottom of the cylinder in order to improve
the visual apperception.

D16. 2dhypp(x, y) := ∃z (spart(z, y) ∧ 2db(x, z)) (x is a 2-dim. hyper part of y)

D17. 1dhypp(x, y) := ∃z ((spart(z, y) ∨ 2dhypp(z, y)) ∧ 1db(x, z))
(x is a 1-dim. hyper part of y)

D18. 0dhypp(x, y) := ∃z ((spart(z, y) ∨ 1dhypp(z, y)) ∧ 0db(x, z))
(x is a 0-dim. hyper part of y)

D19. hypp(x, y) := 2dhypp(x, y) ∨ 1dhypp(x, y) ∨ 0dhypp(x, y) (x is a hyper part of y)

Spatial as well as hyper parts of a whole are tangential if they touch the boundary of
the whole, whereas they are inner parts if they do not. In the presence of the notion of
coincidence, two space entities touch each other if parts of their boundaries coincide or
have coincident hyper parts. This leads us to the definitions of tangential and inner parts.
In the special case of boundaryless entities, no boundary can be touched by parts or hyper
parts, such that the latter are all inner parts.

D20. tangpart(x,y) := (spart(x, y) ∨ hypp(x, y)) ∧ (x is a tangential part of y)
∃x′zz′ ((spart(x′, x) ∨ hypp(x′, x)) ∧

sb(z, y) ∧ (spart(z′, z) ∨ hypp(z′, z)) ∧ scoinc(x′, z′))

D21. inpart(x, y) := (spart(x, y)∨hypp(x, y))∧¬tangpart(x, y) (x is an inner part of y)

4.3. Ordinariness and Connectedness

The ability to coincide is exclusive for spatial boundaries. Furthermore, spatial bound-
aries are ordinary entities, i.e. they do not possess two non-overlapping parts that coin-
cide. Extraordinary space entities result from mereological summation of distinct coin-
cident spatial boundaries. Figure 4 illustrates a case of extraordinary entities that is less
abstract, based on material entities and their ability to occupy space. Imagine, for exam-
ple, a solid rubber sleeve, which is cut through vertically at one position. Assume further
that both ends are in contact. We argue that the greatest material boundary of this rubber
sleeve occupies an extraordinary surface region, because the occupied surface regions of
both material ends coincide, but they are not identical.5

5Note that the material ends do not consist of substance. Rather, they are cognitive constructions of the mind.
The ability to coincide is a feature of spatial boundaries, whereas material boundaries cannot coincide.
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Figure 4. Extraordinary Surface Region Figure 5. Spatial Connectedness

D22. ExOrd(x) := ∃yz (spart(y,x) ∧ spart(z, x) ∧ ¬sov(y, z) ∧ scoinc(y, z))
(x is an extraordinary space entity)

D23. Ord(x) := ¬ExOrd(x) (x is an ordinary space entity)

Spatial connectedness is an important distinguishing feature of space entities. Figure 5
shows three types of connectedness that we distinguish: two-, one- and zero-dimensional
connectedness are jointly defined by the schema D24. The basic idea behind it is that a
connected space entity x cannot be partitioned into y and z such that any two hyper parts
y′ of y and z′ of z do not coincide. Rephrased more positively, each partition of x must
have at least two coinciding hyper parts.

D24. dDC(x) := ∃uv (partition(u, v, x)) ∧ (x is 2-dim./1-dim./0-dim. connected)
∀yz (partition(y, z, x) → ∃y′z′(ddhypp(y′, y) ∧ ddhypp(z′, z) ∧ scoinc(y′, z′)))

A space entity is connected if it is connected regarding at least one dimension. Two
space entities are connected if their mereological sum is connected. Furthermore, two
connected but non-overlapping entities are called external connected.

D25. C(x) := 2DC(x) ∨ 1DC(x) ∨ 0DC(x) (x is connected)

D26. c(x, y) := ∃z (sum(x, y, z) ∧ C(z)) (x and y are connected)

D27. exc(x, y) := c(x, y) ∧ ¬sov(x, y) (x and y are external connected)

Based on connectedness, we introduce the notion of (the number of ) connected com-
ponents. It comes in three flavors, each of which classifies a given entity according to
counting its building blocks based on two-, one- or zero-dimensional connectedness. This
notwithstanding, the definitions apply to entities of any dimension. The parametrized
schemata D28–D29 capture the corresponding notions inductively.

D28. 1dCC(x) := dDC(x) (x has one 2-dim./1-dim./0-dim. connected component)

D29. ndCC(x) :=
∧n−1

i=1 ¬idCC(x)∧∃x1...xn(partitionn(x1, ..., xn, x)∧∧n
i=1 1dCC(xi))

(x has n 2-dim./1-dim./0-dim. connected components)

4.4. Common Spatial Categories

Most space entities that are occupied by material entities can be observed to be connected
and ordinary entities. This leads us to defining categories associated with well-known
terms on the basis of connectedness and ordinariness. The common terminology of point,
line and surface is employed, whereas a connected three-dimensional object is called a
topoid. We argue that their definitions are adequate in the context of the present theory
BS to the extent that they reflect intuitive assumptions that can be stated using the given
vocabulary. From a formal point of view, within BS some of the definitions could be
further simplified, e.g., ordinariness could be ommitted in D30, because only lower-
dimensional entities can have coincident parts (via A7, A22), such that all space regions
are ordinary entities.
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D30. Top(x) := SReg(x)∧Ord(x) ∧ 2DC(x) (x is a topoid)

D31. 2D(x) := 2DE(x) ∧Ord(x) ∧ 1DC(x) (x is a surface)

D32. 1D(x) := 1DE(x) ∧Ord(x) ∧ 0DC(x) (x is a line)

D33. 0D(x) := 0DE(x) ∧Ord(x) ∧ ¬∃y sppart(y,x) (x is a point)

4.5. Axioms of the Theory BS

Having laid out the terminology and definitions for BS, its axiomatization follows in this
section. The axioms are presented in manageable thematic groups.

Basic Taxonomy and Existence In order to avoid a trivial theory we assume that there
is at least one space region. The overall domain of space entities is divided into four
mutually disjoint classes, namely space regions, surface regions, line regions, and point
regions. In interaction with other axioms it follows from A1 that each category is not only
non-empty, but each has infinitely many instances. Each category accounts for entities
sui generis. That means, a space entity cannot be captured by a set of lower-dimensional
entities and, in particular, it cannot be equated with the set of its of hyperparts.

A1. ∃x SReg(x) (existence of a space region)

A2. LDE(x) ↔ ¬SReg(x) (exhaustive and mutually exclusive)

A3. ¬∃x ( (2DE(x) ∧ 1DE(x)) ∨ (2DE(x) ∧ 0DE(x)) ∨ (1DE(x) ∧ 0DE(x)) )
(three mutually disjoint classes)

Mereological Considerations Following established spatial theories, it is assumed that
spatial parthood satisfies the conditions of a partial ordering. Two entities in parthood
relation must be of equal dimension. This leads to equal-dimensionality of the arguments
of all mereological relations defined in D10–D15 (sppart, sov, sum, etc.).

Mereological systems differ in their basic assumptions about supplementation,
atomicity and extensibility. We deem the strong supplementation principle (A8) adequate
for space entities, in spite of criticism if A8 is considered for material or abstract enti-
ties, cf. [15, sect. 3.3]. Atomic space entities are entities without spatial proper parts. We
postulate that at least one proper inner part is possessed by all space entities except for
points, which have no proper parts by definition. This axiom may constitute a difference
between theories of spatial and material entities, since it is reasonable to assume that
there are atomic material entities. Vice versa, all space entities are spatial proper parts of
another one (A10). With further axioms this implies the existence of an infinite increas-
ing sequence of topoids, linearly ordered by the relation sppart. However, the mereo-
logical sum of the components of such a sequence and the sum of infinitary construc-
tions in general does not necessarily determine a space region, e.g. if the construction is
unbounded in extension. The absence of a general fusion axiom is thus deliberate.

A4. spart(x,x) (reflexivity)

A5. spart(x, y) ∧ spart(y,x) → x = y (antisymmetry)

A6. spart(x, y) ∧ spart(y, z) → spart(x, z) (transitivity)

A7. spart(x, y) → eqdim(x, y) (domain restriction)

A8. ¬spart(y,x) → ∃z (spart(z, y) ∧ ¬sov(z, x)) (strong supplementation principle)

A9. ¬0D(x) → ∃y (sppart(y,x) ∧ inpart(y, x)) (only points are atomic)

A10. ∃y sppart(x,y) (extensibility)
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Existence of Space Entities We require that each space region can be embedded in a sin-
gle connected region, i.e. a topoid. Furthermore, space regions are necessarily bounded
entities. For two- and one-dimensional entities, however, we can only claim that there
is at least a spatial part with a boundary. For example, a circle has clearly no boundary
– but any spatial proper part does. The existence of a greatest spatial boundary must be
guaranteed for bounded, ordinary entities. The final three axioms in this group postulate
the existence of entities due to standard mereological operations. Note that the latter are
constrained to at least equal-dimensional entities.

A11. SReg(x) → ∃y (Top(y)∧ spart(x, y)) (embedding topoid for space regions)

A12. SReg(x) → ∃y sb(y, x) (unrestricted existence of boundaries)

A13. 2DE(x) → ∃yz (sppart(y,x) ∧ sb(z, y)) (restricted existence of boundaries)

A14. 1DE(x) → ∃yz (sppart(y,x) ∧ sb(z, y)) (restricted existence of boundaries)

A15. Ord(x) ∧ ∃y sb(y, x) → ∃z grsb(z,x) (restricted existence of a greatest boundary)

A16. eqdim(x, y) → ∃z sum(x, y, z) (existence of sum)

A17. sov(x, y) → ∃z intsect(x, y, z) (existence of mereological intersection)

A18. eqdim(x, y) ∧ ¬spart(y, x) → ∃z rcompl(x, y, z) (existence of relative complement)

Spatial boundaries Coincidence is a key feature of spatial boundaries in GFO-Space.
Roughly speaking, two spatial boundaries coincide if they are literally not spatially dis-
tant from each other. Accordingly, we stipulate that coincidence is an equivalence rela-
tion on every class of equal-dimensional spatial boundaries.

We claim further that ordinariness inherits from a space entity to its boundaries,
which we see as an intuitively accepted regularity among ordinary space entities. In com-
bination with further axioms this entails that any spatial boundary is ordinary. Conse-
quently, extraordinary space entities witness the fact that spatial boundaries form a proper
subcategory of lower dimensional entities. It remains future work to study which further
conditions are necessary to guarantee being a spatial boundary.

Axiom A25 says that boundaries of tangential parts that coincide with boundaries of
the respective whole are likewise boundaries of that whole. In this sense, A25 claims that
tangential parts do not generate new boundaries. Beyond that, combination with further
axioms entails that it is actually one and the same boundary, of the part and the whole.

A19. SB(x) → scoinc(x, x) (reflexivity)

A20. scoinc(x, y) → scoinc(y, x) (symmetry)

A21. scoinc(x, y) ∧ scoinc(y, z) → scoinc(x, z) (transitivity)

A22. scoinc(x, y) → eqdim(x, y) ∧ SB(x) ∧ SB(y) (domain)

A23. sb(x, y) ∧ Ord(y) → Ord(x) (ordinariness and spatial boundaries)

A24. sb(y, z) ∧ spart(x, y) → sb(x, z) (parts of boundaries are boundaries)

A25. ∀xx′yy′ (tangpart(x,y) ∧ sb(x′, x) ∧ sb(y′, y) ∧ scoinc(x′, y′) → sb(x′, y))
(there are no new boundaries)

A26. sb(x, y) → (2DB(x) ∧ SReg(y))∨ (1DB(x) ∧ 2DE(y)) ∨ (0DB(x) ∧ 1DE(y))
(domain of spatial boundary)

Spatial Coincidence and Distinct Hyper Parts The first three axioms of this final group
formalize the intuition of “congruence” of coincident space entities, in that these have
corresponding coincident parts, hyper parts and boundaries. Moreover, it appears natural
that equal-dimensional, non-overlapping entities cannot share any hyper parts.
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A27. scoinc(x, y) ∧ spart(x′, x) → ∃y′ (spart(y′, y) ∧ scoinc(x′, y′))
(existence of coincident spatial parts)

A28. scoinc(x, y) ∧ hypp(x′, x) → ∃y′ (hypp(y′, y) ∧ scoinc(x′, y′))
(existence of coincident hyper parts)

A29. scoinc(x, y) ∧ sb(x′, x) → ∃y′ (sb(y′, y) ∧ scoinc(x′, y′))
(existence of coincident spatial boundaries)

A30. eqdim(x, y) ∧ ¬sov(x, y) ∧ hypp(x′, x) ∧ hypp(y′, y) → x′ �= y′ (distinct hyper parts)

4.6. Theorems of the Theory BS
This section gathers a number of consequences of the axiomatization above. All proofs
are omitted due to space limitations. Let us start with entailed identity conditions.

Identity Principles The initial three identity principles result mainly from the basic
mereological axioms A4–A6 in combination with the strong supplementation principle
A8. These axioms yield an extensional mereology. More specific to BS, an analogous
identity criterion to T3 turns out to hold for hyper parts. The most surprising identity
principle for ourselves is T5, which requires only the definitions of hyper parts D16–19
and axioms A5, A8, A12–14 and A30 to be derived. It reveals that any space entity can
be identified based on the set of its hyper parts that are points. At a closer look, this does
not conflict with Brentano’s position of not equating space entities with certain sets, e.g.
of points. Identifying an entity based on the set of its point hyper parts does not entail
the identification of the entity with that set – indeed, equating these two must be clearly
rejected. Similarly (and if it exists at all6), the mereological sum of all point hyper parts of
an entity does typically not yield that entity, as summation cannot transcend dimensions.

T1. ∀z (spart(z,x) ↔ spart(z, y)) ↔ x = y (extensionality, identity by equal parts)
T2. ∀z (spart(x, z) ↔ spart(y, z)) ↔ x = y (identity by equal wholes)
T3. ∃u (sppart(u,x) ∨ sppart(u, y)) → (∀z (sppart(z,x) ↔ sppart(z, y)) ↔ x = y)

(identity by equal proper parts)
T4. ∃u (hypp(u, x) ∨ hypp(u, y)) → (∀z (hypp(z,x) ↔ hypp(z, y)) ↔ x = y)

(identity by equal hyper parts)
T5. ∃u (0dhypp(u, x) ∨ 0dhypp(u, y)) → (∀z (0dhypp(z, x) ↔ 0dhypp(z, y)) ↔ x = y)

(identity by equal points as hyper parts)

No Least and Greatest Elements, Embeddings Especially existence postulates like re-
quiring an inner proper part for all entities except for points or stipulating embedding
topoids for space regions (A11) contribute to the consequence regarding the spatial part
and hyper part relations that there is neither a greatest space entity (“space” as a whole),
nor a least one (nothing is part or hyper part of every space entity). Moreover, A11 is
instrumental in deriving further embedding properties, up to the general embedding re-
sult that any two space entities, possibly of distinct dimension, have a common framing
topoid. Loosely speaking, there are no separate “areas of space” with unsurmountable
gaps between their entities.

T6. ¬∃x∀y (spart(x, y) ∨ hypp(x, y)) (no least space entity)
T7. ¬∃x∀y (spart(y,x) ∨ hypp(y,x)) (no greatest space entity)
T8. ∃y (Top(y)∧ (spart(x, y) ∨ hypp(x, y))) (embedding for arbitrary single entities)
T9. ∃z (Top(z) ∧ ((spart(x, z) ∨ hypp(x, z)) ∧ (spart(y, z) ∨ hypp(y, z)))

(general embedding)

6The lack of any general fusion principle, cf. [27], is briefly discussed in section 4.5.
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Figure 6. Upward Compatibility Figure 7. Downward Compatibility

Hyper Part Transitivity and Compatibility The proof of T9 relies on various further
axioms in addition to A11, of course. In particular, the following three theorems are
employed as lemmas and constitute interesting properties of the hyper part relation.

T10. hypp(x, y) ∧ hypp(y, z) → hypp(x, z) (transitivity of hyper part)

T11. hypp(x, y) ∧ spart(y, z) → hypp(x, z) (upward compatibility of hyper part)

T12. spart(x, y) ∧ hypp(y, z) → hypp(x, z) (downward compatibility of hyper part)

Connectedness Interrelations The notions of connectedness and of connected compo-
nents are each present in three dimension-based variants in BS. The final set of results
provides insights on subsumptions among the variants of connectedness as well as on
interconnections of the numbers of connected components of different kinds.

T13. 2DC(x) → 1DC(x) (subsumption of two- by one-dim. connectedness)

T14. 1DC(x) → 0DC(x) (subsumption of one- by zero-dim. connectedness)

T15. n2CC(x) → ∨n−1
i=0 (n− i)1CC(x) (limit of one-dim. connected components)

T16. n1CC(x) → ∨n−1
i=0 (n− i)0CC(x) (limit of zero-dim. connected components)

Proposition 1 The numbers of connected components of any space entity can only de-
crease along the dimensionality under consideration: for any model A |= BS such that
A |= n2CC(x) ∧ l1CC(x) ∧ k0CC(x), it is the case that n ≥ l ≥ k.

5. Applications

An ontology of space is a necessary prerequisite for the development of an ontology of
material objects, the modeling and representation of which leads to a number of prac-
tical applications. First, the space ontology of GFO, extended by the ontology of mate-
rial entities, closes some gaps of earlier theories of boundaries. For example, in [5,15]
it is stated and it follows from the axioms in [5] that bona fide boundaries (see section
3) cannot be in contact. This is not plausible, as also criticized in [13,28,29]. The GFO
approach to space and material objects clearly distinguishes material and spatial bound-
aries, restricting coincidence to the latter. This allows for a new solution: two material
boundaries are in contact if the corresponding occupied space boundaries coincide.

A related field of potential applications links to anatomy and to the Foundational
Model of Anatomy (FMA) [30], a very large ontology of anatomic categories and re-
lations. Referring to FMA, [31] outlines ideas on an anatomical information science.
Clearly, this must be grounded on a coherent and consistent ontology of space and of
material objects. The four upper-level FMA categories anatomical structure, anatomi-
cal substance, anatomical space and anatomical boundary, and others like body spaces
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suggest the applicability of GFO-Space. Not only in view of the problem of boundaries
and contact above, which conveys to boundaries in [31], we argue that GFO-Space lends
itself to providing alternatives for understanding, e.g., anatomical structure, bona fide
and fiat boundary, connectedness, continuity, as well as part, containment and location.
Another aspect in this connection is the strength of the axiomatization available.

Overall, as a mereotopological theory, especially when integrated in a wider frame-
work such as GFO, the presented ontology can be applied in various areas, cf. the sur-
vey of corresponding fields in [14, sect. 9]. For example, geography and Geographical
Information Science preserve their actuality in this respect, because many geographical
objects are intrinsically related to space, and, in particular, their boundaries play a de-
cisive role. Finally, we expect that also qualitative spatial reasoning can benefit from an
axiomatic foundation of space entities that is adequate to cognition.

6. Conclusions and Future Work

As the main contribution of this paper we provide the theory GFO-Space as a basic ax-
iomatization of the phenomenal space of material objects. This notion is inspired by the
work of Franz Brentano [3] and we hold the view that the resulting theory is compatible
with our visual experience. GFO-Space further constitutes the ontology of space of the
top-level ontology General Formal Ontology (GFO) [1] and as such it complements the
ontology of time of GFO [2], as well as both share some principles. The theory is devel-
oped in first-order logic and is outlined herein by means of selected definitions, axioms
and an initial set of noteworthy consequences. Another reason for the term ‘outlined’ is
that we have not presented a proof of consistency. While an unpublished proof sketch
exists, its completion to a detailed proof is an immediate next step in the metatheoretic
analysis of the theory. Subsequently, a proper comparison with closely related theories,
e.g. those in [21,23], is another promising task.

We believe that GFO-Space already documents the conceptual richness of the do-
main of space. Nevertheless, the investigation of phenomenal space and its relations to
material objects remains in an initial stage. Hence, there are a number of open ontologi-
cal problems whose further investigation may be interesting and fruitful. We sketch some
of these issues, which are related to pure space as well as material objects.

Morphology of Pure Space Entities Space entities exhibit forms, therefore a further step
in our work is the ontological investigation of morphological structures. Forms cannot
be captured by the principles of pure mereotopology. Our idea is to introduce only few
additional primitives and to remain mainly in the framework of mereotopology. For this
purpose, we may introduce certain standard forms, for example, the ball or the cube,
formally by adding predicates ball(x) and cube(x). Then we can try to grasp intuitions
about these forms axiomatically. For example, the following axiom may be employed to
characterize the category of balls (cf. [32]): If x and y are balls, then their mereological
relative complement is connected.

Mereotopology and Morphology of Material Objects The investigation of material ob-
jects with respect to their mereotopological and morphological properties opens a new
field of research, because phenomena of essentially new character occur. One basic in-
sight, already discussed herein, is the fact that material boundaries must be distinguished
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from spatial boundaries. The relation between these different types of boundaries is that
of occupation. Furthermore, in connection with material boundaries the notion of granu-
larity must be taken into account, whereas granularity plays only a minor role for space
entities. Initial ideas on these topics are already indicated in [1].
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