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Abstract. A large number of biomedical resources have been developed to repre-
sent the functions of biological entities, and these resources are widely used for
data integration and analysis. Expressing functions in biomedical ontologies cur-
rently uses formal representation patterns that renders basic reasoning tasks to fall
in complexity classes beyond polynomial time, thereby limiting the potential of
using knowledge-based methods for data integration, querying or quality control.
Here, we propose an alternative representation pattern for expressing knowledge
about biological functions, together with a biological and ontological justification,
which can be expressed using the description logic EL++ and implemented using
the OWL 2 EL profile. To demonstrate the utility of our account of biological func-
tions, we apply it to all proteins contained in the SwissProt database and evaluate
its utility with respect to answering complex queries as well with respect to the
classification and query times.
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1. Introduction

The notion of biological function is widely used in the life sciences, and functions are as-
signed to entities ranging from whole organisms, such as worker ants, to small molecules,
such as drugs or regulatory RNA. Functions are closely related to causation [1], and at-
tributing a function to an entity provides information about why the entity exists as well
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as what the entity can do [2]. In biology and biomedicine, large knowledge bases have
been developed that contain information on the biological functions of various biological
entities, such as proteins [3], regulatory RNA [4], biological pathways [5], cell types [6],
or tissues and anatomical structures [7].

To formally characterize and classify functions in biology and biomedicine, the
Gene Ontology (GO) [8] has been developed as an ontology of cell anatomy and bi-
ological processes. GO is arguably the most widely applied ontology in biology and
biomedicine for data annotation, integration and analysis [9]. Using the GO, functions
are assigned to entities (such as proteins) by asserting the capability of a protein to par-
ticipate in particular processes – realizations of the proteins functions. Formally, assert-
ing that some biological entities have capabilities requires the expressivity of knowledge
representation languages for which basic reasoning problems, such as determining con-
sistency or checking subsumption, cannot be decided in polynomial time [10,11,12,13].
Consequently, information about biological functions in biological knowledge bases
is usually expressed using custom databases or the Resource Description Framework
(RDF) [14,3] and lacks any explicit, model-theoretic semantics.

Here, we develop an ontology-based account of biological functions that is amenable
to large-scale automated reasoning using the Web Ontology Language (OWL) [15], in
particular using the OWL 2 EL profile [16] which supports tractable (i.e., polynomial
time) reasoning. Our specific aims are to:

• create an ontologically sound representation of biological functions, specifically
in the context of protein functions as described using the GO,

• identify a module of this theory that can be implemented in the description logic
EL++ [17], the logic underlying the OWL 2 EL profile, and which allows for
tractable automated reasoning,

• apply our framework to the UniProt knowledge base [3], a central resource in
biology containing information about proteins and their functions, and

• evaluate the implementation with respect to performance and the types of queries
that can be answered.

Ultimately, the resulting framework is intended to support automated consistency
verification using OWL reasoners, the classification of proteins using background knowl-
edge in ontologies (in particular the GO), and complex queries that combine informa-
tion from the knowledge base with knowledge within ontologies. More importantly, it
is also intended to serve as a model for how the further development of large biologi-
cal knowledge bases can be improved using formal ontologies, and to enhance capabil-
ities for quality control by adding explicit constraints whose violation can be detected
automatically.

2. The Problem of Biological Functions

Biological functions have long been debated in philosophy of biology [18,2,19,20] as
well as in the area of applied ontology [21,22]. At least two views of biological functions
can be distinguished. First, and arguably the dominant view in the biological world,
is a causal explanation of biological functions proposed by Wright [2] and refined by
Millikan [19]. According to the causal view, an entity X has the biological function Y if
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and only if X exists because it does Y [2]. This view is later refined by Millikan [19] who
explicitly introduces evolutionary processes (indirectly through reproductive processes)
into this account. Another view is that biological functions are ascribed to an entity
[23,24]. In this view, entity X has the biological function Y if and only if X does Y (under
some conditions, or within a certain context, C) and an agent A asserts that the purpose
of X is to do Y . This view is useful in functional explanations. A more comprehensive
discussion of biological functions and desiderata for ontological theories of biological
functions can be found elsewhere [22].

While these theories (and others) explain how biological functions originate, we
focus here on the kind of evidence that is required now, for example in the context of
biological data annotation or biological literature reporting, for assigning a function to
a biological entity. Here, we focus on molecular biology, in particular proteins, as these
are biological entities for which new biological functions are discovered and assigned
frequently. A function of a protein is established through several types of experiments
that aim to establish the involvement of the protein in a biological process. For example,
the function of a protein may be established by selectively removing the protein from an
organism and observing the differences to an organism in which the protein has not been
removed [25,26]. Importantly, since large scale evolutionary processes that have led to
the development of a particular protein cannot be tested directly, a biological function is
assigned based on the observation of the involvement of a protein in a process within a
(repeatable) experiment. The additional assumption is that the involvement of a protein
in a process rarely occurs randomly, but rather signifies a particular evolutionary history,
and this justifies the assigning of a protein’s “function”.

3. State of the Art

In biomedical ontologies, functions are related to two kinds of entities: the function
bearer C, and a process P that realizes a function F . The function F itself serves pri-
marily as the reification of a – special kind [27,28] – of possibility of C to perform P.
Consequently, for entities of type C with a function of type F , a common representa-
tion pattern is ∀x(C(x) → ∃y(F(y)∧ hasFunction(x,y))) to state that all instances of
C have some instance of F as function, and for functions of type F and processes P
∀x,y : F(x)∧realizedBy(x,y)→ P(y) to state that instances of the function F are only re-
alized by processes that are instances of P. The realizedBy relation is commonly taken as
a primitive from an upper level ontology such as the Basic Formal Ontology [29] or the
General Formal Ontology [24], and constrained by axioms or informally. For example,
the function Fgluc to synthesize glucose from noncarbohydrate precursors (such as pyru-
vate, glucogenic amino acids and glycerol), which is, among others, a function of the hu-
man protein cAMP-dependent protein kinase catalytic subunit gamma (PRKACG), could
be used in a statement such as: ∀x(PRKACG(x) → ∃y(Fgluc(y)∧ hasFunction(x,y))).
Similarly, the relation between the function Fgluc and the process Pgluc of gluconeo-
genesis (with identifier GO:0006094 in the Gene Ontology) would be expressed as
∀x,y(Fgluc(x)∧ realizedBy(x,y)→ Pgluc(y)).

In the OBO Relationship ontology [30], a relation (or axiom pattern [31]) capable
of is defined between two classes, such that C is capable of P if and only if the following
holds: ∀x(C(x) → ∃y(hasFunction(x,y)∧∀z(realizedBy(y,z) → P(z)))). For example,
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proteins of the type PRKACG are capable of facilitating gluconeogenesis if and only if
proteins of the type PRKACG have a function that, if it is ever realized, is realized by
processes of the type gluconeogenesis.

These ontology design patterns have been widely applied in biomedical ontologies
when aiming to formally express the relation between structures, functions and the pro-
cesses that realize them [10,11]. Most implementations are based on the Web Ontology
Language (OWL) [15], and the axiom patterns fall in the ALC subset of OWL [32]. For
example, the fact that PRKACG is a participant of the process gluconeogenesis would
be expressed as the axiom PRKACG � ∃hasFunction.(∀realizedBy.Gluconeogenesis).
The use of both existential and universal quantification, often mixed with conjunction
and disjunction, ensures that these axioms do not naturally fit in a subset (i.e., a profile)
of OWL that guarantees polynomial time complexity for basic reasoning tasks such as
classification or checking subsumption. Consequently, these patterns cannot easily be
used for automated reasoning on a large scale, such as those found in biological and
biomedical databases and ontologies, while at the same time preserving the possibility
of querying efficiently the resulting knowledge using the Description Logic semantics of
OWL.

To overcome these problems, modularization techniques have been developed [33].
Such techniques enable the identification of a module of an ontology, i.e., a subset of
the ontology’s axioms which then can be used for querying and classifying in, usually,
less time than the time that would be required for querying or classifying the whole
ontology. While most modularization techniques reduce the signature of an ontology,
in particular locality-based modules [34], it is also possible to retain the full signature
and only remove certain axioms which may contribute to reasoning complexity [13].
This second type of modularization approach can be used to reduce the complexity of
querying an ontology to polynomial time while losing some inferences [13]. However,
when expressing functions, or capabilities, of entities in biomedical ontologies, the type
of process that would realize the function is usually the crucial and relevant aspect of the
axiom that is exploited for querying and data integration; removing this axiom would no
longer allow inferences about this type of process (and its properties).

In summary, there are three challenges to overcome in obtaining a tractable, large-
scale representation of biological functions that can be used for automated reasoning:

• common representation patterns for biological functions in biological ontologies
require an expressivity in which basic inference tasks cannot be decided in poly-
nomial time;

• modularization techniques that reduce the signature do not enable queries of the
whole ontology; and

• modularization techniques that retain the signature would remove crucial axioms
required for querying knowledge about biological functions.

4. Methods

To achieve the goal of building a representation of proteins and their functions that is
both ontologically sound and enables tractable automated reasoning we have two op-
tions. Either, we separately address these two tasks, starting with the ontological analysis
and then applying modularization techniques to the resulting theory in order to obtain
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Table 1. Overview of syntax and semantics of OWL 2 EL (omitting concrete domains). Semantics of concept
descriptions and axioms is defined over a concrete domain D = (Δ,P), with Δ being a non-empty set and P a
set of predicate names, and an interpretation I = (ΔI , ·I) in the standard way.

Name DL syntax Semantics

top � ΔI

bottom ⊥ /0
nominal a {aI}
conjunction C	D CI ∩DI

existential restriction ∃R.C x ∈ ΔI |∃y ∈ ΔI : (x,y) ∈ rI ∧ y ∈CI

general concept inclusion C � D CI ⊆ DI

role inclusion r1 ◦ ...◦ rn � r rI
1 ◦ ...◦ rI

n

a tractable representation, or, we combine considerations related to tractability with the
ontological analysis.

Both choices have advantages and disadvantages. Arguably, an ontological analysis
of the domain without any constraints on tractability or particular choice of a knowledge
representation language will lead to a “cleaner” and more rigorous representation of the
domain since limitations of the knowledge representation language will not have to be
considered. In many cases, modules can then automatically be constructed from the re-
sulting theory so that meta-theoretical properties such as decidability or time complex-
ity of querying the knowledge base can be obtained. On the other hand, certain onto-
logical choices may be more amenable to modularization than others and result in more
expressive knowledge bases after modularization.

Here, we chose to combine ontological analysis with considerations from knowledge
representation and reasoning throughout the design of our theory of biological functions.
When we are faced with different choices about how to model some phenomenon, we
chose the one that is more amenable to implementation using a tractable formalism,
whilst being prepared to commit to entities in our ontology that would not otherwise be
required should these be deemed necessary to achieve our goals.

To formalize knowledge about biological functions, we chose the description logic
EL++ [17], in the form of the OWL profile OWL 2 EL [16]. OWL 2 EL has been designed
to express large ontologies while maintaining polytime reasoning for classification and
instance checking [17,35], and is widely used across biomedical ontologies [36,11]. An
overview of OWL 2 EL is provided in Table 1.

5. Results

Since the common ontology design pattern for expressing a capability of a biological
entity falls outside of the OWL 2 EL profile, we develop an alternative representation.
Using our account of biological functions above, and focusing, without loss of generality,
on the case of protein functions, we informally chose the following representation: for
an individual protein X to have a function of the type Y , X is required to be a member of
a collection of proteins, all of the collection’s members are of the same type as X , and
at least one of those members actually participates in a process that realizes an instance
of Y . We also extend this approach to other capabilities of proteins, in particular to the
potential to be located at particular places: a protein X has the capability to be located at
a location of type Y if it is a member of a collection of proteins, all members of which
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are of the same type as X , of which at least one protein is actually located at an instance
of Y . Figure 1 illustrates our approach.

a � � has-function �

� � � realized-by p

Protein a

Process p

Protein a

� � � participates-in p

� � � has-member 	

Process pLocation l

�

a � � member-of �

�

	 �

� � � has-member 	

	 � � located-in l

Figure 1. An overview over our approach. On the left side, the traditional representation pattern for represent-
ing possibilities in biomedical ontologies is shown, while on the right side of the figure, we illustrate our ac-
count. In our account, proteins are assumed to be a member of a timeless collection of proteins τ , all members
of which are of the same type, and τ has some members which are actually participating in a process of type
p, or alternative, actually being located at a location l. Our account falls in the OWL 2 EL profile while the
traditional approach requires a more expressive logic.

Formally, given a class of proteins P, we generate the following protein-specific
signature ΣP:

• class P: a class whose instances are individual proteins of the type P;
• class Pall : a class whose instances are the set of all instances of P in the universe;

Pall is intended to be a singleton class with exactly one instance;
• for each isoform Pi of P, a class Pi whose instances are individual proteins
• class Pgeneric: a class whose instances are proteins that have a shared evolutionary

history, i.e., a group of ortholog proteins

Using this signature, we state the following axioms:

• P is a subclass of Pgeneric:

∗ FOL: ∀x(P(x)→ Pgeneric(x))
∗ OWL: P � Pgeneric
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∗ both axioms are equivalent and fall in the OWL 2 EL profile

• protein isoforms are subclasses of the proteins of which they are an isoform:

∗ ∀x(Pi(x)→ P(x))
∗ Pi � P
∗ both axioms are equivalent and fall in the OWL 2 EL profile

• Pall is a singleton class:

∗ FOL: ∃xPall(x)∧∀x,y(Pall(x)∧Pall(y)→ x = y)
∗ OWL: Pall ≡ {pall}, with pall being a new constant symbol
∗ the OWL representation falls in the OWL 2 EL profile and is satisfiable iff

the FOL representation is satisfiable (proof sketch: the FOL representation is
a direct consequence of the OWL equivalent class axiom; the → direction of
the OWL axiom can be derived from the FOL axiom by Skolemization, the ←
direction then becomes a logical consequence).

• Pall is non-empty and has at least one member of type P:

∗ FOL: ∀x(Pall(x)→∃y(P(y)∧hasMember(x,y)))
∗ OWL: Pall � ∃hasMember.P
∗ both axioms are equivalent and fall in the OWL 2 EL profile

• Pall is homogenic, i.e., it has as members only proteins of type P:

∗ FOL: ∀x,y(Pall(x)∧hasMember(x,y)→ P(y))
∗ OWL: Pall � ∀hasMember.P
∗ both axioms are equivalent but do not fall in the OWL 2 EL profile

Furthermore, to assign a function realized by instances of F , and (possible) locations
of type L, to a protein P, we use the following axioms:

• instances of P have the capability to perform processes F , restated as: some mem-
ber of Pall (actually) participates in an instance of F :

∗ FOL: ∀x(Pall(x)→∃y,z(F(y)∧hasMember(x,z)∧ participatesIn(z,y)))
∗ OWL: Pall � ∃hasMember.(∃participatesIn.F)
∗ both axioms are equivalent and fall in the OWL 2 EL profile

• instances of P have the potential to be located at instances of L, restated as: some
member of Pall is (actually) located at an instance of F :

∗ FOL: ∀x(Pall(x)→∃y,z(L(y)∧hasMember(x,z)∧ locatedAt(z,y)))
∗ OWL: Pall � ∃hasMember.(∃locatedAt.L)
∗ both axioms are equivalent and fall in the OWL 2 EL profile

To complete this account of proteins and their functions, we also have to provide a
formal account of the relations we have introduced, i.e., of participatesIn, locatedAt,
hasMember and its inverse memberO f . To maximize compatibility with many upper
level ontologies and use cases, we only chose minimal axioms for each:

• memberO f is irreflexive and asymmetric

∗ FOL: ∀x(¬memberO f (x,x)), ∀x,y(memberO f (x,y)→¬memberO f (y,x))
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∗ both properties of memberO f can be stated equivalently in OWL 2 but nei-
ther property can be expressed within the OWL 2 EL profile. Additionally, the
memberO f relation may further be assumed to satisfy the weak supplementa-
tion principle [37], an axiom that cannot be expressed in OWL.

• participatesIn is irreflexive and asymmetric

∗ FOL: ∀x(¬participatesIn(x,x)), ∀x,y(participatesIn(x,y)→¬participatesIn(y,x))
∗ usually (except in 4D ontologies), the participatesIn relation is mainly re-

stricted by the type of arguments it can take, the first being an endurant [38] (or
continuant [39] or presential [40]), the second being a process [40]; irreflexivity
and asymmetry then follow from the disjointness of these arguments.

Using these axioms, we can reformulate the notion that a protein of type P is capable
of performing F (or having a function that is realized by processes of type F) using the
following axiom:

P(x)∧∃ζ (hasFunction(x,ζ )∧∀ f (realizes( f ,ζ )→ F( f ))) ⇐⇒
P(x)∧∃y(Pall(y)∧memberO f (x,y)∧∃z(hasMember(y,z)∧

∃ f (participatesIn(z, f )∧F( f ))))

There are several limitations of our representation, in particular with regard to their
expressivity in OWL 2 EL. First, some axioms that relate proteins, and the collection of
proteins to which they belong, are lost when we limit ourselves to the expressivity in
OWL 2 EL. In particular, the axiom that asserts that the collection class Pall has only
instances of P as member cannot be expressed in OWL 2 EL. Second, we do not use any
temporal arguments in our relations to maintain compatibility with OWL in which rela-
tions can have at most two arguments. The collections containing all proteins of a par-
ticular type are “timeless” collections, i.e., they contain all instances of a type of protein
across all times. If temporal arguments are required, for example when working within
the framework of an upper level ontology in which relations contain temporal arguments,
they can easily be added. In the simplest case, existential quantification over the tempo-
ral argument in the relations can be used to generate a representation equivalent to the
one we use. Finally, we provide a (much) simplified account of biological function. To
assign a biological function to all the instances of a type of protein, some instances of
this type of protein must also be observed; additionally, not every type of participation
in a process would be viewed as a function, but rather only particular types of partici-
pation [24,21,41]; these aspects are entirely ignored by our approach. In the future, this
information may be added as a conservative extension of our theory.

6. Implementation: an Application to a Knowledge Base of Proteins

To evaluate whether our account of biological functions can be implemented on a large
scale, we chose the UniProt database as our primary use case. UniProt [3] is one of the
central knowledge bases used in modern biomedical science. It is a collaborative and
integrated resource comprising a manually curated part of about half a million protein
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sequences, known as SwissProt, and an automatically generated database, TrEMBL, with
a rapidly growing 80 million sequences. Proteins in UniProt cover over 610,000 taxa [3].

UniProt has become one of the main authorities for the stable identification of pro-
teins by providing UniProt accession numbers (which serve as unique identifiers for types
of proteins). UniProt is a core service of the ELIXIR Infrastructure [42], other databases
link UniProt records to diseases [43], phenotypes [44], sequence, tertiary structures, en-
vironments, etc., and UniProt itself contains links to more than 150 biological databases.
UniProt, as a highly interlinked knowledge base, has been one of the first major biologi-
cal databases to adopt the Linked Data [45] guidelines, provide RDF as a representation
format as well as a public SPARQL endpoint to facilitate querying. Currently, as of 2016,
UniProt comprises of almost 20 billion triples in RDF, and has frequently been used as
benchmark for the performance of RDF stores and SPARQL queries [3].

The data in SwissProt, a part of UniProt, is manually curated from the literature and
therefore presents a gold standard resource for sequence and function information on
peptides and proteins. A key component of UniProt, and SwissProt, is the annotation of
protein functions using the Gene Ontology (GO) [46].

The GO [8] is comprised of three ontologies (molecular function, biological pro-
cess and cellular component) describing processes and cellular locations. The cellular
component ontology is an ontology of cellular anatomy, while molecular function and
biological process are ontologies of processes on different scales and levels of granu-
larity. Despite its label, we assume that the classes contained in the molecular function
ontology characterize processes, not functions or other types of entities that are funda-
mentally different from processes. While this may seem counterintuitive and different
from some prior analyses of GO [47,48,49], recent versions of GO make it clear that the
difference between molecular function and biological process is one of granularity, not
between fundamentally different ontological categories. Consequently, both ontologies
are no longer separated within GO but are integrated, with hundreds of mereological
axioms (involving part-of, has-part) being asserted between classes from the biological
process and molecular function ontologies [50]. The axioms related to these mereolog-
ical relations within the GO are taken from the Basic Formal Ontology (BFO) [51] and
the OBO Relationship Ontology [30], and based on the axioms provided within BFO
(in particular the domain and range restrictions) it is clear that the molecular function
ontology is an ontology of processes. For example, catalytic activity (GO:0003824), a
class in the molecular function ontology, is used in an axiom (GO version 11 Feb 2016)
that asserts it to be a subclass of ∃partO f .metabolic process, where metabolic process
(GO:0008152) is a class in the biological process ontology. Similarly, another axiom
involves catalytic complex (GO:1902494), from the cellular component ontology, and
asserts catalytic complex as a subclass of ∃hasFunction.(∀realizedBy.catalytic activity)
(using the capable of pattern); together with the range restrictions on realizedBy which
forces its second argument to be an instance of Process (from BFO), this leads to the
inference that catalytic activity is considered a process within GO.

We apply our method to the RDF representation of the SwissProt part of UniProt. In
UniProt RDF, classes or types of proteins, such as FOXP2, are identified through an IRI,
and the type of protein is associated with a class from the GO through a classified-with
relation. For example, a triple

<O15409> up:classified-with go:GO_0048286
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asserts that the protein with UniProt accession O15409 (the human FOXP2 protein) is as-
sociated with lung alveolus development (GO:0048286). The same relation classified-
with is used for all associations with the GO as well as for associations with keywords
and some other databases.

We identify UniProt accessions with classes of proteins, and, according to our
method for representing capabilities to perform in processes, automatically generate
classes whose instance represents the collection of all proteins of that type, together with
all the axioms in our theory that fall in the OWL 2 EL profile. The transformation is
performed automatically for the full SwissProt. To determine whether a capability is the
capability to perform a certain process or to be located at a particular location, we use
the Elk reasoner [52] and query the GO for subclasses of molecular function, biological
process, and cellular component respectively. If SwissProt associates a protein accession
with a subclass of cellular component, we generate an axiom representing the capability
of instances of the protein to be located at a location of the type specified by the GO class,
otherwise we generate an axiom representing the capability of the protein to participate
in a process of the type of the GO class.

Additionally, to explicitly identify the kind of species which can create a class of
proteins, we use the information provided by UniProt about the taxon in which particular
types of proteins are known to exist, and assert that each instance of a class of proteins
was created in an instance of that taxon. For example, for the FOXP2 protein in humans
with UniProt accession O15409, we would add an axiom stating that each instance of
FOXP2 will have been created in an instance of Human, a class taken from the NCBI
taxonomy [53] (it would be more precise to state that it has been created in something
derived from an instance of Human, to also include proteins produced in human cell lines
or transgenic organisms; however, we omit this aspect here and leave it as extension for
future work).

We have implemented our conversion of UniProt to OWL in Jython, based on the
Apache Jena API [54] for processing RDF files provided by UniProt and the OWL API
[55] for generating the final ontology. The transformation is parallelized by processing
each protein accession within SwissProt individually. The source code is freely available
at https://github.com/bio-ontology-research-group/uniprot2owl.

The resulting ontology, automatically generated from SwissProt, is a complete rep-
resentation of the proteins in SwissProt and their functions. The ontology is based on
SwissProt, downloaded on 28 January 2016, and the GO and the NCBI Taxonomy down-
loaded on 15 February 2016. The resulting ontology contains 4,995,217 logical axioms,
and 1,728,231 classes (excluding imported classes from the GO and NCBI Taxonomy),
and can be downloaded from http://aber-owl.net/aber-owl/swissprot.
owl.

7. Evaluation

We evaluate the resulting ontology both with respect to its capability for answering
queries as well as with respect to the classification and query times. Specifically, our
aim is to test whether classification and query time improves with our representation in
comparison to the alternative approaches for representing possibilities that relies on the
universal quantifier. For all tests, we use the Elk reasoner [56], an optimized reasoner
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for the OWL 2 EL profile that supports parallel and incremental reasoning. We compare
these results with the HermiT reasoner [57] which supports OWL 2 DL, and using a
representation pattern for capabilities of proteins that relies on the universal quantifier.
In particular, instead of our representation, we alternatively express the capability of a
protein X to participate in P as X � ∃hasFunction.(∀realizedBy.P) when using HermiT.
The tests are performed using a workstation with an Intel Xeon E5-2680 with 128GB
memory.

To classify the ontologies, we import the GO and the NCBI Taxonomy, and perform
classification using the OWL API. Elk classifies the resulting ontology in 55 seconds,
while HermiT fails to classify the ontology within one day.

We further verified whether we can answer certain queries against our knowl-
edge base, and we test the performance of answering these queries. To answer
queries, we use the Elk reasoner to identify all subclasses of an OWL class de-
scription. We use the class description ∃membero f .(∃hasMember.(∃participatesIn.F))
to query for capabilities to perform processes of type F , and the class description
∃membero f .(∃hasMember.(∃locatedIn.L)) to query for the capability to be located in L.
To evaluate the query answering performance, we randomly select 1,000 classes from the
GO and perform a query for each. The average answer time for these queries was 1.12
seconds. As HermiT could not classify the ontology when capabilities are alternatively
represented using the universal quantifier, it could not answer any queries.

To further evaluate more complex queries, we also use another type of query in
which we incorporate the taxon in which proteins have been created, and query for pro-
teins with a particular capability and within a particular taxon, using the class descrip-
tion ∃membero f .(∃hasMember.(∃participatesIn.F))	∃createdIn.T (and equivalently
for locations) for 1,000 randomly selected pairs of classes from GO and the NCBI tax-
onomy. The average query time for one query was 1.15 seconds.

One of the main advantages of using OWL as a representation language for (parts
of) UniProt is the increased capability to add axioms to the knowledge base in support of
easier maintenance and quality control. For example, using OWL, it is easy to distinguish
between cases where all proteins of some type have a function and where only some
isoforms, or all evolutionarily related proteins, have this function; to state that every
isoform of P has the capability to perform F , we would add the axiom ∃iso f ormO f .P �
∃memberO f .(∃hasMember.(∃participatesin.F)).

Our ontology also provides a direct link between UniProt and manually created on-
tologies of proteins, in particular the Protein Ontology [58], which contain information
about protein families, genes, sequences and modifications. Similarly to the Protein On-
tology, our implementation leads to the possibility of using classes referring to proteins
in complex class descriptions across biomedical ontologies, such as for diseases in which
proteins are involved, or assays in which proteins are measured.

8. Discussion

Currently, the capability of a biological entity E to perform P is represented using the
ontology design pattern E � ∃hasFunction.(∀realizedBy.P), and basic reasoning tasks
in knowledge representation languages supporting this pattern fall in complexity classes
beyond polynomial time. Consequently, automated reasoning over functions in large
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knowledge bases, such as those frequently found in biology and biomedicine, is chal-
lenging. Here, we have proposed a novel design pattern for expressing knowledge about
biological functions, together with a biological and ontological justification, which can
be expressed using the description logic EL++ [17] and implemented using the OWL 2
EL profile [16].

The resulting framework takes advantage of the use of OWL as a representation lan-
guage rendering the increased ability to add axioms to the knowledge base in support
of easier maintenance and quality control. It caters for the classification of proteins us-
ing the background knowledge of ontologies (for example the GO) and facilitates com-
plex queries that combine information from the UniProt knowledge base with ontology
knowledge. Moreover it leads to the possibility of using classes referring to proteins in
complex class descriptions across biomedical ontologies, for example ontologies related
to particular phenotypic manifestations, diseases etc. Ultimately, our framework is in-
tended to sever as a model of how formal ontologies can be utilized for the improvement
of biomedical knowledgebases as well as enhance our quality control abilities.

There are several limitations to our approach related primarily to the OWL 2 EL
expressivity. For example, our approach does not include some axioms that relate pro-
teins and the collection of proteins to which they belong, nor does it encompass temporal
arguments. Crucially it provides a simplified account of biological function. As part of
our future research, to aim to extend our theory to account for them.
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