Formal Ontology in Information Systems R. Ferrario and W. Kuhn (Eds.) © 2016 The authors and IOS Press. This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License. doi:10.3233/978-1-61499-660-6-109

Mapping and Verification of the Time Ontology in SUMO

Lydia Silva Muñoz^a, Michael Grüninger^b

^aDepartment of Computer Science, University of Toronto, Canada ^bDepartment of Mechanical and Industrial Engineering, University of Toronto, Canada

> Abstract. Many software systems rely on ontologies for semantic interoperation. However, ontologies which admit unintended models might cause misunderstandings that hinder interoperability because their vocabularies are ambiguously defined. Foundational ontologies, such as SUMO, provide rich characterizations for general concepts that underly every knowledge representation enterprise. Those ontologies are intended to be broadly reused as a reference for semantics. *Ontology verification* is the process by which a theory is checked to rule out unintended models by means of further axiomatization, and characterize missing intended ones. In this paper, we verify the subtheory of core temporal concepts of the SUMO foundational ontology and relate its axiomatization via ontology mapping with other time ontologies, the foundational ontology DOLCE, and the generic ontology PSL. As a result, we propose the addition of some missing axioms that we have identified during our verification task, and the correction of others.

> Keywords. ontology verification, ontology mapping, SUMO ontology, DOLCE ontology, PSL ontology

1. Introduction

Automatic applications appealing to ontologies for interoperation are unambiguously integrated only when the models of their shared features are equivalent. However, ontologies admitting unintended models ambiguously characterize their vocabularies, which can generate misunderstandings that hinder interoperability.

Foundational ontologies, also called upper ontologies, characterize the semantics of general concepts that underlay every knowledge representation enterprise. They can be used as oracles for meaning in ontology reconciliation [1], or as the foundational substratum on which new ontologies are developed. Since foundational ontologies are expected to be broadly reused, verifying that they do not have unintended models which can be ruled out with further axiomatization, and that they are not missing intended models, are of paramount interest for the ontology and knowledge representation communities.

Ontology verification is the process by which a theory is checked to rule out its unintended models by means of further axiomatization, and characterize any intended ones which might be missing. In this paper, we apply the definition of ontology verification based on representation theorems that was introduced in [2], which applies to the verification of ontologies axiomatized in first-order logic. It is particularly important to understand the models of upper ontologies. First, it allows us to formally specify the relationships to other upper ontologies, and determine the similarities and differences among them. Second, a characterization of the models of an upper ontology enables us to make the ontological commitments of an upper ontology explicit. Ontology designers that create new domain-specific ontologies by extension of the upper ontology can then be aware of the ontologies that they are using.

After a short review of SUMO [3], we begin the analysis of the axiomatization of its core temporal concepts, which we call *SUMO_Time*. The axioms of SUMO_Time are divided into three subsets, *Tsumo_timepoints*, *Tsumo_timeintervals*, and *Tsumo_temporalPart*, which are explored in the subsequent sections. We show that SUMO_Time admits unintended models and then identify missing axioms which can eliminate these models. After proposing new axioms to extend the original ontology, we demonstrate the verification of the new axioms, and then apply these results to formally prove the relationships between SUMO_Time and other generic ontologies. We have used theorem prover Prover9 [4], and model finder Mace4 in the proofs of all of our results.

Although we provide a characterization of the models of SUMO_Time, and we identify several unintended models of the ontology, we are restricting ourselves in this paper to a logical analysis. We are not debating any philosophical stance implicit in the ontological commitments of a time ontology.

2. The SUMO Foundational Ontology

SUMO [3] is an open source formal foundational ontology axiomatizing, among others, general concepts such as those needed to represent temporal and spatial location, units of measure, objects and processes. As a foundational ontology, it is expected to be used as a global reference for semantics, and its axiomatization reused in the construction of domain and application ontologies for automated reasoning in expressive languages. In addition to the main ontology, which contains about 4000 axioms, SUMO has been extended with a mid-level ontology and a number of domain specific ontologies, all of which account for 20,000 terms and 70,000 axioms in areas such as finance, investment, terrain modeling, distributed computing, and biological viruses. SUMO has been translated into the OWL [5] semantic web language, and has also been mapped to the WordNet lexicon of approximately 100,000 nouns [6] [7], which facilitates the use of the SUMO axiomatization for natural language understanding tasks. We focus on the core axioms of the TEMPORAL subtheory covering the complete axiomatization of time through intervals and points, which we call SUMO Time, leaving untouched those axioms concerning other related topics such as dates, measures, durations, and the occurrence of physical entities in time. We plan to study those subtheories in a future work.

The representational language of SUMO is SUO-KIF¹ [8], a dialect of KIF [9]. SUO-KIF is a very expressive language with many-sorted features, whose syntax permits higher-order constructions such as the use of predicates having other predicates, or formulas, as their arguments, and the existence of predicates and functions of variable arity [10]. Mapping axioms from SUO-KIF to conventional first-order logic syntax (for use by theorem provers such as Prover9) requires that we pay close attention to several key features. First, some properties of functions and predicates are characterized by sec-

¹http://suo.ieee.org/SUO/KIF/suo-kif.html

ond order formulae; for example (instance before TransitiveRelation) leads to the transitivity for *before* (see Axiom (3) in Table 1). Second, SUO-KIF uses a rather idiosyncratic approach to order sorted logics [11] where domain and range constructs denote sorts. For example,

(domain before 1 TimePoint)
(domain before 2 TimePoint)

indicates that the first and second arguments of predicate *before* must be individuals of the extension of predicate *TimePoint*. We will refer to SUMO_Time as the set of SUMO axioms translated into conventional first-order logic syntax². The resulting axioms have been also rewritten using Common Logic.³

3. Time Points

We first consider $T_{sumo_timepoints}$,⁴ the subset of the axioms from SUMO_Time that specify an ordering over time points using the *before* relation, given by the axioms shown in Tables 1 and 2 respectively. In this section, we identify two unintended models of $T_{sumo_timepoints}$, and then propose an extension that eliminates these models.

3.1. Endpoints at Infinity

A distinctive feature of *Tsumo_timepoints* is that there exist two distinguished time points *NegativeInfinity* (which is before all other time points) and *PositiveInfinity* (which is after all other time points). All other time points are between *NegativeInfinity* and *PositiveInfinity*, and intuitively, there should only exist infinite models of these axioms. However, we have the following:

Proposition 1 $T_{sumo_time points} \not\models (NegativeInfinity \neq PositiveInfinity)$

Proof: Using Mace4, we can construct a model⁵ of SUMO_Time in which *NegativeInfinity* = *PositiveInfinity*. \Box

Note that in the model that satisfies *NegativeInfinity* = *PositiveInfinity* there is only one time point. This is admittedly an unusual model, and one may dismiss it as nothing more than a curiosity. Nevertheless, it also means that the axioms do not entail that *NegativeInfinity* is before *PositiveInfinity*, which is quite a fundamental intuition about these two distinguished timepoints.

Interestingly, this issue also appears in other generic ontologies that use the notion of a timeline with points at infinity. In particular, PSL-Core⁶ [12] contains a subtheory of time that axiomatizes a linearly ordered set of timepoints with a distinguished timepoint *infneg* which is before all other timepoints and a distinguished timepoint *infpos* which is

²colore.oor.net/sumo/theorems/input/sumo_time.in

³colore.oor.net/sumo/sumo_time.clif

⁴colore.oor.net/sumo/sumo_timepoints

⁵colore.oor.net/sumo/theorems/output/ex128-1.model

⁶colore.oor.net/psl_core/psl_core.clif

Table 1. T	Theory	Tsumo_timepoints
------------	--------	------------------

$$(\forall x, y) before(x, y) \rightarrow TimePoint(x) \land TimePoint(y)$$
 (1)

$$(\forall x) TimePoint(x) \rightarrow \neg before(x, x)$$
 (2)

$$(\forall x, y, z) before(x, y) \land before(y, z) \rightarrow before(x, z)$$
 (3)

$$(\forall x)$$
 TimePoint $(x) \land \neg (x = PositiveInfinity) \to before(x, PositiveInfinity)$ (6)

$$(\forall x)$$
 TimePoint $(x) \land \neg(x = PositiveInfinity) \rightarrow$

$$\exists y(TimePoint(y) \land temporallyBetween(x, y, PositiveInfinity))$$
(7)

$$(\forall x) TimePoint(x) \land \neg(x = NegativeInfinity) \to before(NegativeInfinity, x)$$
(8)

$$(\forall x) TimePoint(x) \land \neg(x = NegativeInfinity) \rightarrow$$

$$\exists y(TimePoint(y) \land temporallyBetween(NegativeInfinity, y, x))$$
(9)

$$(\forall x, y, z)$$
temporallyBetween $(x, y, z) \leftrightarrow before(x, y) \wedge before(y, z)$ (10)

$$(\forall x, y, z)$$
temporallyBetweenOrEqual $(x, y, z) \leftrightarrow$

$$beforeOrEqual(x, y) \land beforeOrEqual(y, z)$$
(11)

after all other timepoints, yet $T_{pslcore} \not\models (infneg \neq infpos)$. Similarly, the time ontology with endpoints at infinity $T_{lp_endpoints}$ ⁷ [13] also admits a finite model in which there is a unique timepoint.

To eliminate such an unintended model, we propose the additional Axiom (21) (see Table 3). Analogous axioms can be added to ontologies PSL-Core and $T_{lp_endpoints}$. Although it is actually equivalent to $NegativeInfinity \neq PositiveInfinity$, it makes evident the relationship that NegativeInfinity and PositiveInfinity are opposite timepoints along the timeline.

3.2. Linear Orderings on Time Points

If we consider other time ontologies that contain endpoints at infinity, we see that they also satisfy one additional property – the set of timepoints is linearly ordered by the *be*-*fore* relation. On the other hand, SUMO_Time does not entail the sentence that axiomatizes this property:

⁷colore.oor.net/timepoints/lp_endpoints.clif

$$(\forall x, y)$$
 before $OrEqual(x, y) \rightarrow TimePoint(x) \land TimePoint(y)$ (12)

$$(\forall x) TimePoint(x) \rightarrow beforeOrEqual(x,x)$$
 (13)

$$(\forall x, y) beforeOrEqual(x, y) \land beforeOrEqual(y, x) \to (x = y)$$
 (14)

$$(\forall x, y, z)$$
 before $OrEqual(x, y) \land before OrEqual(y, z) \rightarrow before OrEqual(x, z)$ (15)

$$(\forall x, y)$$
 before $OrEqual(x, y) \rightarrow before(x, y) \lor (x = y)$ (16)

$$(\forall x, y) before(x, y) \rightarrow beforeOrEqual(x, y)$$
 (17)

 $(\forall x, y, z)$ temporally Between $(x, y, z) \rightarrow TimePoint(x) \wedge TimePoint(y) \wedge TimePoint(z)$ (18)

 $(\forall x, y, z)$ temporally Between $(x, y, z) \rightarrow$ temporally Between Or Equal (x, y, z) (19)

$$(\forall x, y, z)$$
temporallyBetweenOrEqual $(x, y, z) \rightarrow$

$$TimePoint(x) \wedge TimePoint(y) \wedge TimePoint(z)$$
(20)

Proposition 2 *Tsumo_timepoints* $\not\models (\forall t_1, t_2)$ *TimePoint* $(t_1) \land$ *TimePoint* $(t_2) \rightarrow (before(t_1, t_2) \lor before(t_2, t_1) \lor (t_1 = t_2)$

Proof: Let $T_{finite_sumo_timepoints}$ be the subtheory of $T_{sumo_timepoints}$ without the axioms that force the existence of infinite sets of time points (e.g. Axioms (7) and (9)). Using Mace4,⁸ we can construct a model of $T_{finite_sumo_timepoints}$ that contains two timepoints t_0 and t_1 incomparable by the *before* relation (and hence falsifies the sentence). This model can be extended to construct a model of $T_{sumo_timepoints}$ that also falsifies the sentence by adding linearly ordered sets of timepoints between *NegativeInfinity* and t_0 , *NegativeInfinity* and t_1 , t_0 and *PositiveInfinity*, and t_1 and *PositiveInfinity*. \Box

Tsumo_timepoints therefore allows unintended models such as the ones depicted in Figure 1(*a*), where there exist partially ordered sets of timepoints. Although there do exist time ontologies in which the timepoints are not linearly ordered (e.g. *Tbp_ordering*⁹ [13]), in such cases the models are all definably equivalent to semilinear orderings. Since all timepoints are between *NegativeInfinity* and *PositiveInfinity*, the models of *Tsumo_timepoints* cannot be semilinear orderings. On the other hand, there is no other time ontology that has models in which the comparability graph of the ordering is a directed acyclic graph (as shown in Figure 1-extit(a)). We therefore propose adding Axiom (22) to enforce the linear ordering on timepoints.

⁸colore.oor.net/sumo/theorems/ex128-2.model

⁹colore.oor.net/timepoints/bp_ordering.clif

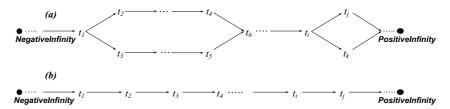


Figure 1. Time models of SUMO with instants connected by relation before.

(a) Nonstandard model where partially ordered branches exist. It is not possible to know what the order is among all parts of an event that started to occur at instant t_1 and finished at instant t_6 , even though the instants at which those parts occurred are known. For example, we can not know if what occurred at t_4 occurred before, after, or simultaneously to what occurred at t_5 because those points are not connected by the transitive closure of the ordering relation *before*.

(b) Linear time model where every instant is connected in a unique *timeline* by the transitive closure of the *before* relation.

3.3. T_{sumo_ordered_timepoints}

Incorporating these changes, we have $T_{sumo_ordered_timepoints}$ is the set of axioms¹⁰ in Table 1 and Table 3.

Note that we have given a conservative definition to the *beforeOrEqual* relation, which is not the case in *Tsumo_timepoints* of the original SUMO (see the subtheory in Table 2). On the other hand, because *before* is a subrelation of *beforeOrEqual* in SUMO, we should intuitively be able to derive

$$(\forall x, y)$$
 (before(x, y) \lor (x = y) \rightarrow beforeOrEqual(x, y)

yet this sentence cannot be entailed from *Tsumo_timepoints*.

Table 3. Proposed additional axioms for T_{sumo_ordered_timepoints}

before(*NegativeInfinity*, *PositiveInfinity*) (21)

 $(\forall t_1, t_2)$ TimePoint $(t_1) \land$ TimePoint $(t_2) \rightarrow (before(t_1, t_2) \lor before(t_2, t_1) \lor (t_1 = t_2)$ (22)

 $(\forall x, y)$ before $OrEqual(x, y) \leftrightarrow$

$$before(x,y) \lor ((x = y) \land TimePoint(x) \land TimePoint(y))$$
 (23)

Proposition 3 $T_{sumo_ordered_timepoints} \models T_{sumo_timepoints}$

Proof: The proofs¹¹ were generated by Prover9. \Box

Thus, we have proposed $T_{sumo_ordered_timepoints}$, a nonconservative extension of $T_{sumo_timepoints}$ that eliminates two classes of unintended models - a trivial model with a

 $^{^{10} \}verb+colore.oor.net/sumo_timepoints/sumo_ordered_timepoints.clif+$

¹¹colore.oor.net/sumo/theorems/timepoints_entails/

unique time point, and models in which time points are not linearly ordered by the *before* relation.

4. Temporal Mereology

The remaining axioms in SUMO-Time extend the ontology by adding time intervals to the domain. Besides axiomatizing the relationships between timepoints and timeintervals, SUMO-Time also specifies a mereology over time intervals. In this section, we explore this mereology; we identify a missing axiom, and use this axiom to show that the axiomatization of the mereology over time intervals can be considered to be a definitional extension of a subtheory of SUMO-Time.

4.1. TimePoints and TimeIntervals

In addition to an ordering over timepoints, SUMO-Time also contains a subtheory $T_{sumo_timeintervals}^{12}$ (shown in Table 4) that introduces time intervals and their relationship to timepoints. The functions BeginFn and EndFn map a time interval to its beginning and ending timepoints, respectively, The function TimeIntervalFn maps a pair of timepoints to the time interval for which they are the begin and end.

From a visual inspection of $T_{sumo_timeintervals}$, it is easy to see that there is a close relationship to other time ontologies from [13] In the next section, we will make this relationship precise.

4.2. Problems with the Existing Axiomatization of temporalPart

We first consider $T_{sumo_temporalPart}$ ¹³, the subset of the axioms from SUMO-Time that specify a mereology over time positions (i.e. both timepoints and timeintervals) using the *temporalPart* relation. Besides a set of axioms that explicitly specify that *temporalPart* is a partial ordering, $T_{sumo_temporalPart}$ also contains a set of axioms that specify the relationships between *temporalPart* and Allen's interval relations¹⁴.

Problems arise when we consider the *temporalPart* relation and timepoints – there exist models in which timepoints contain timeintervals as temporal parts:

Proposition 4 $T_{sumo_timepoints} \cup T_{sumo_timeintervals} \cup T_{sumo_temporalPart} \not\models \\ \neg(\exists x, y) TimePoint(x) \land TimeInterval(y) \land temporalPart(y, x)$

Proof: Using Mace4¹⁵, one can construct a model of *Tfinite_sumo_timepoints* \cup *Tsumo_timeintervals* \cup *Tsumo_temporalPart* that falsifies the sentence. It is easy to see that this model can be extended to construct a model of *Tsumo_timepoints* \cup *Tsumo_timeintervals* \cup *Tsumo_temporalPart* that also falsifies the sentence. \square

¹²colore.oor.net/sumo_timeintervals/sumo_timeintervals.clif

¹³colore.oor.net/sumo/sumo_temporalPart

¹⁴Within the axioms of SUMO-Time, the *during* relation is not given a conservative definition, as is the case with the other interval relations. We considered this to be a typographical error in the axioms, rather than an ontological commitment, and hence we assume that *during* is supposed to have a conservative definition.

¹⁵colore.oor.net/sumo/theorems/ex128-3.model

 Table 4.
 Theory Tsumo_timeintervals

 $(\forall x, y, z)$ *TimePoint* $(x) \land$ *TimePoint* $(y) \land$ *TimeInterval* $(z) \land$

$$(TimeIntervalFn(x, y) = z) \rightarrow (BeginFn(z) = x) \land (EndFn(z) = y)$$
(24)

 $(\forall x, y, z, t)$ *TimeInterval* $(x) \land$ *TimeInterval* $(y) \land$ *TimePoint* $(z) \land$ *TimePoint* $(t) \rightarrow$

$$((BeginFn(x) = z) \land (BeginFn(y) = z) \land (EndFn(x) = t) \land (EndFn(y) = t) \rightarrow (x = y)$$
(25)

 $(\forall x, y, z)$ *TimeInterval* $(x) \land$ *TimePoint* $(y) \land$ *TimePoint* $(z) \rightarrow$

$$(BeginFn(x) = y) \land (EndFn(x) = z) \rightarrow before(y, z)$$
(26)

$$(\forall x)$$
TimeInterval $(x) \rightarrow$ *TimePoint* $(BeginFn(x)) \land$ *TimePoint* $(EndFn(x))$ (27)

 $(\forall x, y)$ *TimePoint* $(x) \land$ *TimePoint* $(y) \land$ *before* $(x, y) \rightarrow$ *TimeInterval*(TimeIntervalFn(x, y))(28)

$$(\forall x) TimePosition(x) \leftrightarrow TimeInterval(x) \lor TimePoint(x)$$
 (29)

$$(\forall x) TimeInterval(x) \rightarrow \neg TimePoint(x)$$
 (30)

We can eliminate models in which timepoints contain timeintervals as temporal parts by adding the axiom that enforces the condition that the only temporal part of a timepoint is the timepoint itself. In addition to eliminating this class of unintended models, such an axiom allows us to axiomatize the *temporalPart* relation as a definitional extension of the ontology:

Definition 1 *Tsumo_temporal_mereology is the set of sentences in Table 5.*

 Table 5. Theory Tsumo_temporal_mereology

$$(\forall x, y)$$
 temporal Part $(x, y) \rightarrow TimePosition(x) \land TimePosition(y)$ (31)

 $(\forall x, y)$ TimePosition $(x) \land$ TimePoint $(y) \rightarrow$ (temporalPart $(x, y) \leftrightarrow (x = y)$) (32)

 $(\forall x, y)$ *TimePoint* $(x) \land$ *TimeInterval* $(y) \rightarrow$

 $(temporalPart(x, y) \leftrightarrow temporallyBetweenOrEqual(BeginFn(y), x, EndFn(y)))$ (33)

 $(\forall x, y)$ *TimeInterval* $(x) \land$ *TimeInterval* $(y) \rightarrow$ (*temporalPart* $(x, y) \leftrightarrow$

 $beforeOrEqual(BeginFn(y), BeginFn(x)) \land beforeOrEqual(EndFn(x), EndFn(y)))$ (34)

Theorem 1 $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals} \cup T_{sumo_temporal_mereology}$ is a definitional extension of $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals}$.

Proof: Using Prover9¹⁶ we can show that $T_{sumo_temporal_mereology}$ is logically equivalent to a conservative definition for the *temporalPart* relation. \Box

Another way of looking at this result, is that we can specify a definitional extension of $T_{sumo_ordered_limepoints} \cup T_{sumo_limeintervals}$ which is stronger than the original axiomatization of SUMO-Time.

Proposition 5 $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals} \cup T_{sumo_temporal_mereology} \models T_{sumo_temporalPart}$

Proof: Proofs ¹⁷. were generated by Prover9. \Box

This approach greatly simplifies SUMO_Time in terms of its axiomatization as well as its conceptualization.

Finding a minimal set of axioms may seem to be an intellectual diversion, or even a fetish. For example, it is difficult to see the benefit of finding the minimal set of equations for Boolean lattices once we are confident that the axioms do in fact axiomatize Boolean lattices. Nevertheless, by identifying a minimal set of axioms which are sufficient for axiomatizing a class of structures, we are in a better position to gaining insights into the fundamental ontological commitments of an ontology. We can distinguish the axioms that capture the basic ontological commitments of SUMO-Time from those sentences which are logical consequences. In particular, we can see that the real ontological commitments are in the axiomatization of the relationship between timepoints and timeintervals.

It is easy to see that $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals} \cup T_{sumo_time_mereology}$ is a nonconservative extension of T_{sumo_time} . The question remains - have we eliminated *all* of the unintended models? What exactly are the models of the extended ontology? We address this question in the following section.

5. Verification of the Extension of SUMO_Time

Verification is concerned with the relationship between the intended models of an ontology and the models of the axiomatization of the ontology. In particular, we want to characterize the models of an ontology up to isomorphism¹⁸ and determine whether or not these models are equivalent to the intended models of the ontology. This relationship between the intended models and the models of the axiomatization plays a key role in the application of ontologies in areas such as semantic integration and decision support.

Unfortunately, it can be quite difficult to characterize the models of an ontology up to isomorphism. Ideally, since the classes of structures that are isomorphic to an ontology's models often have their own axiomatizations, we should be able to reuse the characterizations of these other structures. The key to this endeavour is the notion of logical synonymy:

¹⁶colore.oor.net/sumo/theorems/temporalPart_definitional/

¹⁷colore.oor.net/sumo/theorems/temporalPart_entails/

¹⁸Isomorphic structures have the same model-theoretic properties.

Definition 2 Two theories T_1 and T_2 are synonymous iff there exist two sets of translation definitions Δ and Π , respectively from T_1 to T_2 and from T_2 to T_1 , such that $T_1 \cup \Pi$ is logically equivalent to $T_2 \cup \Delta$.

By the results in [14], there is a bijection on the sets of models for synonymous theories. We can therefore characterize the models of the ontology being verified by demonstrating that the ontology is synonymous with a logical theory whose models we understand. In particular, using the approach taken in [15] to show the following:

Theorem 2 *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals is logically synonymous with Tbounded_linear_ordering*¹⁹ \cup *Tstrict_graphical*²⁰.

Proof: Given the set of translation definitions²¹ Δ shown in Table 6, using Prover9, we have shown that *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals* $\cup\Delta \models$ *Tbounded_linear_ordering* \cup *Tstrict_graphical*. In addition, given the set of translation definitions Π , shown in Table 7, we have proved that *Tbounded_linear_ordering* \cup *Tstrict_graphical* $\cup \Pi \models$ *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals*. Finally, we can use Prover9 to show that *Tbounded_linear_ordering* \cup *Tstrict_graphical* $\cup \Pi \models$ *Tsumo_timeintervals* $\cup \Pi \models \Lambda$. Therefore, the theories are synonymous. \Box

Table 6.	Translation	Definitions	Δ
----------	-------------	-------------	---

 $(\forall x) \ point(x) \equiv TimePoint(x)$ $(\forall x) \ line(x) \equiv TimeInterval(x)$ $(\forall x, y) \ in(x, y) \equiv (begin(y, x) \lor end(y, x) \lor (x = y))$ $(\forall x, y) \ lt(x, y) \equiv before(x, y)$

We can use this result to characterize the models of $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals}$:

Corollary 1 $\mathcal{M} \in Mod(T_{sumo_ordered_imepoints} \cup T_{sumo_imeintervals})$ iff

- 1. $\mathcal{M} \cong \langle P \cup G, \mathbf{lt}, \mathbf{in}^{\mathbf{G}} \rangle$, where
 - (a) $\langle P, \mathbf{lt} \rangle$ is a linear ordering

¹⁹colore.oor.net/orderings/bounded_linear_ordering.clif

 $^{^{20} \}verb+colore.oor.net/bipartite_incidence/strict_graphical.clif+$

²¹Function symbols that require restricted quantification of arguments in every sentence because they represent partial functions, such as SUMO *BeginFn*, *EndFn*, and *TimeIntervalFn*, can not be mapped into relations. In order to make map Π possible, we have characterized predicates *begin*, *end*, and *interval* with the semantics of SUMO function symbols *BeginFn*, *EndFn*, and *TimeIntervalFn*, and produced the corresponding syntactic translation of every sentence of theory *Tsumo_timeintervals* into the new representation. We have used the same representation for map Δ .

Table 7. Translation Definitions Π

```
(\forall x) TimePoint(x) \equiv point(x)
```

 $(\forall x)$ *TimeInterval* $(x) \equiv line(x)$

 $(\forall x, y) begin(y, x) \equiv (line(y) \land point(x) \land (in(x, y) \land (\forall z) point(z) \land in(z, y) \rightarrow leq(x, z))$

 $(\forall x, y) end(y, x) \equiv (line(y) \land point(x) \land (in(x, y) \land ((\forall z) point(z) \land in(z, y) \rightarrow leq(z, x)))$

 $((\forall x, y, z) interval(x, y, z) \equiv point(x) \land point(y) \land line(z) \land in(x, z) \land in(y, z) \land lt(x, y))$

 $(\forall x, y)$ before $(x, y) \equiv lt(x, y)$

(b) $\langle P, G, \mathbf{in}^{\mathbf{G}} \rangle$ is a strict graphical incidence structure²²...

- 2. $\langle \mathbf{t} \rangle \in$ **TimePoint** *iff* $\mathbf{t} \in P$;
- 3. $\langle \mathbf{i} \rangle \in$ **TimeInterval** *iff* $\mathbf{i} \in G$;
- 4. **BeginFn**(i) = t iff $\langle t, i \rangle \in in^{G}$ and for any $t' \in P$ such that $\langle t', i \rangle \in in^{G}$, we have $\langle t, t' \rangle \in lt$.
- 5. EndFn(i) = t iff $\langle t, i \rangle \in in^G$ and for any $t' \in P$ such that $\langle t', i \rangle \in in^G$, we have $\langle t', t \rangle \in lt$.
- 6. TimeIntervalFn $(t_1, t_2) = i iff \langle t_1, i \rangle, \langle t_2, i \rangle \in in^G$;
- 7. $\langle t_1, t_2 \rangle \in \text{before iff } \langle t_1, t_2 \rangle \in \text{lt.}$

6. Relationship to Other Ontologies

The verification of $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals}$ does not only provide us with a representation theorem for its models, but it also enables us to formally specify the relationships to other ontologies by reusing the verification of these other ontologies.

6.1. Combined Time Ontologies

As noted in Section 3, an inspection of the signatures of SUMO_Time and the ontology *Tendpoints* indicates that there should be a close relationship between the two ontologies. In fact, we have the following:

Theorem 3 Tsumo_ordered_timepoints \cup Tsumo_timeintervals is synonymous with Tinterval_with_endpoints.

Proof: Let Υ be the set of translation definitions shown in Table 8, Using Prover9, we have shown that

²²A strict graphical incidence structure is a tuple $\mathbb{G} = \langle X, Y, \mathbf{in}^G \rangle$ where $X \cap Y = \emptyset$, $\mathbf{in}^G \subseteq (X \times Y)$, and elements of \mathbb{G} that are related by in are called incident. All elements of *Y* are incident with exactly two elements of *X*, and for each pair of points $\mathbf{p}, \mathbf{q} \in X$ there exists a unique element in *Y* that is incident with both \mathbf{p} and \mathbf{q} .

 $T_{sumo_ordered_time\ points} \cup T_{sumo_time\ intervals} \cup \Upsilon \models T_{interval_with_end\ points}$ $T_{interval_with_end\ points} \cup \Upsilon \models T_{sumo_ordered_time\ points} \cup T_{sumo_time\ intervals}$

Table 8. Translation Definitions Υ	•
--	---

 $(\forall x) TimePoint(x) \equiv timepoint(x)$ $(\forall x) TimeInterval(x) \equiv timeinterval(x)$ $(\forall x, y) (BeginFn(x) = y) \equiv (beginof(x) = y)$ $(\forall x, y) (EndFn(x) = y) \equiv (endof(x) = y)$ $(\forall x, y, z) (TimeIntervalFn(x, y) = z) \equiv (between(x, y) = z)$

Since *Tinterval_with_endpoints* is inconsistent with *Tendpoints*, it follows that *Tsumo_ordered _timepoints* \cup *Tsumo_timeintervals* cannot interpret *Tendpoints*. Nevertheless, we can still specify the relationship between these theories. We can use the notion of generalized similarity (introduced in [16]) to compare two theories that are in different hierarchies of an ontology repository and thereby identify the maximal shared subtheory between them.

Theorem 4 The generalized similarity of Tendpoints by Tsumo_ordered_timepoints \cup Tsumo_timeintervals is Tfinite_endpoints²³.

Proof: We have already seen that $Tsumo_ordered_timepoints \cup Tsumo_timeintervals$ is synonymous with $Tinterval_with_endpoints^{24}$. Since $Tfinite_endpoints$ is the similarity of Tendpoints and $Tinterval_with_endpoints$, by the definition we have that the generalized similarity of Tendpoints by $Tsumo_ordered_timepoints \cup Tsumo_timeintervals$ is $Tfinite_endpoints$. \Box

This result tells us that the difference between SUMO_Time and *Tendpoints* lies in the underlying ordering on time points rather than in the relationship between time points and time intervals.

6.2. Generic and Upper Ontologies

Theories such as *Tendpoints* that axiomatize the relationships between time points and time intervals appear in several other ontologies, and we can leverage the verification of SUMO_Time to specify mappings to these generic and upper ontologies.

²³color.oor.net/combined_time/finite_endpoints

²⁴colore.oor.net/combined_time/interval_with_endpoints.clif

6.2.1. PSL

We earlier noted that the PSL-Core ontology contains a time ontology that axiomatized a linear ordering over time points that included time points at infinity. Although the original PSL-Core ontology did not contain time intervals, the work of [17] extended it by importing *Tinterval_with_endpoints*. Using Theorem 3 therefore gives us the following:

Theorem 5 Tinterval_psl_core faithfully interprets $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals.}$

In a sense, the revised axiomatization of SUMO_Time could be seen as the natural time ontology for *Tinterval_psl_core*²⁵.

6.2.2. DOLCE

The upper ontology DOLCE [18] axiomatizes the mereology on time intervals $Tdolce_time_mereology$.²⁶. The verification of the revised SUMO_Time not only enables us to specify the relationship to DOLCE, it also allows us to identify which mereology on time intervals is definable in models of *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals*.

Theorem 6 *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals interprets Tdolce_time_mereology.*

Proof: By the results in [17], *Tinterval_with_endpoints* interprets the time interval ontology *Tcem_periods*,²⁷ which in turn faithfully interprets *Tdolce_time_mereology*. Together with Theorem 3, we know that *Tsumo_ordered_timepoints* \cup *Tsumo_timeintervals* interprets *Tdolce_time_mereology*. \Box

We can therefore conclude that a complete extensional mereology is definable over time intervals in models of $T_{sumo_ordered_timepoints} \cup T_{sumo_timeintervals}$.

7. Summary

SUMO is a widely used upper ontology, yet there is not a full understanding of its metalogical properties. Following the approach of [16], in which an upper ontology is considered to be composed of generic ontologies, we have begun the analysis of SUMO by the verification of the time ontology (SUMO_Time) within SUMO. We identified three classes of unintended models of SUMO_Time – models with a unique timepoint, models with partially ordered sets of time points, and models in which time intervals are temporal parts of time points. We proposed three new axioms that eliminate these unintended models, and then verified the extended theory, characterizing its models up to elementary equivalence. An interesting outcome was a restructuring of SUMO_Time as the definitional extension of two modules, thus greatly simplifying the axiomatization. Finally, we specified the metalogical relationships between various time ontologies and the new axiomatization of SUMO_Time.

²⁵colore.oor.net/interval_psl/interval_psl_core.clif

²⁶colore.oor.net/dolce_time_mereology/dolce_time_mereology.clif

²⁷colore.oor.net/periods/cem_periods.clif

The approach taken in this paper will be extended to the remaining generic ontologies within SUMO – dates and duration, mereotopology, process, measure, objects, and qualities.

References

- [1] J. Euzenat and P. Shvaiko. *Ontology Matching*. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.
- [2] M. Grüninger, T. Hahmann, A. Hashemi, and D. Ong. Ontology verification with repositories. In Formal Ontology in Information Systems, Proceedings of the Sixth International Conference, FOIS 2010, Toronto, Canada, May 11-14, 2010, pages 317–330, 2010.
- [3] I. Niles and A. Pease. Towards a standard upper ontology. In FOIS '01: Proceedings of the international conference on Formal Ontology in Information Systems, pages 2–9, New York, NY, USA, 2001. ACM.
- [4] W. McCune. Prover9 and mace4. http://www.cs.unm.edu/~mccune/prover9/, 2005-2010.
- [5] I. Horrocks, P. F.Patel-Schneider, D. L.McGuinness, and C. A.Welty. OWL: a Description Logic Based Ontology Language for the Semantic Web. In F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors, *The Description Logic Handbook: Theory, Implementation, and Applications (2nd Edition)*, chapter 14. Cambridge University Press, 2007.
- [6] C. Fellbaum. WordNet: An Electronic Lexical Database. Bradford Books, 1998.
- [7] I. Niles and A. Pease. Linking lexicons and ontologies: Mapping WordNet to the suggested upper merged ontology. In Proceedings of the 2003 International Conference on Information and Knowledge Engineering (IKE '03), Las Vegas, Nevada, 2003.
- [8] A. Pease and G. Sutcliffe. First order reasoning on a large ontology. In *In Proceedings of the CADE-21* workshop on Empirically Successful Automated Reasoning on Large Theories (ESARLT), 2007.
- [9] M. R. Genesereth. Knowledge Interchange Format. In J. F. Allen, R. Fikes, and E. Sandewall, editors, Proceedings of the Second International Conference on Principles of Knowledge Representation and Reasoning (KR'91), pages 238–249, Cambridge, April 1991. Morgan Kaufmann Publishers.
- [10] C. Benzmüller and A. Pease. Higher-order aspects and context in SUMO. J. Web Sem., 12:104–117, 2012.
- [11] A. Oberschelp. Order sorted predicate logic. In K. Blsius, U. Hedtstck, and C.-R. Rollinger, editors, Sorts and Types in Artificial Intelligence, volume 418 of Lecture Notes in Computer Science, pages 7–17. Springer Berlin Heidelberg, 1990.
- [12] M. Grüninger. Using the PSL ontology. In Handbook on Ontologies, pages 423-443. 2009.
- P. Hayes. Catalog of temporal theories. Technical Report Technical Report UIUC-BI-AI-96-01, University of Illinois Urbana-Champagne, 1996.
- [14] D. Pearce and A. Valverde. Synonymous theories and knowledge representations in answer set programming. J. Comput. Syst. Sci., 78(1):86–104, 2012.
- [15] M. Gruninger and D. Ong. Verification of time ontologies with points and intervals. In *TIME 2011*, pages 31–38, 2011.
- [16] M. Grüninger, T. Hahmann, M. Katsumi, and C. Chui. A Sideways Look at Upper Ontologies. In Formal Ontology in Information Systems - Proceedings of the Eighth International Conference, FOIS 2014, September, 22-25, 2014, Rio de Janeiro, Brazil, pages 9–22, 2014.
- [17] C. Chui and M. Grüninger. Merging the DOLCE and PSL Upper Ontologies. In KEOD 2014 Proceedings of the International Conference on Knowledge Engineering and Ontology Development, Rome, Italy, 21-24 October, 2014, pages 16–26, 2014.
- [18] O. Kutz and T. Mossakowski. A Modular Consistency Proof for DOLCE. In W. Burgard and D. Roth, editors, *Proceedings of the Twenty-Fifth AAAI Conference on Artificial Intelligence (AAAI 2011), August* 7-11, 2011, pages 227–234, San Francisco, California, USA, 2011. AAAI Press.