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ABSTRACT
While bearing capacity of footings has been a widely researched area, only recently have rigorous solutions to square and rectangular
footings been attempted.  A finite element analysis of square and rectangular footings over two-layer clay foundation soil is presented.
Bearing capacity results are shown for a limited range of parameters. While the bearing capacity is distinctly affected by both the ratio
of the strengths of the two layers and the depth of the weak layer, the shape factors are only dependent on the depth ratio.

RÉSUMÉ
Bien que de nombreuses recherches aient été conduites sur la capacité porteuse des semelles de fondation, c’est seulement récemment
que des solutions exactes pour semelles carrées et rectangulaires ont été investiguées. Une analyse aux éléments finis, de ces semelles
carrées et rectangulaires, sur un sol de fondation composé de deux couches argileuses, est présentée. Les résultats sont analysés en
termes de capacité porteuse pour un nombre limité de paramètres. Alors que la capacité porteuse est clairement influencée par le rap-
port de capacité des deux couches, ainsi que par la profondeur de la couche la plus faible, les facteurs de formes sont uniquement dé-
pendants du rapport des profondeurs.

1 INTRODUCTION

Design of shallow footings requires both the settlement and bea-
ring capacity calculations to assure the servicibility and safety
of structures. This presentation focuses on the latter.  Multi-
layer soils are commonly encountered in practice, and the spe-
cific foundation soil considered here is a relatively weak clay 
overlaid by a stronger clay layer.

The early consideration of a strip footing over a two-layer
clay is owed to Button (1953), and the investigations since then
all focused on the two-dimensional problems (strip footings), al-
though the methods of analysis varied.  For instance, Button 
(1953) and Reddy and Srinivasan (1967) used the limit equilib-
rium method with a cylindrical failure surface, whereas Meyer-
hof and Hanna (1978) used a semi-empirical technique that is 
somewhat more difficult to interpret, as it was based on small-
scale tests.  Numerical methods (finite element, finite differ-
ence) were utilized by Burd and Frydman (1997).  Michalowski 
(1992, 2002) utilized the kinematic theorem of limit analysis to
arrive at the bearing capacity of two-layer clay with distinctly
different compressive strength, and Merifield et al. (1999) em-
ployed a numerical technique to calculate both lower and upper
bounds to limit loads based on the static and kinematic theo-
rems of limit analysis.

All approaches to bearing capacity over two-layer soils, so 
far, have included plane-strain analyses, appropriate for long (or
strip) footings. This paper employs the finite element method to
assess the true three-dimensional problem of soil collapse under
square and rectangular footings over two-layer clays.

Recent three-dimensional analyses considering the three-
dimensional problem of collapse of footings are briefly de-
scribed in the next section, followed by the description of the
method used in this paper.  The results for a limited range of pa-
rameters are presented. The results for a special case of a long
(strip) footing are compared to those calculated by others using 
different techniques. Then, for a special case when the strength
of the two layers is identical (uniform soil), the results for
square and rectangular footings are compared to those obtained

by the limit analysis approach.  The paper is completed with
brief conclusions.

2 FORMULATION

A rigorous limit analysis approach (upper bound) to solving for
bearing capacity of a two-layer foundation soil was described
by Michalowski and Shi (1995) for strip footings.  The three-
dimensional nature of the collapse of the soil under square and
rectangular footings is traditionally addressed by introducing
‘shape factors’ to a formula that was originally devised for strip
footings (Buisman 1940, Terzaghi 1943).  A recent approach to 
a true 3-D problem using the kinematical approach of limit 
analysis was presented by Michalowski (2001), who considered 
a three-dimensional failure mechanism illustrated in Figure 1.
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Figure 1.   Collapse mechanism of frictional soil under a square footing.
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The mechanism consists of an inverted pyramid immediately
under the footing, and four curvilinear cones extending in four
mutually perpendicular directions from the apex of the pyramid
(only a part of one cone is shown in Fig. 1(a) to preserve the
clarity of the geometrical features).  Utilizing the kinematic
theorem of limit analysis, the computations were performed us-
ing an optimization technique that led to the least upper bound 
for the bearing capacity.  It was found that a better (lower) up-
per bound could be obtained if the curvilinear cone was re-
placed with a series of linear cone segments.  This counterintui-
tive result was due to restrictions that dilatancy imposes on the
3-D mechanism, i.e., the piece-wise linear cone allowed more
‘geometrical flexibility’ during optimization than the nonlinear
cone did.

The soil beneath the rough footing was discretized into finite 
elements, and an example mesh is shown in Fig. 3 (footing
length-to-width ratio L/B = 2.0).

This particular mesh has 4512 20-node brick elements, with
20101 nodes.  The relative size of the model was: length 7.5B,
width 7.5B, and depth 5B. Only ¼ of the footing was simulated
due to double symmetry. The soil under the ¼ footing is discre-
tized into 24 elements, and the mesh is refined near the footing
edge to capture the significant displacement gradients.  No hori-
zontal displacement was allowed on any vertical surfaces of the
model, and no displacement was allowed at the bottom bound-
ary.

Finite element system ABAQUS was used to build the 
model and to carry out the computations.  A single calculation
using a state-of-the-art UNIX work station (at the time of com-
putations, 2004) took about 14 hours.

A numerical approach based on finite element analysis was
used very recently (Zhu and Michalowski 2005) to indicate that
the upper bound approach based on the mechanism suggested
(Fig. 1) leads to considerable overestimation of the bearing ca-
pacity (square and rectangular footings) for dilatant soils, but it
is an acceptable mechanism for incompressible soils.

3 RESULTS

The pattern of clay deformation for a rectangular footing is il-
lustrated in Fig. 4.

Figure 2.  Yield condition and plastic potential on the octahedral plane.

The calculations of the bearing capacity over a two-layer
clay presented here are based on the finite element analysis of 
an elasto-plastic soil with the strength characterized by the Tre-
sca yield condition, but with a smooth plastic potential (circular
on the octahedral plane, Fig. 2).  The flow rule predicts incom-
pressible deformation but it is not associated with the yield con-
dition.  The bearing capacity is independent of elastic proper-
ties, and isotropic linear elasticity was assumed with Young’s 
modulus E = 20 MPa and Poisson’s ratio ν = 0.3.  The 
undrained shear strength of the upper clay layer was assumed to 
be c1 = 20 kPa, and the lower layer’s strength was determined
from given ratio c1/c2.

Figure 3.  Finite element mesh for rectangular footing L/B = 2.0.
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Figure 4.  Deformation pattern under a rectangular footing: (a) intensity 
of the vertical displacements, (b) projections of total displacement vec-
tors on the soil surface, and (c) total displacement vectors on the vertical 
cross section. 
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The largest magnitude of vertical displacements occur im-
mediately under the footing (dark gray), and in the localized ar-
eas in close proximity to the flanks of the footing.  The dis-
placement field does not appear to have any (strong or weak) 
discontinuity at the interface of the weak and strong clay.

Consistent with the traditional notation, the average bearing
pressure p is written here as 

1 cp c N ∗=  (1) 

where c1 is the cohesion of the upper layer and Nc* is the bear-
ing capacity factor for a rectangular footing.  Both layers of clay
are considered in the analysis as incompressible.  Consequently,
the work of the weight of the portion of clay moving downward 
during collapse is exactly opposite to the work of clay moving
upward, the net work being zero, hence N�* = 0, and one can
also show that Nq* = 1 (Nq*, N�* being bearing capacity coeffi-
cients accounting for overburden pressure and soil weight, re-
spectively).

Table 1. Bearing capacity coefficient Nc*.

H/B
0.50 0.75 1.00

L/B
c1/c2

1.0 2.0 1.0 2.0 1.0 2.0
5 3.456 2.970 4.317 3.699 5.096 4.359
3 4.284 3.754 5.108 4.486 5.590 5.094
2 5.002 4.463 5.583 5.095 5.622 5.484
1 5.624 5.499 5.624 5.499 5.624 5.499

 Coefficient Nc* was calculated for square and strip footings, 
and rectangular ones with aspect ratio of L/B = 2, and for 3 
combinations of the cohesion in the upper (first) and bottom 
layer c1/c2:  5, 3 and 2.  Calculations were also carried out for
uniform clay (c1/c2 = 1).  All combinations were repeated for
three depths of the lower (weaker) layer:  H/B: 0.5, 0.75 and
1.0.  The results are presented in Table 1.

Table 2. Comparison of coefficient Nc for a strip footing.

FEM
Lower
bound

Upper
bound

Upper
boundH/B c1/c2

(1) (2) (3) (4)

5 2.18 2.16 2.44 2.57
3 2.91 2.84 3.16 3.17
2 3.65 3.52 3.89 3.80

0.50

1 5.20 4.94 5.32 5.14
5 2.71 2.64 2.98 3.19
3 3.43 3.36 3.72 3.75
2 4.11 4.00 4.37 4.29

0.75

1 5.20 4.94 5.32 5.14
5 3.21 3.10 3.54 3.76
3 3.93 3.89 4.24 4.29
2 4.53 4.44 4.82 4.74

1.00

1 5.20 4.94 5.32 5.14
(1) This paper’s results; (2) and (3) Merifield et al. (1999);
(4) Michalowski (2002).

Calculations were carried out also for a strip footing, so that
the effectiveness of the method could be compared to existing
results from the limit analysis approach.  The results for a strip 
footing are shown in Table 2, along with those by Merifield et 
al. (1999) and Michalowski (2002).  Since some of these results

in Table 2 were given in the literature with two digits past the
decimal point, other results were truncated to match this format.
As expected, FEM results in Table 2 yield a bearing capacity in
between the two bounds from the limit analysis calculations.

Keeping with the traditional approach of presenting the
bearing capacity of rectangular footings, we introduce ‘shape
factor’ sc*, so that the bearing capacity of a rectangular footing
can be expressed through the bearing capacity factor of a strip
footing Nc

1 1 cc cp c N c s N∗ ∗= = (2)

The shape factor was then calculated simply as ratio Nc*/Nc ,
with both coefficients taken from FEM calculations, and the re-
sults are presented in Table 3. 

able 3. Shape factor sc*.T

H/B
0.50 0.75 1.00

L/B
c1/c2

1.0 2.0 1.0 2.0 1.0 2.0
5 1.580 1.357 1.556 1.365 1.584 1.355
3 1.469 1.287 1.487 1.306 1.422 1.296
2 1.368 1.220 1.357 1.239 1.239 1.209
1 1.080 1.056 1.080 1.056 1.080 1.056

While the shape factor is very much dependent on the ratio of
the strengths of the two layers, there is only a small influence of
the depth of the weak layer.  This is because the influence of the
weak layer depth on the bearing capacity of the strip footing is
comparable to that on square and rectangular footings.  This is 
clearly illustrated in Figure 5.
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Figure 5.  Bearing capacity factor as function of the depth of the weak 
layer.

A comparison of the bearing capacity factor for the square
and rectangular footings obtained here using FEM to those from
a rigorous kinematic limit analysis is presented in Table 4.  This
comparison is only for a uniform clay, as no 3-D limit analysis
results for two-layer clay are available. Earlier limit analysis
calculations overestimate the FEM bearing capacity estimates
by about 10%. 

Table 5.  Comparison of Nc* from FEM and kinematic limit analysis
(uniform clay).

FEM Michalowski 2002
L/B

1.0 2.0 1.0 2.0
5.624 5.499 6.561 6.060
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Future efforts will concentrate on calculations of Nc* for a 
wide range of parameters, and on presenting design recommen-
dations.

4 CONCLUSIONS 

Finite element analysis is an effective technique for considering 
limit state problems. Methods that have been used earlier, in 
particular, the kinematic limit analysis approach, have been suc-
cessful in considering plane-strain problems, but they become 
quite elaborate when applied in 3-D analysis.  Although the 
numerical limit analysis approach is capable of solving 3-D 
problems effectively, it still only yields bounds to the solution 
that is obtained directly from FEM. 

The bearing capacity of clay is reduced if a weaker layer of 
clay is present below a stronger crust.  The limit load is affected 
by both the depth of the weaker layer and the ratio of the 
strengths of the two layers.  However, the shape factor appears 
to be only weakly dependent on the depth, whereas it varies dis-
tinctly with a change in the strength ratio of the two layers. 
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