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ABSTRACT
A differential form of 1-D creep model, proposed by Bjerrum in 1967, which was later modified for transient loading conditions is ex-
tended to multi-dimensional (2-D and 3-D) state of stress and strain by incorporating concepts of visco-plasticity (Vermeer et al.,
1998). The devised creep models take into account both volumetric creep strain and deviatoric creep strain, and creep deformation of
soil is defined by several material parameters. The model is incorporated as a plane strain element subroutine in a non-linear, time-
incrementing finite element program. The model enables the solution of complicated foundation-soil interaction problems involving
creep of soil. Numerical analyses are conducted using published experimental data and parametric studies are conducted to evaluate
the sensitivity of different input parameters of the model.

RÉSUMÉ
Une forme différentielle du modèle en fluage mono-dimensionnel proposé par Bjerrum en 1967, qui a été ensuit modifié pour le 
régime transitoire est étendu aux états multi-dimensions (2-D et 3-D) de contrainte et de de�formation en incorperant les concepts de
visco-plasticité (Vermeer et al. 1998). Ces modèles en fluage tiens compte tous les aspects de la défomation en fluage de terre définit
par plusieurs paramètres de matériaux. Ce modèle est incorporé comme un sons-programme de la de�formation plane avec un pro-
gramme éléments finis non-linéaire augmentation de temps. Ce modéle permettra des solutions dans la domaine de temps pour les
problèms en fluage du terre liés aux foundation-terre interactions. Les résultats numériques ont été obtenns en utilisent les donées
expérimentaux déja publiés. Finalment, une analyse paramétrique est faite afin d’ identifier les parameters de ce modèle les plus sensi-
tifs.

1 INTRODUCTION

In many soils primary compression (consolidation settlement) is
always followed by a certain amount of creep settlement, also 
known as secondary compression. In general engineering prac-
tice, secondary compression (for instance during a period of 10
or 30 years) is assumed to be a small percentage of primary
compression; thus, secondary compression is significant only
when large primary settlements are experienced. Hence large
primary settlement of roads, river embankments, dams or build-
ings, which have been constructed on soft soils, is usually fol-
lowed by substantial creep settlement in later years.

Contrary to the above process, potentially treacherous situa-
tions may arise where a small primary settlement is followed by
a large creep settlement, especially in over-consolidated clays.
When the structure is founded on initially over consolidated
clays it shows relatively small primary settlement. Then, as a
consequence of the loading, a state of normal consolidation may
be reached and significant creep may follow without giving an
advance warning of large primary compression.

Apart from the usually considered foundation-related prob-
lems, creep plays an important role in slope stability also; grad-
ual geometric changes due to creep and associated reduction of
strength due to smoothening of soil particles may then lead to
slope slides. The different problems that relate to creep of soil 
have made it necessary to develop a stress-strain relationship
that takes creep in two- and three-dimensional situations into
account.

Literature considers the development of time dependent
models of one-dimensional soil compression and Bjerrum
(1967) suggested a comprehensive 1-D creep model based on 
the behaviour of over-consolidated Norwegian clays with a
sedimentation history of 3000 years. This 1-D model is based 
on an expression for creep strain rate for constant effective

stress, and was later modified for transient loading conditions 
by Vermeer et al. (1998).

In the present work, this 1-D creep model is extended to
multi-dimensional state of stress and strain by incorporating
concepts of visco-plasticity. A non-linear, time incrementing fi-
nite element program, along with iterative corrections within
each time step, was developed by the first author (Puswewala et 
al. 1992). Certain modifications were done in the latter main
program to incorporate the present model as an element subrou-
tine for plane strain condition. Numerical analyses are con-
ducted using published experimental data and parametric stud-
ies are conducted to evaluate the sensitivity of different input
parameters of the model. 

2 THE 1-D CREEP MODEL 

In his Rankine Lecture, Bjerrum (1967) described the compres-
sion of clays exhibiting creep under constant effective stress. 
Based on the work done by Bjerrum on soil creep, Garlanger
(1972), proposed a creep equation for loading above precon-
solidation pressure, � , of the form: c′
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where� is the change in void ratio, C is the slope on an e ver-
sus log diagram of the compression line from � to , is
the slope of the instant line, is the slope of the versus log 
time curve, and t is the time for end of primary consolidation.
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Above expression was later modified by Butterfield (1979)

to fit into the framework of critical state soil mechanics. He in-
troduced the logarithmic strain concept and the total volumetric
total strain, , was decomposed into volumetric elasticv�
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strain, � , and volumetric creep strain, . Soil parameters
, C , and C are replaced with Modified Clam-Clay Model 

parameters , and primary consolidation time, t , is re-
placed with the time factor .
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The soil parameter M represents the slope of the critical state
line an be computed by using critical state friction an-
gle (  as follows:
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By considering volumetric creep strain rate part  in the
equation (3) and introducing the new equivalent pressure
and the apparent equivalent preconsolidation pressure the
expression for volumetric creep strain rate can be written as:

( )c
v�� eqp

eq
pp

where and represent preconsolidation pressures corre-
sponding to before-loading state and end-of-consolidation state 
respectively.

By adopting Bjerrum’s concept (Bjerrum, 1967) that the
secondary compression increases the preconsolidation pressure, 
by eliminating and from the equation (2), Vermeer et al. 
(1998) proposed a differential form of expression that accounts
for creep of soft soil, of the form:
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where � denotes the accumulated volumetric creep up to the
current time t. The value of initial equivalent preconsolidation
pressure can be computed by using initial preconsolidation
pressure (Vermeer et al., 1998).
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4 FORMULATION OF THE SOIL CREEP PROBLEM 

The basic concept used here is that the total strain vector con-
sists of an elastic strain component and a creep strain compo-
nent, i.e. 3 GENERALIZATION OF 1-D MODEL TO 3-D 

The expression for volumetric creep strain rate (  in equation
(3) is extended for a general state of stresses and strains. Well-
known stress invariant quantities are adopted for pressure

)c
v��

p and
deviatoric stress as  andp = 23 oct�q = , with �  and

 being the octahedral normal stress and octahedral shear
stress, respectively. In terms of principal stresses, pressure p and 
deviatoric stress q can be expressed as:

oct
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where � is the current total strain vector, the current elas-
tic strain vector, the current creep strain vector, and t de-
notes the current time. The elastic strain component can be re-
lated to the stress vector � through the use of a constitutive
matrix as:
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In the present analysis is composed of E (Young’s Modulus) 
and (Poisson’s ratio), which implies that the elastic strain is
related to stress according to isotropic linear elasticity. In order
to introduce general creep strain, one can adopt the view that
creep strain is simply a time-dependent plastic strain. Then it is
logical to assume a flow rule for the creep rate component and
equivalent pressure is introduced as the plastic potential 
function (Vermeer et al., 1998); this yields:

D

eqp
where and are principal stresses. The extension of 
equations (4) to a state of general stress and strain yields the fol-
lowing:
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where summation is implied over indices i and j, (i, j = 1, 2, 3)
and denotes the deviatoric stress tensor in terms of multi-
dimensional states of stress quantities as follows:
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where the plastic multiplier can be eliminated from the equa-
tion (11) by adopting the concept that the creep strain rate is
proportional to partial derivative of the plastic potential function
with respect to the corresponding stress component, i.e. 

�
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Now invariants p and q, incorporating the concept of Modified
Clam-Clay Model (Roscoe and Burland, 1968), can be used to
define a new stress measure named equivalent pressure ,
which has the dimension of pressure:

eqp
where can be evaluated for multi-dimensional situation as:�
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Equations (11)-(15) yield:Together with p and q in equation (5) this leads to:
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By combining equations (10) and (16), the following is ob-
tained:
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where  is obtained from equation (22) by replacing
with , and, 
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to denote initial conditions and that for time t=0.0=c
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5 FINITE ELEMENT ALGORITHM FOR CREEP MODEL

where matrix given bynS
Modifications were made to the finite element algorithm devel-
oped by Puswewala et al. (1992) in order to incorporate the de-
veloped creep model as a plane strain element subroutine. At
any point within a material domain of volume V and surface S,
discretized by finite elements, the displacement vector field will
be denoted by , strain vector by , and stress vector . From
the principle of virtual work, equilibrium of the material domain
at the time t , which is reached after the accumulation of k time
steps starting from t=0, can be expressed as: 
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is evaluated for . In the above equation (24) the right hand
side does not include provisions for increasing body forces. If
convergence occurs at the above (n+1)

n
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th iterate, it is set
 (note that � ), and similarly
, and proceeded to the next time step; otherwise it-

eration is continued.
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where is the known force vector consists of body forces and
surface traction forces. VectorB , u , and the nodal displace-
ment vector hold the following relationships, i.e. 

kf
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As per the constitutive model in equation (17), the solution
process is initiated by obtaining the instantaneous elastic defor-
mation and stress distribution at the time of application of the
initial load (t=0). These displacement and stress vectors are
used to obtain the incremental displacement and stress vectors
during the first time interval ∆ by solving equations (23) and
(24). The solution process is repeated for each time interval, un-
til the termination of analysis.

ot

where is the shape function matrix and is a differential op-
erator matrix. It is necessary to evaluate and at the end 
of the next time interval � , provided and at the time

are known rder to evaluate the accumulated volumetric
creep stra  at the time t , equations (11) and (12) are used
since � and are known quantities at the time t . To-
gether with equations (11), (12) and (19), the expression for the 
difference between the stress vectors �  and � can be ob-
tained as: 
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6 NUMERICAL ANALYSIS AND DISCUSSION

{ } ( ) 0��DaaDB��� =∆+−−−= ++++ θkkkkkkk t111 (20)

In the above, the following relationship has been used:
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where denotes the strain rate vector given by equation (17),
and:
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Numerical analyses were conducted using published experimen-
tal data; parametric studies were conducted to investigate the
sensitivity of different material parameters of the model. It was
found that sensitivity of some of the parameters was so high that 
the model did not work properly except for a limited range of
numerical values for such parameters. For example, when ap-
plied pressure exceeded the preconsolidation pressure, numeri-
cal problems were encountered. The power term in equation (3) 
is a real number and also a relatively large number. When a
term is raised to powers in real numbers rather than integers, the
term had to be set as positive, irrespective of the sign achieved
by the computations. Due to problems like this, the parametric
study could be carried out only for limited ranges of magnitudes
of some parameters.

Numerical analyses were carried out by a finite element
mesh composed of 8-node serendipity elements representing a
8m deep layer of soft soil underlain by a hard surface like rock.
The simulation was done under plane strain condition, with the
top of the surface subjected to a uniform load of 120 kPa ap-
plied over a length of 8m. The material properties of the soil
were selected similar to Haney Clay investigated by Vaid and
Campanella (1977), and are as given in Table 1: 

For 21≥θ

k

1+n

(i.e. to have a unconditionally stable scheme), New-
ton-Raphson procedure is used to iterate within the time interval

for the unknowns and . The iterate number is de-
noted by a superscript numeral. After successive iterations, the
iteration cycle n can be reached, while the convergence criterion
may not yet be satisfied. At this point, equations (18) and (20)
can be written using the appropriate current stress and dis-
placement values, but these expressions would now not reduce
to zero since convergence has not yet been achieved. Using the
curtailed Taylor expansion on the latter expressions the follow-
ing two equations are obtained to yield the unknown incre-
mental corrections  and upon solution (this is the
( )

t∆ 1+k�

n
k 1+

1+ka

n
k 1+∆a∆�

th iterate):

Table 1: Material properties

E = 6000 kPa ν = 0.25 σpo = 400 kPa φcs = 32.1
κ∗ = 0.016 λ∗ = 0.105 µ∗ = 0.004 τ = 1 day

The settlement of the loaded surface with time is plotted in Fig-
ure 1. 
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Figure 4. Settlement behavior for L = 0.375 with Poisson’s ratio 

Figures 2, 3 and 4 indicate that the creep model yields on at-
tenuating form of continuing settlement. The numerical results
show that the vertical normal stress in the surface soil elements
at the axis of symmetry reach the value of applied stress after
about 2000 days, and the rates of settlement become very small 
after about 500 days. These numbers are of course dependent on
the material parameters selected for the investigation.

Figure 1. Total settlement behavior of the top surface with time

By taking L as the ratio of distance to the point from the cen-
ter of the loaded area to the total load width (8m), the total set-
tlement with time is shown in Figure 2 for three selected points
on the loaded surface.
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7 CONCLUSION

The modified creep model of Bjerrum (1967) was generalized
to multi-dimensions and implemented in a time-incrementing,
iterative, non-linear finite element code. Analyses were con-
ducted by applying a flexible uniform load on the soil layer. The
sensitivity of various parameters on the numerical performance
of the model was investigated. It is found that some of the  ma-
terial parameters of the model can be varied only within limited
ranges due to numerical complications inherent in the model. 
The model yields an attenuating type of creep settlement for the
range of parameters used. 

Figure 2. Total settlement versus time
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