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ABSTRACT
To investigate a problem of bearing capacity of a natural clay, a soil-water coupled finite deformation analysis is performed with the
elasto-plastic constitutive model that describes the effect of the decay of soil skeleton structure due to plastic deformation. From the
computational results the findings are as follows: (1) In a structured clay soil, a load peak phenomenon appears, accompanied by a lo-
cal circular slip field. (2) In a clay soil possessing anisotropy, this area of failure is more confined, and the peak is lower.

RÉSUMÉ
Le problème de la capacité portante de fondations en argile par dépôt naturel est étudié par l'exécution d'une analyse de déformation
finie couplée eau-sol par un modèle constitutif élasto-plastique décrivant les effets de l'altération du squelette de la structure du sol 
résultant de la déformation plastique. Les résultats des calculs montrent que : (1) Dans du sol de structure se produit un phénomène de 
pointe de charge accompagné d'un champ d'éboulement circulaire local ; (2) Dans du sol avec anisotropie, cette zone de défaillance
est plus réduite et la pointe moins accentuée.

2 ELASTO-PLASTIC CONSTITUTIVE EQUATION FOR 
NATURAL CLAY

1 INTRODUCTION

Stability problems in naturally deposited clay soil, such as those
containing soft clay, can be analyzed using limit bearing capac-
ity analysis methods such as a φu=0 circular slip analysis or a 
soil-water coupled (Asaoka et al., 1990) rigid plastic finite ele-
ment analysis (Tamura et al., 1984). Using the latter method, it 
is an easy matter, having first found the void ratio distributions
in the soil through an elasto-plastic consolidation deformation
analysis under partially drained conditions, to project them over
into the rigid plastic analysis in order to obtain the bearing ca-
pacity (‘partially drained bearing capacity analysis’ (Asaoka et
al., 1990)). More recently, however, it has become possible to
tackle this kind of bearing capacity problem within a single
theoretical framework, while still taking account of the change
in geometrical shape, by making use of a soil-water coupled
elasto-plastic finite deformation analysis that is able to deal with
the whole sequence of change from deformation through to fail-
ure (Asaoka et al., 1994). To grasp the initial state of the soil for
an elasto-plastic analysis of this sort, it is vital to have access to
an elasto-plastic model that can describe not only the void ratio
distributions, as required for a rigid plastic analysis, but also
other information relevant to a naturally deposited clay soil,
such as the degree of soil structure and any subsequent changes
in the soil skeleton.

2.1 The quantitative expression of structure, overconsolidation
and anisotropy, and their evolution rules 

Naturally deposited soils, whether clayey or sandy, generally
exist in an overconsolidated structured state. A necessary base
for describing the deformational behavior of soils in this state is
an elasto-plastic model of a soil that has been deprived of its
structure through remolding and returned to a state of normal 
consolidation. However, even an unstructured and normally
consolidated soil possesses isotropy, and therefore this paper
also makes use of a stress parameter *η by Sekiguchi and Ohta 
(1977) and the associated evolutionary concept of rotational
hardening (Hashiguchi & Chen, 1998) first introduced into the 
Cam-clay model to provide an expression of anisotropy. The
two further concepts of a superloading (Asaoka et al., 2000) and
of a subloading (Hashiguchi, 1989) yield surface, are added to 
this revised model to allow the expression and quantification of
degrees of structure and overconsolidation, respectively. The
degree of structure is expressed on a superloading surface, simi-
lar to the Cam-clay yield surface but situated outside it (similar-
ity ratio *R defined: at center of similarity

) , while the state of overconsolidation is expressed
on a subloading surface inside the superloading one (similarity
ratio R defined: ( 0 ) at center of similarity ;
the reciprocal, 1 is thus equivalent to the overconsolidation
ratio). Here, is the mean effective stress and q is the shear
stress, given as  and
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SS ⋅= 2/3q  for effective

stress tensor T (tension: positive). The closer R* comes to 0,
the higher the degree of structure; but an increase in plastic de-
formation brings loss of structure meaning that 

'

*R  approaches
1 (evolution rule for *R ). Similarly, the closer R is to 0, the
higher the degree of overconsolidation; but as R increases with
plastic deformation and comes closer to 1, the soil also comes
closer to the state of normal consolidation (evolution rule for R).
It can therefore be presumed that any advance in plastic defor-
mation will result in a simultaneous loss of structure and of
overconsolidation (a movement toward the normally consoli-
dated state), leading ultimately to the conditions assumed in the
Cam-clay model. If the three yield surfaces are imagined placed

In this paper we report a soil-water coupled finite deforma-
tion calculation (Asaoka et al., 1994) of the bearing capacity of
a naturally deposited and highly structured clay soil, performed
using an elasto-plastic model that describes the soil skeletal
mechanisms of structure, overconsolidation and anisotropy
(Asaoka et al., 2000, 2002). We then discuss the influence that 
soil structure and anisotropy have on the calculated bearing ca-
pacity, the influence of the initial imperfection in geometrical
shape, and the influence played by the loading rate, through its
effect on the soil-water coupling. To enable the bearing capacity
problem to be presented in an easily understandable classical 
form, it will be supposed that the foundation is to be rigid, thin,
and controlled in its vertical displacement.
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in axi-symmetry on a set of coordinates, we obtain the arrange-
ment in Fig. 1. As the current effective stress is situated on the
subloading yield surface, the various elasto-plastic principles
such as the associated flow rule and Prager’s consistency condi-
tion are applied to the subloading surface represented by

Constitutive equation:
'

'
T

EED
∂
∂Λ−= f�

T  (6) 

E is the elastic tensor, T is the Green & Naghdi’s rate of
, and Λ expresses the plastic multiplier
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Here, )e1/(M/)(D 0
~~ +−= κλ

λ
is the dilatancy coefficient, M is

the critical state constant, ~  and κ~ are the compression and 
swelling indices, and e is the initial void ratio where

(e is the void ratio at time t = t). D  is the
plastic stretching tensor and  (compression: positive)
corresponds to the plastic volumetric strain. Anisotropy, repre-
sented by

0

)e1/()e1 0++
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(=J p

�
tJ0 tr τpdD

η , can be expressed in terms of the effective stress
and the rotational hardening tensor � , as following ,

�� ˆˆ2/3 ⋅ ��� −=ˆ* =η , ,  and . For
the purposes of this paper, the evolution rules for R*, R and
are given by the following Eqs. (2) – (4).

'p� = /S I'p+TS '=
�

where a relation obtains of M ,222 M ζ+=a �2/3=ζ . For
details of this, the reader is referred to Asaoka et al.(2002), but
the essential point is that the slope of the threshold between
hardening and softening , under the loading condition

sM
ps ′Mq =

λ > 0, varies wildly with structural degradation, loss of over-
consolidation and gain or loss of anisotropy, as well as with cur-
rent stress; also, the slope M of the threshold between plastic
compression and expansion q varies in response to the 
gain or loss of anisotropy.
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* −=U  (2) 3 THE BEARING CAPACITY OF A NATURALLY
DEPOSITED CLAY SOIL
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3.1 Calculation conditions

The calculation is performed for 2-dimensional plane strain
conditions, using the finite element mesh and boundary condi-
tions shown in Fig. 2. A foundation is assumed to be rigid and
possessing friction. Since it is possible for the foundation to
have an asymmetrically deformed mode allowing a tilt to one
side by making use of a whole cross-section, restrictions on line
shape (invariability of length and angle) (Asaoka et al., 1998)
will be imposed between nodes. In order not to cause no more
than a minimal migration of pore water inside the soil, forced
vertical displacements are assumed to be applied in a downward
direction at the central node of the base, at a high velocity of
10-5 cm/sec.

p
sD is the deviator component of  and thepD  terms show

the respective norms. � in Eq. (4) is the Green & Naghdi’s
(1965) rate of � . The groups of parameters in all three equa-
tions consist wholly of constants. From the point of view of the 
roles they perform, a, b and c are degradation indices of struc-
ture, m is a degradation (or loss) index of overconsolidation, b

�

r
is an evolution index of rotational hardening, and mb is a rota-
tional hardening limit. As for the values of these evolution pa-
rameters, a comparison of responses obtained from the constitu-
tive equation and from laboratory experiments shows 
categorically that, compared with sand, clay has a slower rate of
evolution for structural degradation and anisotropy, and a faster
rate for loss of overconsolidation (Asaoka et al., 2002).

Figure 1. The three loading surfaces.

2.2 The associated flow rule and the constitutive equation
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Figure 2. Finite element mesh and boundary conditions.

Table 1 shows the material constants. The values for the evo-
lution rule parameters are fixed so as to capture the typical
elasto-plastic behaviors of clay (slow decay of structure and
gain in anisotropy, rapid loss of overconsolidation)(Asaoka et
al., 2002). The initial distributions of the void ratios and degrees
of structure in the soil can then be determined as follows, taking
account of the soil’s own weight. First the constitutive equation
is used to find theoretical 1-dimensional values for a horizon-
tally homogeneous normally consolidated soil state under the
action of a surcharge load of 98.1 kPa plus gravity, and the con-
solidation after the removal of the surcharge load is calculated.
The bearing capacity is then calculated for the somewhat over-
consolidated state of the soil without the surcharge load. As ac-
tual initial state values in the soil at the normally consolidated
stage will depend on conditions that vary on part from case to
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case in the calculated results presented below, let us begin by
discussing this point before looking at individual calculations.
The fact that the weight of the soil particle itself has to be al-
lowed for in the balance of forces problem, and that account has
to be taken of the associated increase in strength (non-
homogeneity) which appears at lower depths in the soil, means
that the bearing capacity has to be treated in a quite different
way from what would be usual in metal plasticity theory.
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Figure 3. Initial distributions (qu: undrained strength).

Table 1. Material constants in the clay. 
Elasto-plastic parameters

Compression index λ~  0.23
Swelling index κ~  0.01
Critical state constant M  1.15
Specific volume at q = 0 and p' = 98.1 Pa on NCL N 2.75
Poisson's ratio ν  0.1

Evolution rule parameters
Degradation index of structure a  ( 0.1== cb ) 0.2
Degradation index of overconsolidation m  5.0
Evolution index of rotational hardening rb 0.001
Limit of rotational hardening bm  1.0
Permeability k (cm/sec) 2.8�10-8

Density of soil particle ρs (t/m3) 2.75
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Figure 4. Influence of structure (settlement in relation to load).
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3.2 lculation results (influence of presence or absence of
structure)

We now compare the initial degrees of structure in the soil. Ta-
ble 2 gives the initial conditions in the highly and less structured
soils before the removal of the surcharge load, while Fig. 3 
shows the various distributions in both the soils after unloading
and consolidation and just prior to loading. The calculation re-
sults are shown in Figs. 4 (settlement-to-load relation) and 5
(comparison of distribution of shear strain). In the case of the
less structured soil (i.e., remolded soil), the settlement proceeds
continuously together with the increase in the added load. Even
though an exhaustion of elasticity and a change to plastic be-
havior may appear at the element level as shown below, this
ongoing growth comes from the fact that we are dealing here
with the moment by moment geometrical change in shape in the
soil as a whole, a case quite different from that of a limit analy-
sis based on rigid plasticity theory. In fact we find the soil hori-
zontally next to the foundation of the soil rising to function as a
“counterweight fill” as the loading increases. In a highly struc-
tured clay, on the other hand, the scope of the analysis will ef-
fectively be confined to occurrences of “slip” in the immediate
vicinity of the foundation. In cases where softening behavior
appears at the element level, this will tend to be offset by the ef-
fect of geometrical shape changing, so that the loading shows a
peak followed by a fresh phase of rising to follow. While the
conditions described are different, it may be added that the area
of slip obtained here is more restricted than that by Prandtl. Fig.
6 shows the comparison of the behavior on the shear localized
area. The structured clay displays softening due to the structural
decay after hardening due to the overconsolidation loss, while
the remolded clay displays a near-perfectly plastic behavior.

Figure 5. Influence of structure (distribution of shear strain).
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Figure 6. Clay element behavior on shear localized area.

3.3 Calculation results (influence of anisotropy)

In a natural soil with a well developed soil skeleton structure it
is common, also, for anisotropy to be highly developed. Starting
each time from the same initial anisotropy stress state shown in 
Table 2, a comparison has been made between states with and
without initial anisotropy(initial yield surface inclined as in Fig.
1; isotropic when 02/3 == �ζ 00 ; anisotropic when

00 ≠ζ ). The results are shown in Figs. 7 (settlement-to-load)
and 8 (comparison of distribution of shear strain). Clearly, in a
soil with prominent initial anisotropy the peak load and the size
of the “circular slip” area are both smaller. Remarkably, this
conclusion does not differ in any respect from one arrived at
more than ten years ago through an analysis based on rigid plas-
ticity theory (Asaoka & Kodaka, 1992).

Table 2. Initial conditions in the soils. 

Elasto-plastic parameters Highly structured Less structured
Degree of structure *0R 0.25 1.0
Overconsolidation ratio 0/1 R 1.0 1.0
Lateral pressure coefficient '/' 00 vh σσ 0.5 0.5
Degree of anisotropy 000 2/3 �� ⋅=ς 0.75 0.75
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Figure 7. Influence of initial anisotropy (settlement to load). 
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shear strain). 
Figure 11. Influence of loading rate (settlement in relation to load). 

3.4 Calculation results (influence of initial imperfection in 
geometrical shape of the soil)

The results reported in 3.2 and 3.3 were for the analysis of a
whole cross-section without any initial imperfection in geomet-
rical shape. Figs. 9 (displacement-to-load) and 10 (comparison
of distribution of shear strain) show results calculated for a 
whole cross-section with an initial imperfection. The imperfec-
tion was created by removing a finite element from the mesh
with no imperfection as shown in Fig. 2, followed by performing
a calculation of consolidation prior to loading. The other calcu-
lation conditions remain the same as in Table 2. When the mesh
with the imperfection is applied the deformation proceeds
asymmetrically, “bifurcating” from the “true path” at one point
and becoming smaller. Some initial imperfection should be in-
corporated in the real state of things, whether geometrical or ma-
terial in origin. Therefore, an asymmetrical mode breakdown of
the kind shown in Fig. 10 will always be close to the reality.
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Figure 9. Influence of initial imperfection in geometrical shape (settle-
ment in relation to load).

Figure 10. Influence of initial imperfection in geometrical
shape (distribution of shear strain). 

3.5 Calculation results (influence of loading rate)

The above results are all for rapid loading ( completely
undrained). But in order to show the effect of a soil-water cou-
pled calculation, it is necessary to say something about the effect
of partial drainage. Accordingly, calculations have been per-
formed for forced vertical displacement velocities set at 10

≅

-5 and
10-6cm/sec. The initial conditions are the same as in Table 2
(Highly structured). The results are given in Figs. 11 (settle-
ment-to-load) and 12 (specific volume change distribution). Fig.
12 shows the area around the so-called “slip line,” and is of im-
portance in that it is possible to see the swelling or compression
of the soil. At a lower loading rate, compression (a compaction
band) becomes visible in the vicinity of the localization area of
the shear strain (the slip line).

Figure 12. Influence of loading rate (distribution of spe-
cific volume change from initial state). 
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4 CONCLUSION

With a focus on a problem of bearing capacity, this paper has
reported a soil-water coupled finite deformation analysis per-
formed with an elasto-plastic model describing the working of
soil skeleton structure, and has shown among other things that
(1) in a structured soil, a load peak phenomenon appears, ac-
companied by a local circular slip field (area of failure) (Figs. 4
and 5); (2) in a soil possessing anisotropy, this area of failure is
more confined, and the peak is lower (Figs. 7 and 8); (3) in a
structured soil with an initial imperfection in geometrical shape,
an imperfection-sensitive behavior appears (Figs. 9 and 10); and 
(4) at lower loading rates a compaction band becomes visible
(Figs. 11 and 12). Lack of page space has made it impossible to 
deal with the influences due to overconsolidation, but it should
now be apparent that the scope of the problem areas that can be
treated in an analysis of this kind is very broad, and that the in-
clusion of the soil structure concept and of anisotropy here is as
natural as it is important, since both are characteristic features of
a naturally deposited soil. On the subject of bearing capacity in
conditions of embankment loading – i.e. under controlled weight
loads –, the authors report elsewhere(Asaoka et al., 2005). 
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