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ABSTRACT
Conventional manual-based design is being shifted to performance-based design in the geotechnical engineering practices. During
these changes, it is not clear how to treat the conventional limit equilibrium methods for the bearing capacity, earth pressures and slope
stability problems. Limit equilibrium methods are similar to the limit analysis. However, theoretical consistencies are lost in the limit
equilibrium methods, because bold assumptions and empirical relations are included. Originally, rigid-plastic analysis can be very
useful for the practical design because of its theoretical simplicity, fewer material parameters and its stability in the calculations. In this
article, mechanics and mathematics of limit analysis are reviewed in comparison with other methods. Recent developments of numerical
rigid-plastic methods are also reported. The author thinks these kinds of knowledge should be utilised for the reconstruction of plastic
design procedures in geotechnical engineering practices.

RÉSUMÉ
En génie civil, les méthodes conventionnelles d’un design basé sur des normes et des manuels cédent peu à peu leur place á des méthodes
basées sur les performances. Cependant, l’utilisation des méthodes conventionnelles d’équilibre limite pour résoudre les problèmes de
capacité de chargement, de poussée des terres et de stabilité des pentes présente encore des zones d’ombres. Les méthodes d’équilibre
limite sont similaires à l’analyse limite. Mais les fondements théoriques de ces méthodes manquent de rigueurs tant elles reposent
sur des hypothéses trop audacieuses et nombre de relations empiriques. L’analyse plasto-rigide peut être trés utile pour la conception
pratique grâce à sa simpliciteé théorique, à son nombre réduit de paramètres caractéristiques des matériaux et à sa stabilité numérique.
Dans cet article, la méchanique et la mathématique de l’analyse limite sont comparées aux autres méthodes. Les récents développement
de l’analyse plasto-rigide numérique sont aussi exposés. Lauteur pense que ces méthodes devraient être utilisées pour la mise au point
de procédures de design plastique dans la pratique du génie civil.

1 INTRODUCTION

Recently, design methods are being shifted to performance-based
design in order to establish a more rational design procedure.
During these changes, it is inevitable to rearrange a framework
of classical soil mechanics problems such as bearing capacity,
earth pressure or slope stability problems. Although these classi-
cal formulations are still useful in many engineering practices, it
seems to the author that patch works of the classical formulations
for more general problems including soil reinforcement, compli-
cated geometry or complicated strength distributions and so on,
are almost impossible due to the theoretical ambiguities of the
original formulation. It may be better to construct a new frame-
work of the classical soil mechanics problems thoroughly based
on the mechanics and mathematics of rigid-plastic analysis, be-
cause design methods are always required their accountability in
a scientific manner. In addition to this, it is desirable to select a
suitable and rational evaluation method for the required accura-
cies, importance of the structures, design costs or other technical
constraints.

Generally, the following three kinds of errors are included
when we solve initial-boundary value problems
(1) Errors due to the choice of physical and mathematical mod-

elling.
(2) Errors due to the choice of parameters.
(3) Errors due to the choice of analytical methods.
The former two kinds of errors are well recognised. Choice of
models deeply depends on the engineering judgement which is
generally determined under the balances between designing costs
and accuracies of the results. Similarly, choice of parameters
mainly depends on the limited number of soils tests and field in-
vestigations. However, in comparison with the former two kinds
of errors, we are likely to overlook the last errors. In case of rigid-
plastic analysis, the errors due to analytical methods are investi-
gated in this paper.

In practical design, limit equilibrium method is widely used
due to its simplicity, for example. However, strictly speaking,
mechanical and mathematical consistencies are lost in the for-
mulation of limit equilibrium method. On the other hand, elastic-
plastic finite element method (EPFEM)is sometimes used for the
detailed design. In addition, results of EPFEM are sometimes
directly compared with results of a conventional method. How
should we understand the different results?

For another misleading example, in order to estimate the slope
stability, stress fields obtained by elastic FEM are used for the
calculation of the factor of safety along the assumed slip surfaces.
This analysis may show a certain result. But what is the physical
meaning of this analysis?

The author thinks that limit analysis (LA) plays a key role to
understand the gaps of the results obtained by both limit equi-
librium method (LEM) and EPFEM, as is briefly explained here-
after. Based on the limit theorems, we can derive a wide variety of
formulations from the very simple manual calculations to precise
rigid-plastic finite element method (RPFEM). LEM is somewhat
similar to the very simple manual calculations of LA, because
LEM is a certain kind of reduction of LA. In this sense, results by
LEM sometimes seem similar to results by LA. But it should be
noted again that the mechanical and mathematical consistencies
are lost. Oppositely, by the use of spacial discretisation by finite
elements, precise RPFEM can be formulated based on the limit
theorems. Since RPFEM solves the governing equations directly,
its results are theoretically correct except for the discretisation
errors. The major difference of RPFEM and EPFEM is their ma-
terial behaviour; simplified rigid-plastic constitutive relations are
used in RPFEM.

Moreover, RPFEM can be applicable to general rigid-plastic
boundary value problems including soil reinforcement, geomet-
ric complexity, complicated distribution of materials and so on,
which are very difficult to be solved by the conventional limit
equilibrium method. In this sense,
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As described above, it is understandable that limit analysis
holds potentials for the updated approaches of the plastic design
in geotechnical engineering. Fundamental features of limit anal-
ysis are briefly reviewed in the next section.

2 MATHEMATICAL STRUCTURE OF LIMIT ANALYSIS

2.1 Features of limit analysis

Most of the practical problems in geotechnical engineering es-
sentially belong to elastic-plastic initial boundary value prob-
lems. Therefore, the strict way to solve these problems is elastic-
plastic finite element method (EPFEM). To obtain the exact solu-
tions, we should carry out the incremental form of EPFEM along
with the precise construction procedure under suitable initial and
boundary conditions. Generally speaking, these analyses are still
hard because it is difficult to measure an initial stress field and it is
also difficult to predict a detailed loading history of natural exter-
nal loads. On the contrary, limit analysis (LA) based on the limit
theorems is independent of the initial conditions and loading his-
tories due to the simplification of material behaviour. Solutions
obtained by LA are only the critical load factors and the detailed
responses in time domain are no longer available. However, it is
still useful for the practical engineering design for the following
reasons.
• Obtained results by LA include a factor of safety or an ul-

timate load factor. These quantities are direct to the engi-
neers’ interest.

• Initial conditions and detailed loading histories are not nec-
essary for LA.

• From the point of mathematics, LA belongs to convex pro-
gramming. Therefore, solutions can converge to the glob-
ally optimum solution. Moreover, calculations of optimisa-
tion are stable.

2.2 Limit theorems and their duality

Limit theorems consist of two theorems, namely the lower bound
theorem and the upper bound theorem.

The lower bound theorem insists that a system is plastically
safe if there exists a certain stress field which satisfies the follow-
ing two conditions;
• A statically admissible (SA) stress field which is satisfying

the equilibrium of forces anywhere in the body and Neu-
mann boundary conditions.

• A plastically admissible (PA) stress field which is not vio-
lating the yielding conditions anywhere in the body.

Load factors obtained by the lower bound theorem are always less
than or equal to the exact solution.

On the other hand, the upper bound insists that a system is
plastically stable if the internal dissipation rate is greater than the
external plastic work rate for the following failure mechanism;
• A kinematically admissible (KA) velocity field which is

satisfying the (plastic) strain rate ∼ velocity relationship
anywhere in the body and Dirichlet boundary conditions.

• A plastically admissible (PA) velocity field which is satis-
fying the associated flow rule anywhere in the body.

On the contrary to the classical interpretation of limit theo-
rems, a mathematical structure of limit theorems is investigated
by the use of Lagrangian duality theory. Suppose that a rigid-
plastic boundary value problem shown in figure 1. Our concern
is to estimate the ultimate load factor α∗ to the reference exter-
nal load Γ0. A following Lagrangian L is introduced (Kobayashi,
2003).

L (α,Q,Qr, si, λi,κ,µ, ti)

=
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Figure 1. Targeted rigid-plastic boundary value problem

where α is a load factor, the second term is the equilibrium of a
residual stress field Qr which is equilibrating with zero external
loads, the third term is no violation of the yielding condition f
at each integral points i, the fourth term is a decomposition of a
SA stress field Q into the fictitious linear elastic stress field QE

equilibrating to the reference load Γ0 and a residual stress field
Qr and the fifth term means the non-negativeness of the slack
variable si. Variables κ, λi, µ and ti are Lagrangian multipliers
corresponding to the above mentioned constraint conditions. La-
grangian multipliers κ, λi and µ can also be interpreted as nodal
velocities, plastic multipliers and plastic strain rates, respectively,
as is shown later.

The lower bound analysis can be derived the supremum-
infimum operation of the Lagrangian L as follows;

sup{ inf {L |λi,κ,µ, ti }|Qr, si} = sup{α |Q,Qr, si }

Sub.

8
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>

:

fi(Q) + si = 0, si ≥ 0 ∀i ∈ V

B�T Qr = 0

Q = αQE + Qr

(2)

This formulation (2) implies the maximisation of a load factor α
subject to the SA and PA stress fields.

Contrary to the lower bound analysis, the upper bound anal-
ysis can be derived by the infimum-supremum operation of the
Lagrangian L, as shown below.

inf { sup{L |α,Qr,Q, si }|µ,κ, λi}

= inf
ľ

D̄(µ) |µ
ł

Sub.

8

>
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>

:

1−µ ·QE = 0

B�κ −µ = 0

ti − λi = 0, ti ≥ 0.

, (3)

where D̄(µ) is the internal dissipation rate based on following
Hill’s maximum plastic work principle

inf {D(µ, λi) |∀λi ≥ 0}

=

¡

D̄(µ) = sup{µ ·Q |∀Q such that fi(Q) ≤ 0}
−∞ otherwise

. (4)

In addition to this, the extremal operation of the internal dissipa-
tion rate D̄ on the stresses Q is equivalent to the associated flow
rule;

µ −
X

i

λi
∂fi

∂Q
= 0, λi ≥ 0. (5)

In summary, equation (3) means the minimisation of the internal
dissipation rate D̄ under the conditions of normalisation of the
external plastic work rate Ẇext = µ · QE = 1 and KA and PA
velocity fields.

It should be noted that both the upper and lower bound analy-
ses can be derived from the same Lagrangian L just by the change
in order of the infimum and supremum operations. Therefore, the
upper and lower bound analyses are dual to each other.
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Table 1. Mechanical interpretation of a complementarity condi-
tion

Slack variable
si (≥ 0)

Plastic multi-
plier λi (≥ 0)

Status

0 Positive Plastic
Positive 0 Rigid
0 0 Neutral

Table 2. Classification of various rigid-plastic methods
MC LE LA

UB LB
Equilibrium �∗1 �∗2 × �
Stress boundary cond. � � × �
Yielding cond. �∗1 �∗3 × �
Compatibility × × � ×
Velocity boundary cond. × × � ×
Associated flow rule × × � ×
Solution L∗1 ? U L
Convergence ≈T∗4 ? T T
3 dim. problems × � � �
Complicated geometry or
strength distribution

× � � �

L: Lower bound value, T: True value, U: upper bound value

*1: Incompleteness due to no check in the rigid zone.
*2: Insufficiency, partly satisfied
*3: Insufficiency, no check in each blocks
*4: Incompleteness due to no check in the rigid zone

Furthermore, a duality gap which is a difference between the
values of the objective functions of both the upper and lower
bound analyses is investigated. After some arrangements, a du-
ality gap is expressed as

D
ş

µ̃, λ̃i

ť

− α0 =
X

i

λ̃is
0
i ≥ 0, λ̃i ≥ 0, s0

i ≥ 0. (6)

where a superscript 0 means quantities of the lower bound anal-
ysis and˜means quantities of the upper bound analysis. A duality
gap is always greater than or equal to the scalar products of two
non-negative vectors, say slack variables si ≥ 0 and plastic multi-
pliers λi ≥ 0. Moreover, according to the duality theorem, a dual-
ity gap is zero if and only if the solution is correct. Therefore, fol-
lowing complementarity conditions hold at all the integral points
if and only if the solution is correct; λi × si = 0. Mechanical in-
terpretation of the complementarity conditions is summarised in
table 1.

3 THEORETICAL CLASSIFICATION OF VARIOUS RIGID-
PLASTIC METHODS

Rigid-plastic methods used in the geotechnical engineering can
be classified into 3 groups shown in table 2.

One method is a method of characteristics (MC) originally
formulated by Kötter. Statical formulation which combines both
the equilibrium of forces and the yielding conditions is usually
used. Kinematic formulation called Geiringer’s equation is also
known. Both formulations are dual to each other via the associ-
ated flow rule. Therefore, an obtained stress field is SA and PA
and its corresponding velocity field is also KA and PA. However,
it should be noted that MC discusses the quantities only in the
plastic zones and no attention is paid for the quantities in the rigid
zones. In this sense, the solutions by MC are sometimes called in-
complete solutions.

Another method is limit equilibrium methods (LE). Truly,
there are several versions of LE. In the formulation of LE, two
ambiguities can be point out as follows. One is the insufficiency
of the equilibrium equations. The other is insufficiency of the
yielding conditions. These insufficiencies are mainly because
only the limited numbers of failure modes are considered. In ad-
dition to this, considered failure modes are generally independent

of the associated flow rule. As a natural consequence, solutions
by LE are generally partly satisfying SA or PA.

The other method is limit analysis (LA) as is explained in de-
tails in the previous section. According to the duality theorem,
solutions by both the upper and lower bound analyses coincide if
and only if the solution is correct.

Applicability of these methods to general rigid-plastic bound-
ary value problems is important for the practical design. Rigid-
plastic finite element method (RPFEM) based on limit analysis
(LA) can deal with general rigid-plastic boundary value prob-
lems systematically. On the other hand, by the manual calcula-
tions of LA, limit equilibrium method (LE) or method of char-
acteristics (MC), it is rather difficult to calculated general rigid-
plastic boundary value problems including soil-reinforcement in-
teractions, geometric complexity or complicated material distri-
butions. Accordingly, from the point of applicability to general
problems, rigid-plastic finite element method (RPFEM) has the
advantages.

4 APPLICATION AND EXTENSION OF RIGID-PLASTIC
ANALYSIS

4.1 Hybrid type rigid-plastic finite element method based on the
interior point method

As discussed previously, numerical analysis is inevitable for the
application to general rigid-plastic boundary value problems. To
this end, rigid-plastic finite element method (RPFEM) (Lee and
Kobayashi, 1973, Tamura et al., 1984) which was firstly formu-
lated based on the upper bound theorem. This mighty numerical
tool is widely used now especially in the field of metal forming.

On the contrary to this upper bound formulation, the author
proposed a hybrid type formulation of rigid-plastic finite element
method called Primal-dual Rigid-plastic finite element method
(PDRPFEM) based on the nonlinear optimisation theory. Accord-
ing to the algorithm of PDRPFEM which belongs to the interior
point method (for example, Kojima et al. 2001), a duality gap
is gradually reduced to be zero monotonically during the iterative
procedure by solving all the constraint conditions simultaneously.
That is to say, incremental forms of static constraint conditions
(7a), kinematic constraint conditions (7b) and approximated com-
plementarity conditions (7c) are solved simultaneously to modify
the assumed solution iteratively;

Q(k) = α(k)QE + Qr (k), B�T Qr (k) = 0,

fi(Q
(k)) + si = 0, si ≥ 0, ∀i ∈ V,

(7a)

1−µ(k) ·QE = 0 B�κ(k) −µ(k) = 0,

µ(k) −
X

i

λi
∂fi

∂Q
= 0, λi ≥ 0, ∀i ∈ V,

(7b)

Λ(k)s(k) = ε(k)e, ε(k) =

Ã

Pp
i λ

(k)
i s

(k)
i

p

!ω

(7c)

where quantities Λ and e are defined as Λ(k) = diag(λ
(k)
i ) and

e = (1, · · ·1). A scalar ε is called a barrier parameter which
a monotonic decreasing series to converge the complementarity
conditions, and a scalar ω is a parameter to control the speed of
the convergence. A scalar p stands for the total number of integral
points in the body. It is emphasised that this formulation may have
the numerical advantages for large-scaled problems, because the
interior point method is used for the nonlinear optimisation cal-
culations.

For example, numerical results of a bearing capacity problem
of a shallow foundation subjected to uniform inclined surface
loading shown in figure 2 solved by PDRPFEM are presented
(Kobayashi, 2005). Note that a mesh size for RPFEM is enough
if it can cover the whole plastic zones.

Numerical results are plotted in figure 3 together with the an-
alytical upper bound solution obtained by Salençon and Pecker
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Figure 2. Shallow foundation subjected to uniform inclined loads
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Figure 3. Bearing capacity characteristics (Tresca, Weightless)

(1995). It should be noted that Salençon and Pecker also derived
the analytical lower bound solution, which is almost identical to
the upper bound solution within the differences of only 0.6%. Nu-
merical results show very good conformation with the analytical
solution.

Additionally, calculated failure modes are also discussed. Ac-
cording to the analytical solution, two failure modes are observed
depending on the load inclination angle δ. The threshold value
of the inclination angle is δ∗ = 21.3◦. A mass failure mode oc-
curs if the load inclination angle is δ < δ∗. Otherwise, a slip
failure mode is observed. A calculated failure mode in case of
δ = 5.71◦ is shown in figure 4. Another calculated mode in case
of δ = 21.8◦ is shown in figure 5. These calculated failure modes
also shows quite good conformation to the analytical solution.

According to these results, it may be concluded that
PDRPFEM is a reliable numerical tool and it is applicable to nu-
merical plastic design procedure.

4.2 Extension to shakedown analysis

Let us consider stability problems subjected to various natural ex-
ternal loads, that is, wind loads, tidal loads, earthquake loads etc.
It is advisable to handle these problems in a simple way for prac-
tical design. The methodology of limit analysis can be extended
to a stability problem of an elastic-plastic body subjected to re-
peated loads. The theoretical basis of this problem is shakedown
theorems (For example, Martin 1975), which can be interpreted
as the generalisation of limit theorems. In general, it is difficult
to know a detailed time history of the external loads in advance.
According to shakedown theorems, we can avoid this difficulty
by using shakedown analysis, because only a range of the exter-
nal loads in a generalised load space is required. This is a great
advantage of shakedown analysis for the practical design.

Unfortunately, only few previous researches have been done
on the application of shakedown analysis to geotechnical de-
sign procedure. Among these few researches, the author has pro-
posed a hybrid type formulation of shakedown analysis. Its algo-
rithm is very similar to the algorithm of PDRPFEM (Kobayashi
and Nishikawa, 2004). A simplified analysis by the combination
of macro element concept and shakedown analysis is also pro-
posed for a bearing capacity problem of a multi-footing system
(Kobayashi and Genjo, 2001).

5 CONCLUSIONS

In this paper, fundamental aspects of rigid plastic analysis are
briefly reviewed from the point of mechanics and mathemat-
ics. Recent developments of rigid-plastic finite element method

Figure 4. Mass failure mode (δ = 5.71◦)

Figure 5. Slip failure mode (δ = 21.8◦)

(RPFEM) are also reported. According to these results, the au-
thor thinks the time has come to shift the plastic design proce-
dure from the conventional rigid-plastic analysis to the sophisti-
cated numerical analysis. Among the several numerical analyses,
rigid-plastic finite element analysis is promising for the practical
design, because it is simple but based on the firm theoretical back-
ground. It should be emphasised that rigid-plastic analysis is lo-
cated on the key place between conventional methods and mighty
numerical methods shown in figure 6. In this sense, mechanics of
rigid-plastic analysis is still important for the modernisation of
geotechnical design.
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Figure 6. Relations between rigid-plastic analysis and other meth-
ods

920


