
Numerical analysis of localized deformations in clay specimens using subloading
tij model

Analyses numériques de déformations locales de spécimens d'argile avec l’utilisation du 
“subloading tij model”

M. Hinokio & T. Nakai 
Department of Civil Engineering  Nagoya Institute of Technology, Japan 

M. Miyata

ABSTRACT
Finite element analyses based on infinitesimal deformation and finite deformation theories are carried out to investigate the mecha-
nism of the localized deformation of normally and over consolidated clays in drained shear tests. For this purpose, an isotropic hard-
ening elastoplastic model for soils, named subloading tij-model, is used in the analysis. Two different geometrical conditions are as-
sumed. - plane strain condition (2D) and triaxial condition (3D). The developments of shear bands in clays in these conditions are well
simulated by the present finite element analyses.

RÉSUMÉ
Des analyses numériques par éléments finis basées sur les théories de déformations infinitésimales et déformations finies ont été réal-
isées afin d'étudier le mécanisme de déformations locales d'argiles normalement consolidées et surconsolidées en essai de cisaillement
drainé. A cette fin, est utilisé un modèle isotropique de comportement élastoplastique pour les sols, appelé le “subloading tij model”. 
Deux conditions géométriques distinctes sont modélisées, la condition de contrainte  plane (2D) et la condition triaxiale (3D). Les
développements des bandes de cisaillement des argiles dans ces conditions sont ainsi simulés lors de ces analyses par éléments finis.

1 INTRODUCTION

Localization of deformation is usually considered as a boundary
value problem in numerical analyses. On the other hand, triaxial
tests, plane strain tests and other laboratory tests are generally
simulated as a local problem, integrating the stress-strain rela-
tion at a single point. This is the same as to consider that defor-
mations occur homogeneously over a finite element and will be
referred as the ideal test. In actual conditions, however, hetero-
geneous deformations occur in a sample as shear deformation
develops; and consequently localization of deformations should
be considered as a form of shear band. In this paper, shear band
is simulated numerically by finite element analyses, considering
localization of deformation as a boundary value problem. In
many researches, finite element simulations based on finite de-
formation theory have been used to reproduce shear bands
numerically using soil-water coupled analyses (Yatomi et al.,
1989, Asaoka & Noda, 1995, Asaoka et al., 1997, Oka et al.,
1995). Nevertheless, it is possible to simulate localization using
drained analysis. Hinokio et al. (2002) carried out such type of

analysis for confined shear tests under 2D condition, consider-
ing just one quarter of the specimen due to the double symmetry
of the problem. Here, analyses are performed for the whole sec-
tion under both 2D and 3D conditions.

2 OUTLINE OF SUBLOADING TIJ MODEL 

An elastoplastic constitutive model for soils, named subloading
tij-model (Nakai & Hinokio, 2004), is used in finite element 
analyses in this paper. This model requires only a few unified
material parameters, but can describe properly the following
typical characteristics of soils: (1) influence of intermediate
principal stress on the deformation and strength of clay; (2) in-
fluence of stress path on the direction of plastic flow. These fea-
tures could also be simulated with tij-clay model (Nakai & Ma-
tsuoka, 1986), but subloading tij-model adds the following
aspect: (3) influence of density and/or confining pressure.

Table 1. Comparison of tensors and scalars related
to stress and strain increment between ordinary
concept and tij-concept.
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Figure 2. Shape of yield surface and nor-
mally yield surface, and definition of ρ.

tN

tS

tN1etN1

e

ρ

λ

κ

1

1
NCL

98kPa

N

A

B

P

ln tN

tN1etN1

(a)

(b)

-2 -1 1 2

0.5

0

X=t
( ) ( )

( ) 1

*

−

−
= β

ββ

X
XM

Y
 former
 proposed

S/tN

-Y=-dε*P
SMP/dγ*P

SMP

Figure 1. Stress ratio- plastic strain increment 
ratio relation of the proposed model. 
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ent over consolidation ratio. 
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Table 1 shows a comparison between the stress and strain in-
crement tensors and scalar quantities used in conventional mod-
els and those used in models adopting the tij-concept. Assuming
an associate flow rule in tij space, and using the relation between
stress ratio and plastic strain increment ratio shown as the solid
line in Figure 1, the following expression can be deduced for
the yield function:
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The plastic strain increment is split into a component obeying
an associate flow dεij

p(AF), and an isotropic compression compo-
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Using the subloading concept by Hashiguchi (1980), it is
possible to consider the influence of density and/or confining
pressure and the yield function can be expressed as follows:

01ln

lnlnln

0
)(

0

1

1

0

1
)(

0

=�
�
�

�
�
�

−
−

−
+−+=

��
�

�
��
�

�
−−+=

κλ
ρε

κλ
ς

ς

p
vX

N

N

N

eN

N

eN
X

N

N

e
t
t

t
t

t
t

t
tf

 (3) 

Here, as shown in Figure 2, tN1 measures the size of the yield
surface passing through the present stress, and tN1e measures the 
size of the normal surface, which is related to the present plastic
volumetric strain (or void ratio). For a reference isotropic stress
condition (tN=tN0, X=0), εv

pp is zero at the difference of the void
ratios ρ between A and B can be regarded as an index of soil 
density. The strain increment obtained from Eqs. (2) and (3) and
the consistency condition df=0.

volumetric strain (or void ratio). For a reference isotropic stress
condition (tN=tN0, X=0), εv  is zero at the difference of the void
ratios ρ between A and B can be regarded as an index of soil 
density. The strain increment obtained from Eqs. (2) and (3) and
the consistency condition df=0.
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where G(ρ) is a monotonically increasing function, which satis-
fies the condition G(0)=0. Nakai & Hinokio (2004) assume the
following equation, in which a is a material parameter:

�parametermaterialaaG :()( 2ρρ ⋅= (7)

Figure 3 shows the results and ideal simulations of triaxial 
compression tests on Fujinomori clays with different over con-
solidation ratios (OCR=1, 2, 4 and 8). The present model de-
scribes well the deformation and strength of normally consoli-
dated clay and can also predict well the influence of over

consolidation ratio on the deformation, dilatancy and strength of
clays. The values of material parameters of Fujinomori Clay 
used in the analyses are presented in Table 2.

3 METHODS OF ANALYSES

In this research, analyses are carried out for drained compres-
sion tests under plane strain (2D) and triaxial (3D) conditions
for both normally consolidated clay and over consolidated clay
(OCR=10). Analyses based on infinitesimal deformation theory
and finite deformation theory as well were performed. More-
over, three-dimension finite element analyses were also per-
formed to compare with the results obtained under plane strain
conditions.

Figure 4 shows the finite element meshes used in these analy-
ses. A rectangular specimen with a height of 10cm and a width
of 5cm (and a depth of 5cm in triaxial condition) is considered.
Figure 4(a) shows the mesh for plane strain condition consisting
of 800 elements (20 elements in width and 40 in height). In tri-
axial conditions, the mesh consists of 2000 elements (20 in
height, 10 in width and 10 in depth). As for the boundary condi-
tions, the lateral faces are free to displace and have constant im-
posed stresses, the bottom face is kept perfectly fixed, and the
top face is movable in the horizontal direction (in triaxial condi-
tion, horizontal movement is kept free in the x-direction). Verti-
cal displacements are applied at the top face of the specimen to
simulate loading, until a total axial strain of 20%. The initial
stress state is isotropic with p0=196kPa for all elements.

a) plane strain condition b) triaxial condition
5cm 5cm

10
cm

comp.

z

y

x
5cm

comp.

10
cm

Figure 4. Finite element mesh.

4 RESULTS AND DISCUSSIONS

The average behavior of the specimen is shown in Figure 5 (NC 
clay) and Figure 6 (OC clay) for plane strain condition. The
solid line shows the analytical solution for a single point, ob-
tained integrating the stress-strain relation for given imposed
strain increments (henceforth-forward, called ideal behavior). In
this paper, the upper bar(-) sign with stress, strain and void ratio
is used to indicate the average result in the specimen as a mass.
The average axial stress is obtained by dividing the total vertical
force, computed from the nodal reactions at the top face, by the
cross-sectional area of the sample. The void ratio as a mass is
the average value of the void ratios of all elements in the speci-
men. From these figures, it can be seen that the average stress-
strain behavior is the same as the ideal behavior in the early
stages of shearing. However, after reaching peak strength the
average deviator stress departs from the ideal behavior, and ei-
ther decreases or becomes constant. In all cases, the average
peak deviator stress occurred in for smaller strains and reached
lower values than those compute for the ideal curve. With

Table 2. Values of material parameters for Fujinomori clay.

Ct=λ/(1+e0) 5.08�10-2

Ce=κ/(1+e0) 1.12�10-2

N=eNC at p=98kPa & q=0kPa 0.83

RCS=(σ1/σ3)CS(comp.) 3.5

a 500

β 1.5

ν 0.2
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respect to the strain theory, the results were almost the same for
both the finite deformation and infinitesimal deformation theo-
ries for both normally and over consolidated clay.

Figures 7 and 8 show the distributions of deviator strain for
different values of the axial strain, after the average behavior
started to deviate from the ideal behavior. The displacement pat-
tern shows the top face moving to left-hand side for both condi-
tions. In the case of normally consolidated clay, the localized
deviator strains distributed over a wider region and the shear
band cannot be seen as clearly as in the case of over consoli-
dated clay with infinitesimal deformation theory. With finite de-
formation theory, the deviator strains occur locally for both
normally and over consolidated clays.

Figures 9 and 10 show the 
distributions of volumetric strain
for NC and OC clays, respec-
tively. For normally consolidated
clay, large volumetric contrac-
tion is observed over most of the specimen except at the upper
left and the lower right parts (Figure 9). This is because nor-
mally consolidated clays show negative dilatancy. On the other
hand, for over consolidated clay the regions of concentrated
shear stresses and volumetric expansion are almost the same.
Although the elements in the shear band expand uniformly for
finite deformation theory, the elements in the edge of the shear

(1)

(2)

(3)

(4)

(b) Finite deformation theory(a) Infinitesimal deformation theory 
Figure 9. Distributions of volumetric strain –2D (OCR=1).

(b) Finite deformation theory(a) Infinitesimal deformation theory 
a

Figure 10. Distributions of volumetric strain –2D(OCR=10).

a

(b) Finite deformation theory
Figure 8 Distributions of deviator strain –2D(OCR=10).

a a

(a) Infinitesimal deformation theory (b) Finite deformation theory(a) Infinitesimal deformation theory 
Figure 7. Distributions of deviator strain –2D (OCR=1).
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Figure 5. Calculated stress-strain relations as a mass –2D (OCR=1). Figure 6. Calculated stress-strain relations as a mass –2D (OCR=10).

mean effective stress  s'/s 0axial strain εa(%)
Figure 12 Stress- strain –void ratio relation of each element –2D 
(Finite deformation theory, OCR=10).

axial strain εa(%) mean effective stress  s'/s 0

Figure 11. Stress- strain –void ratio relation of each element –2D 
(Infinitesimal deformation theory, OCR=10).
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band expand more than the elements in the centre of the shear
band for infinitesimal deformation theory.

5 CONCLUSIONS
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Figure 13. Stress- strain –void ratio relation as amass –3D (OCR=1).
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Figure 14. Stress- strain –void ratio relation as amass –3D (OCR=10).
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Figure 15. Distributions of deviator strain –3D(OCR=1). Figure 16. Distributions of deviator strain –3D(OCR=10).

Finite element analysis can simulate the formation of the shear
band, which is observed in actual laboratory tests, not only us-
ing finite deformation theory, but also using infinitesimal de-
formation theory. Moreover, the generation of the shear band
can be explained with simple drained analyses without using
soil-water coupled effects. By comparing the results obtained
with 2D and 3D analyses, it was observed that the localization
is more likely to be produced under two dimensional conditions.
Finally, it is concluded that the isotropic hardening elastoplastic 
model (subloading tij model) is a useful tool to study localiza-
tion problems with finite element analysis.

The mechanism of development of the shear band is exam-
ined using the results for the over consolidated clay, for which
the shear band is more clear. Four elements in different posi-
tions inside the specimen are analyzed: (1) element in the centre
of specimen, (2) in the shear band, (3) in the end of the shear
band, (4) near the shear band. The stress-strain relation of each
element is shown in Figure 11 (infinitesimal deformation the-
ory) and Figure 12 (finite deformation theory). Element (1) in
the centre of the specimen reaches peak strength and then sof-
tens earlier than the others. Elements (2) and (3) show the same
tendency as element (1). Therefore, the element at the center of 
the specimen softens first and acts as a trigger. After that the
strain softening domain expands towards the boarders of the
specimen, forming a shear band. REFERENCES
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