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ABSTRACT
A simplified constitutive model called a Swinging Plane Model is presented for monotonic and cyclic soil response including lique-
faction. This model is based on two mobilized planes:  a plane of maximum shear stress, which swings, and a horizontal plane which
is spatially fixed. By controlling two mobilized planes, the model can simulate the principal stress rotation effect associated with sim-
ple shear from different K0 states, which can significantly influence soil behaviour. The proposed model gives a similar skeleton be-
haviour for soils having the same mean stress, regardless of K0 conditions as observed in laboratory tests. The soil skeleton behaviour
observed in cyclic drained simple shear tests, including compaction during unloading and dilation at large strain is captured in the 
model. Undrained monotonic and cyclic response is predicted by imposing the volumetric constraint of the water on the drained or
skeleton behaviour. This constitutive model is incorporated into the dynamic coupled stress-flow finite difference program FLAC
(Fast Lagrangian Analysis of Continua). The model was first calibrated with drained monotonic and cyclic simple shear tests on Fra-
ser River sand, and verified by comparing predicted and measured undrained monotonic and cyclic behaviour of Fraser River sand.

RÉSUMÉ
Un modèle constituant simplifié a appelé un Modèle d'Avion Balançant est présenté pour monotonic et la réponse de sol cyclique y
compris la liquéfaction. Ce modèle est basé sur deux avions mobilisés : un avion de cisailles maximums accentue, quelles balançoires,
et un avion horizontal qui est spatialement réparé. En contrôlant deux avions mobilisés, le modèle peut simuler l'effet de rotation de
tension principal a associé avec les cisailles simples de différent K0 états, qui peuvent influencer significativement du comportement
de sol. Le modèle proposé donne à un comportement de squelette similaire pour les sols ayant la tension moyenne pareille, sans tenir
compte de K0 conditions comme observé dans les tests de laboratoire. Le comportement de squelette de sol a observé dans les tests de
cisailles simples, drainés et cycliques, y compris le compactage pendant décharger et la dilatation à la grande tension est capturé dans
le modèle. Undrained monotonic et la réponse cyclique est prédite en imposant la contrainte volumétrique de l'eau sur le comporte-
ment drainé ou de squelette. Ce modèle constituant est incorporé dans le tension-coule couplé dynamique FLAC de programme de 
différence fini (l'Analyse de Lagrangian Rapide de Continuum). Le modèle était premier calibré avec monotonic drainé et les tests de
cisailles simples cycliques sur le sable de Rivière de Fra-ser, et vérifié en comparant prédit et mesuré undrained monotonic et le com-
portement cyclique de sable de Rivière de Fraser.

1 INTRODUCTION

The effect of principal stress rotation significantly influences
soil behaviour and has received substantial attention since Ar-
thur et al. (1980). A few different types of numerical models 
considering principal stress rotation effects have been proposed. 
These are mainly based on plasticity. One of them is a multi-
laminate model proposed by Pande and Sharma (1983). Re-
cently, Lee and Pande (2004) presented its extension to soil liq-
uefaction analysis. This model was originally proposed to study
rock joint behavior by considering many slip planes. Alterna-
tively, Matsuoka (1974) proposed a similar idea but a different 
concept called multimechanism that used only a maximum
obliquity plane,  for three different shearing mecha-
nisms. Each shearing mechanism is based on two of three prin-
cipal stresses (i.e. σ’

2/45 φ+

1 and σ’2, σ’2 and σ’3, σ’3 and σ’1). Kabila-
many and Ishihara (1991) also proposed a similar concept in
three dimensional stress space. In their models, plastic strains 
from three mechanisms are independently produced and super-
imposed. The practicality of utilizing such numerical models
depends on their simplicity and robustness (Kolymbas 2000). 
This is particularly so for dynamic analyses. Consequently, the 
practical application of models for dynamic analyses has been
limited to few cases.

A plasticity based constitutive model has been developed at
the University of British Columbia (UBC) to handle plastic
unloading and principal stress rotation associated with anisot-

ropic consolidation, or K0 state and is presented here. The pro-
posed model uses two mobilized planes, a maximum shear
stress plane which rotates or swings with as the direction of the
principal stress rotates, and a horizontal plane which is spatially
fixed. Under simple shear conditions the plane of maximum
shear is initially at 45 degrees to the horizontal and as the shear
stress is applied the plane swings and becomes nearly horizontal
at failure. This concept is therefore referred to as a Swinging
Plane Model. The characteristics of this model and its formula-
tion are introduced, and a comparison with laboratory data is
presented.

2 SIMPLE SHEAR BEHAVIOUR UNDER ISOTROPIC
AND K0 CONDITIONS AND ITS MODELLING 

Rotation of principal stresses occurs in simple shear loading and
its effect depends very much on the initial K0 consolidation
state. If K0 = 1.0, then as soon as any horizontal shear stress is 
applied, the horizontal plane become the plane of maximum
shear and essentially remains so for the rest of the loading. For
this case the plane of maximum shear is horizontal for the dura-
tion of loading, and there is no rotation effect. Classical plastic-
ity with a single rotating plane of maximum shear simulates this
condition very well. If K0 = 0.5, then a large shear stress acts on 
the 45 degree plane. As the horizontal shear stress is applied,
the plane of maximum shear gradually rotates and becomes
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approximately horizontal at failure (Roscoe 1970). Thus, there
is a gradual rotation of principal stress during the loading proc-
ess. A classical plasticity approach with a single plane cannot
capture the observed response in this case. We have found that
the observed response can be captured by adding a plastic con-
tribution from the horizontal plane.

From drained monotonic torsional tests using hollow cylin-
drical samples, Wijewickreme and Vaid (2004) found that the
shear stress-shear strain behaviour on a horizontal plane under 
the same mean stress is independent of stress path at small
strain ranges (shear strain γ < 0.5 %) for loose sand. In simple
shear, this finding can infer that shear stress-strain behaviour of
loose sands is the same at small strain level regardless of K0
state as long as initial mean stresses are the same.

Ishihara (1996) showed that K0 has a significant effect on 
liquefaction resistance of sands based on a series of torsional 
tests with lateral confinement.  He found that the cyclic resis-
tance ratio, τ/σv0’ where σv0’ is the initial vertical effective
stress, under K0 = 1.0 condition is stiffer and stronger than that 
observed under K0 = 0.5 condition.  On the other hand, there
was no significant difference between the K0 = 1.0 and 0.5 con-
ditions when the cyclic resistance was examined in terms of
τ/σm0’ where σm0’ is the initial mean effective stress. Iai et al.
(1992) considered K0 consolidated elements using a generalized
plasticity approach. They mentioned that conventional plasticity 
models cannot simulate K0 = 0.5 simple shear tests because they
involve effects of rotation of principal stress. The proposed
plasticity model can simulate rotation effects associated with K0
simple shear loading by incorporating two mobilized planes
rather than one. Numerical simulations under two K0 conditions,
0.5 and 1.0, are compared with measured liquefaction behav-
iour.

The proposed model referred to as a Swinging Plane Model 
is an extension of a simpler model called UBCSAND to include
plastic unloading and rotation of principal planes associated
with simple shear loading. UBCSAND originally considered
unloading as elastic. From a practical point of view, elastic 
unloading may be adequate for preliminary analysis. However,
laboratory data indicate that significant plastic deformation al-
ways occurs during the unloading phase. Plastic unloading is
particularly important following a large stress cycle that has in-
duced dilation. In the proposed constitutive model, plastic
unloading is incorporated by mobilizing plastic deformation on
a horizontal plane.

3 SWINGING PLANE MODEL

The UBCSAND modifies the Mohr-Coulomb model incorpo-
rated in FLAC (Fast Lagrangian Analysis of Continua) Version
4.0 (Itasca 2000) to incorporate the plastic strains that occur at 
all stages of loading. This model has been substantially im-
proved to better model observed sand behaviour and include the
effects of rotation of principal planes or K0 effect, and plastic
unloading as mentioned earlier. These two factors recently in-
corporated into the Swinging Plane Model are presented in this
paper. The concept and formulations of this model are described
in this section including plastic deformations mobilized on two
planes.

3.1 Concept of Swinging Plane Model

The concept of Swinging Plane Model is described here. Shear
stress increments on two planes causing plastic strains are illus-
trated in Figure 1 for simple shear conditions with K0 = 0.5. 
Figure 1(a) represents conditions at the start of shearing when
τxy = 0 and a small increment ∆τxy is applied. In this case the 
plane of maximum shear is at 45 degrees (β = 45°) as illustrated
in Figures 1(a) and 2(a), and while there is a large shear stress 

from the K0 condition, the increments of shear and normal
stresses  and  on this plane are both zero, and hence no
plastic strains are predicted. This results in an initial very stiff
elastic response from classical plasticity based on a single plane.
However, the stress increment on the horizontal plane, ∆τ

τ∆ σ∆

xy will
cause plastic strains on the horizontal plane and all other planes 
except for the 45 plane. When this second plane is considered, a 
much softer response is predicted as shown in Figure 3, condi-
tion A. 
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Figure 1. Stress conditions on two mobilized planes: (a) at small strain
level and (b) at large strain level 
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Figure 2. Swinging of the plane of maximum shear stress under K0 con-
dition

A later stage of loading is depicted in Figure 1(b). Here τxy is 
approaching its failure value and the plane of maximum shear
has swung around to become nearly horizontal as illustrated in
Figures 1(b) and 2(b). Now the  and both planes es-
sentially coincide. Consideration of both planes would essen-
tially predict double the plastic strain. This is accounted for by
gradually phasing out the plastic strain increment from the hori-
zontal plane as the plane of maximum shear becomes horizon-
tal. This stress strain condition is depicted as condition B on
Figure 3. Note that if K

xyτ∆≈τ∆

0 = 1 then the plane of maximum shear 
becomes horizontal as soon as the first increment of ∆τxy is ap-
plied and the horizontal plane contribution is not needed. It is
depicted in Figure 2(b).
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where τ1 = the maximum shear stress, and (φmob)1 = the friction
angle mobilized on the maximum shear stress plane. Reloading
induces plastic response but with a stiffened plastic shear 
modulus. The plastic shear modulus relates the shear stress and
the plastic shear strain and is assumed to be hyperbolic with
stress ratio as shown in Figure 5. Moving the yield locus from A
to B in Figure 4 induces a plastic shear strain increment, dγP, as
shown in Figure 5, and is controlled by the plastic shear
modulus, GP. The flow rule defines the direction of the plastic
strain increments and is non-associated here. The plastic poten-
tial g1 used in the flow rule is a function of dilation angle as fol-
lows:

In summary, for simple shear conditions, the predicted re-
sponse from classical plasticity will be too stiff if only the plane
of maximum shear is considered as depicted in Figure 3. By in-
cluding the plastic strain increments from the horizontal plane a
softer response in keeping with observed response is predicted.
For the special case of K0 = 1, the plane of maximum shear is
approximately horizontal throughout simple shear loading, and
there is no need to consider a second plane. For cyclic triaxial 
tests the direction of principle stress remains vertical and there
is no rotation of principle stress and no need to consider a sec-
ond plane. However, earthquakes induced loading conditions
are much closer to simple shear than conventional triaxial load-
ing, and it is important therefore to consider a second plane for
seismic loading. 1m11 )sin('g ψ⋅σ−τ= (4)

where  is the dilation angle based on laboratory data and
energy considerations and is approximated by

1)(ψ
curve 1:
maximum shear
stress plane only

τxy

γxy

curve 2: with
both planes

condition A

condition B
τf

1mobcv1 )sin(sin)sin( φ−φ=ψ (5)

where φcv is the phase transformation or constant volume fric-
tion angle and (φmob)1 describes the current yield locus. A posi-
tive value of 1)sin(ψ  corresponds to contraction. Contraction 
occurs for stress states below φcv and dilation above. The asso-
ciated plastic volumetric strain increment, dεv

P, is obtained from
dγp and the dilation angle (ψ)1:

1
PP

v )sin(dd ψ⋅γ=ε (6)

Figure 3. Shear stress-strain curves using two mobilized planes under
K0 condition 

3.2 Elastic behaviour

Elastic behaviour is assumed isotropic and expressed in terms of 
bulk and shear moduli. The elastic bulk modulus, B, and shear 
modulus, G, are stress level dependent and described by the fol-
lowing relations, where B  and G  are modulus numbers, PeK eK A
is atmospheric pressure, and σ′m is the mean effective stress: 
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Figure 4. Failure and yield conditions

3.3 Plastic behaviour on maximum shear stress plane

The formulation is based on classical plasticity. Yield loci are
radial lines from the origin of stress space corresponding to the
mobilized friction angle. The proposed model is a Mohr-
Coulomb type of model (Vermeer 1980). Since the sine of a 
mobilized friction angle corresponds to the ratio of shear stress 
to mean stress, τ/σ’m, yield loci f1 are assumed to be radial lines 
of constant stress ratio as shown in Figure 4 and expressed by

1mobm11 )sin('f φ⋅σ−τ=  (3) 
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3.4 Plastic behaviour on horizontal plane 2
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η−⋅= (12)Yield loci associated with the horizontal plane, f2, have the
same shape as those for the maximum shear stress plane and are
expressed by
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τ

γ

τ

*
fτ

fτ

rτ
C

2mobm22 )sin('f φ⋅σ−τ= (7)

where τ2 = τxy, the shear stress acting on a horizontal plane, and
(φmob)2 = the friction angle mobilized on a horizontal plane. The
horizontal plane will contribute to both loading and unloading
component. In terms of the amount of plastic strains, this con-
tribution will be maximum when shearing starts under a K0
state. It will gradually decrease as the plane of maximum shear
stress rotates. After the maximum shear stress plane becomes
horizontal, the contribution from this horizontal plane becomes
zero. The plastic volumetric strain increment and dilation angle
are similar to those in Eq. 5 and Eq. 6. However, the dilation
angle, sin (ψ)2, is based on a mobilized angle on a horizontal
plane, sin (φmob)2 and expressed by

2mobcv2 )sin(sin)sin( φ−φ=ψ (8)
Figure 6. Stress ratio during unloading and reloading

3.5 Hardening rule and elasto-plastic behaviour
The plastic volumetric strain increment is obtained from

Eqs. 13 and 14 through dilation angle, sin (ψ)2. Eq. 13 is for 
loading and Eq. 14 is for unloading as illustrated in Figure 7.
These equations are based on stress-dilatancy theory as well as
the results of drained cyclic simple shear tests, Lee (1991). His
results showed that dilation angle depended on stress ratio, η,
and whether loading or unloading is occurring, but was not in-
fluenced by the initial density, normal stress, or number of cy-
cles.

The hardening rules are similar for both maximum shear stress 
and horizontal planes. The only difference is the stress ratio, η.
The plastic properties used by the model are the peak friction
angle φP, the constant volume friction angle φcv, and plastic
shear modulus GP, where

2
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Gi
P = αG and α depends on relative density, η (= τ1/σ’m or

τ2/σ’m) is the stress ratio, ηf is the stress ratio at failure, and Rf
is the failure ratio used to truncate the hyperbolic relationship.

For loading on the plane of maximum shear, the position of
the yield locus (φmob)1 is initially specified for each element. As
the stress ratio increases and plastic strain is predicted, the yield
locus for that element is pushed up by an amount d(φmob)1 as
given by Eq. 10.
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Upon unloading, plastic deformation is controlled by condi-
tions on the horizontal plane using an incremental formulation
of Eq. 7 and expressed in Eq. 11. The initial yield locus is set at 
the stress reversal point C in Figure 6 and plastic shear strain, 
dγp, upon unloading is predicted based on Eq. 11 until the shear
stress changes sign, or reversal occurs.

0dG)sin('dddf pp
2mobm22 =γ⋅−φ⋅σ−τ= (11)

During unloading and reloading, plastic shear moduli are 
based on modified shear stresses as given by Eq. 12 and illus-
trated in Figure 6, where η* = τ*/σ’m and ηf

* = 
τf

*/σ’m =  (τr+τf)/σ’m. Reloading then occurs with a stiffened
modulus:

Figure 7. Shear volume coupling 

Plastic shear and volumetric strain increments from both the
plane of maximum shear and the horizontal plane are simply
added as shown in Eq. 15.
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( )
σ∂

∂
⋅λ=ε k

kk
p gd (15)

Samples were also subjected to cyclic shear for a range of
cyclic stress ratios under constant volume conditions that simu-
late undrained response.  Tests were carried out for four differ-
ent CSRs (Cyclic Stress Ratio), 0.08, 0.1, 0.12 and 0.15. Typi-
cal results of measured response of Drc = 40 % for CSR = 0.1
are shown in Figures 9a and 9b. Test data are shown as the 
heavy lines. The thin lines are the numerical predictions for K0
= 0.5. When CSR = 0.1, liquefaction occurred in 6 cycles. It is 
observed that the first and last cycles generated large excess
pore pressures. Once the pore pressure ratio reached unity, large 
cyclic strains developed referred to as cyclic mobility.

where k indicates each mobilized plane causing plastic deforma-
tion (i.e. k = 1,2), λ is a scalar number, and determined by a 
consistency condition (i.e. df = 0). Plastic strain increments re-
sulting from principal stress rotation during both loading and re-
loading are considered on the horizontal plane. Their contribu-
tion gradually decreases as principal stresses rotate and becomes
zero when both planes are coincident. A scalar number λ2 on a
horizontal plane is adjusted to λ2* as follows 

( ) ( ) 0.12cos0where,2cos2
*
2 ≤α≤α⋅λ=λ χ

σ
χ

σ (16)

The CSR versus number of cycles to liquefaction is shown in
Figure 10.  Liquefaction triggering was defined as γ > 3.75 %,
and at this point Ru (pore pressure ratio) is 90 - 95 %. This
strain level is equivalent to reaching a 2.5% single-amplitude 
axial strain in a triaxial sample, which also is a definition for
liquefaction previously suggested by the National Research
Council of United States (NRC 1985).where ασ is a principal stress rotation angle from the vertical,

and χ is an adjusting parameter to give a best fit. When both
planes are coincident, λ2

* = 0.
The response of sand is controlled by the skeleton behaviour.

A fluid (air water mix) in the pores of the sand acts as a volu-
metric constraint on the skeleton if drainage is curtailed. It is 
this constraint that causes the pore pressure rise that can lead to
liquefaction. Provided the skeleton or drained behaviour is ap-
propriately modeled under monotonic and cyclic loading condi-
tions, and the stiffness of the pore fluid (Bf) and drainage are
accounted for, the liquefaction response can be predicted. This
concept is incorporated in the Swinging Plane Model.
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4 CALIBRATION

A series of simple shear tests were performed on Fraser River 
sand at UBC and used as a database to calibrate the numerical
model element response. Test data are available on web site
(http://www.civil.ubc.ca/liquefaction/). The samples were pre-
pared by air pluviation method, which is normally adopted in
centrifuge tests. The details including test results can be found 
in Wijewickreme et al. (2005) and Sriskandakumar (2004). 
Drained behaviour of the sand was first captured by the model
as shown in Figure 8. 

Figure 9a. Predicted stress path under K0 = 0.5 and test result
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Figure 9b. Predicted stress-strain curve under K0 = 0.5 and test result

The calibration was carried out in the same way as the tests,
i.e. under constant volume. The test sample was subjected to an 
initial vertical stress of 100 kPa under K0 conditions. It was as-
sumed that the initial horizontal stress in the test was 50 kPa,
i.e., K0 = 0.5. The same initial stresses were assumed in the nu-
merical simulation. A single element was used. The elastic and 
plastic parameters selected for calibration were the same for all 
cases having the same Dr and tabulated in Table 1. The pre-
dicted stress-strain and stress paths for K0 = 0.5 and CSR = 0.1
are shown in Figures 9a and 9b as “thin” lines. The predictions
generally give a reasonable representation of the observed re-
sponse including plastic unloading, sudden drop of effective
stress during stress reversal after dilation, and cyclic mobility.

Figure 8. Numerical simulations of K0 =0.5 and 1.0 with the same initial
mean stress 

Two numerical predictions with the same initial mean stress for
the test (Drc = 40 % and σ’v0 = 100 kPa) give similar response at 
small shear strain (γ < 1 %), regardless of K0 conditions. Upon
further shearing, the K0 = 0.5 case (thick line) gives a stiffer re-
sponse because the horizontal stress rises and increases σ’m.
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Table 1. Input parameters for Drc = 40 % Fraser River sa______________________________________ nd
Parameters KG

e  KBe α φcv ηf   Rf
Values  622  249    0.4  33 0.58    0.99

If test condition were K0 = 0.5, the predicted triggering of
liquefaction shows a good agreement with measurements as 
shown in Figure 10.

An examination of the effect of K0 on prediction of liquefac-
tion resistance is shown in Figure 11. The K0 = 0.5 case had ini-
tial stresses of 100 kPa and 50 kPa, and thus a mean stress of 75
kPa. The K0 = 1.0 case had stresses of 75 kPa, and thus a mean 
stress of 75 kPa also. The predicted results show that both K0 = 
0.5 and K0 = 1.0 states liquefaction in about the same number of
cycles. This is in agreement with the test results of Ishihara
(1996) who found that samples at the same density and mean
stress had similar liquefaction response.
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Figure 10. Predicted liquefaction resistance under K0 = 0.5 and test re-
sult in terms of τ/σ’v0

0

0.05

0.1

0.15

0.2

0.25

0.3

1 10
No. of Cycles to Liquefaction

C
yc

lic
 S

tre
ss

 R
at

io
, τ/

σ'
m

0

100

Test Drc=40%
assumed σ'mo=75kPa

Swinging Plane Model
K0=0.5
K0=1.0
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5 CONCLUSION

A Swinging Plane Model for predicting the stress-strain re-
sponse of sand under monotonic as well as cyclic loading condi-
tions is presented. The model is focused on simple shear loading
conditions, as this is most representative of seismic loading
conditions in the field. The proposed model addressed two key
features; rotation of principal planes and plastic unloading. It 
uses two mobilized planes; a maximum shear stress plane, and a
horizontal plane. The model was calibrated based on drained
and constant volume simple shear tests and showed the same
characteristic response as observed in the laboratory tests. The

model captured the large soil compaction effect during stress
reversal after dilation and general cyclic soil behaviour includ-
ing cyclic mobility after triggering of liquefaction. The model 
also predicts that elements having the same initial density and
mean stress will have similar liquefaction response, in agree-
ment with laboratory element tests.
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