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ABSTRACT 
Studies on constitutive modeling and numerical analysis methods have been well developed. Nowadays, numerical and analytical 
methods play a very important role in Geotechnical Engineering and in a related activity called Computational Geotechnics.  Due to
large deformations and failure, however, several issues are encountered in Computational Geotechnics. They include constitutive
modeling and its calibration, mechanical instabilities: strain localization and progressive failure, the modeling of chemo-thermo-
hydro-mechanical coupled behavior, and the verification and the validation of the mathematical modeling. In the present paper, we 
deal with the recent progress that has been made to solve these problems, in particular, the constitutive modeling of soil for rate-
dependent models with structural degradation, strain localization, liquefaction of soil and their applications in the context of large de-
formations and the failure of geomaterials. 

RESUME
Les études sur les modèles constitutifs ainsi que sur les méthodes d’analyse numérique se sont fortement développées dans les vingt 
dernières années. Actuellement, les méthodes analytiques et numériques jouent un rôle très important dans l’Ingénierie de la Géotech-
nique et, également, dans une autre activité liée appelée la Géotechnique Numérique. Dues aux grandes déformations et à la rupture,
plusieurs questions ont cependant été soulevées dans la Géotechnique Numérique. Elles incluent la modélisation constitutive et son
étalonnage, les instabilités numériques : localisation des déformations et les ruptures progressives, la modélisation de comportement
chemo-thermo-hydro-mécanique couplé, et la vérification et la validation de la modélisation mathématique. Le présent document
porte sur les récents progrès pour résoudre ces problèmes, en particulier, la modélisation constitutive de sols pour des modèles dépen-
dent de gradient prenant en compte la dégradation structurelle, la localisation des déformations, la liquéfaction des sols et leurs appli-
cations dans le contexte de grandes déformations et la rupture des géomatériaux. 

1 INTRODUCTION 

In the last two decades, studies on constitutive modeling and 
numerical analysis methods have been well developed. Nowa-
days, numerical methods play a very important role in Geotech-
nical Engineering and in a related activity called Computational 
Geotechnics. Due to large deformations and failure, however, 
several issues are encountered in Computational Geotechnics. 
They include constitutive modeling and its calibration, me-
chanical instabilities (strain localization and progressive fail-
ure), the modeling of chemo-thermo-hydro-mechanical coupled 
behavior, and the verification and the validation of the mathe-
matical modeling. In the present lecture, we deal with the recent 
progress that has been made to solve these problems, in particu-
lar, the constitutive modeling of soil for rate-dependent models, 
strain localization and liquefaction and their applications in the 
context of large deformations, and the failure of geomaterials. 
Other problems are presented in the report on the State-of-the-
Art report by TC34 of ISSMGE (2005). 
1. Constitutive modeling of geomaterials and its calibration  
2. Mechanical instabilities, namely, strain localization and 

progressive failure  
3. Coupled effects of internal pore-fluid flow and the large de-

formations of geomaterials: Chemo-thermo-hydro-
mechanically coupled analysis  

4. Reconsideration of conventional analyses and design meth-
ods 

5. Application and advanced computational methods  

1.1 Constitutive modeling 

Various constitutive models for soil have been developed over 
the last four decades. In particular, many elasto-plastic models 

have been proposed since Cam-clay models were established by 
Roscoe et al. (1963, 1968). The constitutive model for soil 
should be able to describe all types of soil behavior. The behav-
ior of soil is complex, however, due to its nature, i.e., its granu-
larity, its multiphase structure, and its inhomogeneity. The typi-
cal characteristics of soil can be listed as follows: 
1.  Multi-phase mixture of soil particles, pore water and pore 

air, saturated and unsaturated soil, and effective stress 
2.   Elasticity and hypo-elasticity 
3.   Plasticity, hypo-plasticity and dilatancy characteristics 
4.   Rate sensitivity, viscoelasticity and viscoplasticity 
5.   Density dependency and confining pressure dependency  
6.   Strain-hardening and strain-softening characteristics 
7.   Cyclic deformation characteristics 
8.   Structural and induced anisotropy 
9.   Non-coaxiality  
10. Deformation localization, bifurcation, and instability 
11. Discontinuity 
12. Degradation and the growth of microstructures  
13. Inhomogeneity and nonlocality 
14. Temperature dependency 
15.  Electric characteristics, the dieletric constant, and conduc-

tivity 

Some of the characteristics have been included in the for-
mulation of the constitutive models. In particular, elasto-
plasticity and dilatancy are now included in almost all of the 
models. However, some of them are not well incorporated into 
the models. In the present lecture note, the characteristics of soil, 
such as rate dependency, structural degradation, and cyclic plas-
ticity, are discussed with regard to constitutive modeling and its 
use in numerical analyses. 
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(a)  Rate dependency: The time-dependent behavior of soil, 
manifested as creep, relaxation, and rate sensitivity, com-
prises indispensable factors for predicting the long-term set-
tlement behavior of soft clay deposits, slope stability, and 
landslides. Rate-dependent models, such as viscoplasticity 
models, are overviewed. It is shown that elasto-viscoplastic 
models are applicable to soil.  

(b)  Degradation of the soil microstructures: Strain-softening 
behavior is due not only to strain localization, but also to 
material degradation. The typical degradation of geomateri-
als is observed for soft rock and cemented soil. In order to 
accurately simulate deformation behavior, in particular, 
shear and compressive strain localization behavior, it is nec-
essary to account for the soil degradation, namely, the fail-
ure of the microstructures. Strain softening during shearing 
is a well-known type of behavior that is brought about by 
both material degradation and geometrical instability. A 
drop in stress is observed after the stress has reached its 
peak during the displacement control shearing of the geo-
materials. Due to the strain-softening strain, localization 
manifests as “shear bands”. In addition to that, we can ob-
serve volumetric strain localization which is referred to as 
“compaction bands” and which arises from the volumetric 
softening in porous rock and cemented soil. In addition, a 
diffuse mode of deformation is also taken into account. 
Elasto-viscoplastic models with structural degradation are 
presented and validated.  

(c)  Cyclic plasticity: Cyclic constitutive models for sand and 
clay are of great importance in the numerical simulation of 
such dynamic phenomena as liquefaction and vibrational 
problems. For a dynamic analysis of sand deposits, the 
model has to be well calibrated against the behavior of loose 
to dense sands.  

1.2 Strain localization and progressive failure 

It has been recognized that such strain localization as shear 
banding is of great importance, because it is a precursor to the 
failure of geomaterials. Numerical modeling methods have been 
developed for the analysis of post-failure behavior. In the analy-
sis of strain localization, the prediction of the onset direction 
and the size of the localization zone are very important. If we 
take the usual approach, such as applying elasto-plastic models 
with strain softening, we encounter ill-posedness of the bound-
ary value problems at hand. In the numerical analysis, the re-
sults strongly depend on the mesh size; they do not converge 
with mesh refinement. These defects derive from the violation 
of mathematical well-posedness, which requires a uniqueness of 
the solution and a continuous dependency of the solution on the 
boundary data. In order to rectify these shortcomings, several 
methods have been developed and used in the analysis such as: 
(a) Non-local constitutive models, strain-gradient dependent 

models, Cosserat models, and integral type models 
(b) Elasto-viscoplastic formulations and generalized elasto-

viscoplastic formulations 
(c) Discontinuous numerical methods, such as discontinuous 

FEM, DEM, DDA, etc. 
(d) Introduction of pore-water pressure migration which leads 

to the weak removal of ill-posedness  
(e) Dynamic formulation and the introduction of acceleration  

For the presentation of these methods, numerical examples 
and comparisons with experimental or field data are shown in 
order to discuss the advantages and the accuracy of these ap-
proaches. Strain localization is not only observed in shear, but 
also under compression and/or compaction. When porous sand-
stone compaction bands are observed, compaction strain is lo-
calized for cemented soil and soft porous rock. The compaction 
bands are the result of unstable volumetric behavior.  

1.3 Coupled analysis 

Thermo-hydro-mechanical coupling is very important for pre-
dicting the behavior of the fluid contained in soil and for assess-
ing the stability of geomaterials, i.e., slope stability, landslides, 
and liquefaction. Contractive soil, such as loose sand, may eas-
ily lead to liquefaction. If we consider the problem of soil-
structure interaction, we may encounter a more complex cou-
pled behavior. If the soil has dilatant characteristics, the strength 
of the soil will increase due to a rise in the effective stress. 
Thus, the existence of pore water may delay strain localization 
and failure. A more interesting point regarding the time-
dependent behavior is the comparison between the effects of the 
inherent rate dependency of geomaterials and the pore-water 
migration. For the thermal effects, the fluidization of soil is af-
fected by the thermal coupling in rapid flow problems such as 
landslides.  

1.4 Reconsideration of conventional methods 

Conventional analysis methods and design codes should be re-
examined using the recent developments in new prediction 
methods. For example, the bearing capacity has been restudied 
and is compared with the conventional criteria. In addition, 
conventional methods of consolidation behavior are recast with 
respect to the unusual pore-water pressure response, etc. 

1.5 Application and advanced computational methods  

Slope stability, landslides, soil liquefaction problems, bearing 
capacity problems, excavation problems, and large settlement 
problems of the ground are major examples of when computa-
tional methods may be applied. Advanced computational meth-
ods such as FDM, FEM, BEM, Mesh Free Method, and FVM 
are among those that have been used. 

2 ELASTO-VISCOPLASTIC COMPUTATIONAL 
MODELING  

2.1 Viscoelastic constitutive modeling 

The modeling of many kinds of materials has been carried out 
within the framework of viscoelasticity for polymers, metals, 
concrete, soil, and rock. The well-known linear models are the 
Maxwell model, the Voigt-Kelvin model, and the spring-Voigt 
three-parameter model. It has been reported that the linear 
spring-Voigt model can describe the dynamic nature of soil 
(Kondner and Ho, 1965; Hori, 1974). By introducing the con-
cept of the distribution of relaxation time into the linear model, 
it is possible to model the wide range of time-dependent behav-
ior of soil. Murayama and Shibata (1964) have proven the time 
dependency of clay in high-frequency regions by considering 
the distribution of relaxation time. Murayama (1983) proposed 
non-linear viscoelastic and viscoplastic models based on the 
original model (Murayama and Shibata, 1964; Sekiguchi, 1977). 

Di Benedetto et al. (1997) proposed a simple asymptotic 
body (SAB) for the simplification of the viscoelastic model for 
soil which can be classified into three-parameter models. In the 
range of small strain, the linear viscoelastic approach is valid. 
However, in the range of large strain, the features include both 
viscoelasticity and visoplasticity. Oka, Kodaka and Kim 
(2004e) have succeeded in describing the behavior by a viscoe-
lastic-viscoplastic model for clay which can explain the dy-
namic behavior of clay for a wide range of strain levels. 

2.2 Elasto-viscoplastic constitutive modeling  

2.2.1 Overstress models 
To describe both the viscous nature and the plastic nature of soil, 
viscoplastic modeling is necessary. Perzyna (1963) proposed a 
viscoplastic theory which generalizes the linear theory for the 
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viscoplasticity theory by Hohenemser and Prager (1932). Prager 
and Hohenemser (1932)’s model, a linear extended viscoplastic 
model, is based on Bingham’s fluid and plasticity model. 
Yong and Yapp (1969) indicated the possibility of applying the 

viscoplasticity theory to the dynamic behavior of clay. Then, 
Adachi and Okano (1974) first proposed an elasto-viscoplastic 
theory for clay based on Perzyna’s theory and the original Cam-
clay model (1963). They assumed that the hardening parameter 
is an axial strain. They showed that viscoplasticity is an appli-
cable theory to the rate-dependent behavior of water-saturated 
clay. However, a quantitative description had not yet been suc-
cessively given with the model. Oka (1981), Adachi and Oka 
(1982a)’s newly proposed elasto-viscoplastic model is based on 
both Perzyna’s model and Cam-clay model. It incorporates the 
assumption that in the stress state, after the completion of con-
solidation, the soil has not yet reached the equilibrium state, but 
has still been in a non-equilibrium state with the strain-
hardening parameter of the inelastic volumetric strain, although 
the inelastic void ratio has been taken as a hardening parameter 
in Cam-clay model. The model is capable of describing the rate 
sensitivity, the creep, and the relaxation of cohesive soil, in par-
ticular, the volumetric relaxation behavior reported by Arulan-
andan et al. (1971). 

The model is a rigorous combination of two theories, namely, 
Cam-clay model and Perzyna’s model. However, the model has 
a shortcoming, namely, it cannot describe conventional acceler-
ated creep behavior, i.e., creep failure. Professor S.Sture of the 
University of Colorado pointed out this shortcoming at the Int. 
workshop in Grenoble (Oka, 1982). Aubry (1985) experimen-
tally showed that the critical state line is not rate sensitive. It 
can be understood that the rate dependency fades out at the 
critical state. Giving consideration to the rate independency at 
the critical state leads to the fact that the viscosity asymptoti-
cally becomes zero when approaching the critical state. Follow-
ing the above point, Adachi, Oka and Mimura (1987) con-
structed an improved viscoplastic model by considering the 
variations in viscosity. The derived model is very capable of de-
scribing creep failure, i.e., accelerating creep behavior. The pre-
diction obtained through this model indicates that the drop in 
stress is rather small in comparison to the experimental evi-
dence on sensitive clay and natural soil during strain softening. 
During the strain-softening behavior of natural clay, it is ob-
served that strain softening follows a rather large decrease in the 
mean effective stress. This indicates that the soil exhibits both 
shear and volumetric softening. In order to incorporate these 
features, a new model has been developed considering the deg-
radation of soil structures and rate dependency by Kimoto 
(2002) and Kimoto, Oka and Higo (2004). This new viscoplas-
tic model will be introduced in the following section. 

Many other models have been proposed to describe the time-
dependent behavior of soil. For the overstress models, Dafalias 
(1982), Katona (1984), Baladi and Rohani (1984), and Zien-
kiewicz et al. (1975) have proposed elasto-viscoplastic models 
within the framework of an overstress type of theory. Another 
type of overstress model has been proposed by Duvaut and Li-
ons (1976). Although their model is linear overstress type of 
model, Duvaut and Lions’s model is advantageous in that the 
plasticity model can easily be transferred into a viscoplastic one 
using the projection rule. Phillipes and Wu (1973)’s model is a 
non-linear viscoplastic model using a similar projection tech-
nique to obtain the overstress. Sawada et al. (2001) proposed a 
Cosserat viscoplasticity model for clay. 

2.2.2 Time-dependent viscoplastic model 
Sekiguchi (1977) proposed an elastic-viscoplastic model that 
clearly includes real time. Sekiguchi’s model was originally 
proposed as a creep model which included failure. Nova (1982), 
Dragon and Mroz (1979), and Matsui and Abe (1985) derived 
time-dependent models which are called non-stationary models. 
It should be pointed out that these models include time and ex-
plicitly violate the principle of objectivity. Yin and Graham 

(1999) proposed an elasto-viscoplastic model based on the 
modified Cam-clay model and the flow surface. 

2.2.3 Viscoplastic model based on the stress history tensor 
Oka (1985) proposed a viscoplastic model with the stress his-
tory tensor which is based on the assumption that the state of 
materials depends on the stress and the stress history. He as-
sumed that the yield function depends on the stress history ten-
sor and not on just the current stress or the internal variables. 
The stress history tensor is given by the convolution integral of 
the stress tensor with respect to the generalized time measure 
which is inherent to the materials. Oka and Adachi (1985) de-
veloped an elasto-viscoplastic model using the stress history 
tensor for the analysis of the strain softening behavior of soft 
rock, and of frozen sand (Adachi et al., 1990; Oka et al., 1994c), 
and generalized it as the viscoplastic model (Adachi and Oka, 
1995; Adachi et al., 2003, Adachi et al., 2005). This type of 
model can be applicable to the rate independent behavior adopt-
ing a special timemeasure for defining the stress history tensor. 
The application of the model is discussed in chapter 3.10.3.  

2.3 Microrheology models for clay 

The viscous behavior of clay has been analyzed in the field of 
Microrheology. Murayama and Shibata (1964) applied the rate 
process theory by Eyring (1936) to clay and derived a rheologi-
cal model. Then, Singh and Mitchell (1968, 1969), and Mitchell, 
Singh and Campanella (1968) successfully described the creep 
behavior of clay based on the rate process theory. Using the rate 
process theory, an exponential type of non-linear flow law, be-
tween the shear force acting on each flow unit and the strain rate 
when the shear force is found to be larger than the thermal en-
ergy, was created.  

2.4 Adachi and Oka model

Oka (1981), Adachi and Oka (1982a) developed an elasto-
viscoplastic constitutive model for clay based on Cam-clay 
model and an overstress type of viscoplastic theory (Perzyna, 
1963). The important assumption taken in the derivation of the 
model is that “At the end of consolidation, the state of the clay 
does not reach the static equilibrium state but is in a non-
equilibrium state”. In the followings, Terzaghi’s effective stress 
is used as  

ijwijij u ��� ��'                                                             (2.1)  

where ij'�  is the effective stress and wu is the pore water pres-

sure. 
It is assumed that the strain rate tensor consists of elastic strain 

rate tensor e
ij��  and viscoplastic strain rate tensor vp

ij�� , such that 

vp
ij

e
ijij ��� ��� ��                                                                         (2.2) 

The elastic strain rate is given by a generalized Hooke type 
of law, i.e.,  

0

1 '
2 3(1 ) '

e
ij ij m ij

m

S
G e

�� � �
�

� �
�

�� �                                          (2.3) 

where ijS  is the deviatoric stress tensor, m'�  is the mean effec-

tive stress, G is the elastic shear coefficient, e0 is the initial void 
ratio, �  is the swelling index, and the superimposed dot de-
notes the time differentiation.  

The viscoplastic flow rule is given by  

1( ) ,
'

vp s
ij

ij s

f fF F �� �
� �
� �

� � �
�

�                              (2.4) 
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in which (0) denotes the state at the end of the consolidation, in 
other words, the initial state before deformation occurs. *

ij�  is 

the stress ratio tensor 

mijij S '* �� �                                                         (2.8) 

and *
mM  is the value of * * *

ij ij� � �� = 22 / 'mJ �

( 2 / 2ij ijJ S S� ) when the volumetric strain increment changes 

from compression to swelling. ( )' s
my� is the hardening parameter. 

vp
ij�� is the viscoplastic strain rate tensor, �  is the viscosity pa-

rameter, ij� is the total stress tensor, ' ij�  is Terzaghi’s effective 

stress tensor, f  is the dynamic yield function, ij� is

Kronecker’s delta, 1�  is a material function which accounts for 

the strain rate sensitivity,  is Macaulay’s bracket, 0F �

denotes the static yield function, and s�  is the hardening pa-

rameter.  

2.5 The extended viscoplastic model considering stress ratio 
dependent softening  

As mentioned above, Adachi, Oka and Mimura (1987) extended 
the original model to describe the acceleration creep behavior of 
clay by introducing a second material function into the model. 
Oka et al. (1994d, 1995b) studied the instability of the extended 
model during the undrained conventional creep process and 
strain localization analysis.  

1 2( ) ( )
'

vp s
ij

ij s

f fF F �� � �
� �
� �

� � � � �
�

�                   (2.9) 

where 2�  is the second material function. 
The second material function is introduced to explain that 

the rate dependency of clay vanishes at the failure state. In other 
words, the stress ratio at the failure state does not depend on the 
strain rate. In the present study, the following form for the sec-
ond material function is adopted:  

2 1 �� � �                                                                           (2.10) 

Internal variable �  expresses the deterioration of the materi-
als and obeys the following evolutional equation:  

2

2
2 ( )

f

f

M
G M

� �
�

�
�
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�

� �                                                    (2.11) 

where fM �  is the value of stress ratio ��  at the failure state, 

2G�  is a material parameter.  
We can write Eq. (2.9) in an alternative form as  

1 2

1 2
1

2

vp

s s
ij ij

I f ff � �
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�

�
� �� �� �� �� �� �� � � � �� �� �� �� � �� �� �� �� �� �

                           (2.12) 

where 2
vpI  is the second invariant of the viscoplastic strain rate 

tensor (stretching tensor). From Eq. (2.12), we can see that the 
yield function depends implicitly on both the hardening parame-
ter and the strain rate.  

2.6 Elasto-viscoplastic model for cohesive soil considering 
degradation 

The prediction by the extended model with the second material 
function (Adachi et al., 1987) indicates that the drop in stress is 
rather small compared with the experimental evidence on sensi-
tive clay and natural soil during strain softening. During the 
strain-softening behavior of natural clay, it is observed that 
strain softening follows a rather large decrease in mean effec-
tive stress. This indicates that the soil exhibits both shear and 
volumetric softening. In order to incorporate these features, a 
new model has been developed considering the degradation of 
soil structures and the rate dependency by Kimoto (2002), Ki-
moto and Oka (2004), and Kimoto and Oka (2005). 
We assume an overconsolidation (OC) boundary surface which 

delineates the OC region ( fb< 0) from the normal consolidated 
(NC) region ( fb � 0), namely, 

* *
(0)

'ln 0
'

m
b m

mb

f M ��
�

� � �                                                   (2.13) 

in which *
mM  is the value of * * *

ij ij� � �� when the volumetric 

strain increment changes from compression to swelling.  'mb�
is the hardening parameter.  

Originally, the hardening rule for the 'mb�  surface was 
defined with respect to the viscoplastic volumetric strain. In 
order to describe the degradation of the material caused by 
structural changes, strain softening with viscoplastic strain is 
introduced in addition to strain hardening with viscoplastic 
volumetric strain as 

01' ' exp vp
mb ma v

e� � �
� �
�� �� � ��� �

                                             (2.14) 

� � � �' ' ' ' expma maf mai maf z� � � � �� � � �                               (2.15) 

where 'ma�  is assumed to decrease with an increasing vis-
coplastic strain in Eqs. (2.14) and (2.15), and 'mai�  and 

'maf� are the initial and the final values for 'ma� , respectively. 

'mai�  corresponds to the consolidation yield stress and 'maf�  is 
determined from the difference between the peak stress and the 
residual stress. Material parameter �  controls the rate of the 
structural changes and z  is an accumulation of the second in-
variant of the viscoplastic strain rate as  

0

t
z zdt� � � , vp vp

ij ijz � �� � ��                                                       (2.16) 

The mechanical behavior of clay at its static equilibrium 
state is assumed to be described by the original Cam-clay model 
(Adachi and Oka, 1982a). The following static yield function is 
used: 
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In a similar way for OC boundary surface fb, strain softening 
is defined in order to express the effect of a structural collapse 
through changes in ( )' s

my�  with the viscoplastic strain, namely, 

� � � �� �( ) ( ) 01' 1 exp ' exps s vp
my myi v

en n z� � � �
� �
�� �� � � � � ��� �

           (2.18) 

where ' 'maf main � �� describes the degree of structure at the 
initial state and �  is the rate of degradation.  

The decrease in ( )' s
my�  leads to the shrinking of the static 

yield function according to the structural collapse. 
The viscoplastic potential function is given as 

* *
(0)

'ln 0
'

m
p
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f M ��
�

� � ��                                                 (2.19) 

where *M� is assumed to be constant in the NC region. 'mp�  is 
determined automatically from the stress state in the NC region, 
and it coincides with 'mb�  in the OC region. The value varies 
with the current stress in the OC region as 

� �
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where 'mc�  denotes the mean effective stress at the intersection 
of the overconsolidation boundary surface and the 'm� axis as 

* *
(0) (0)

*' ' exp ij ij
mc mb

mM

� �
� ��                                              (2.21) 

The viscoplastic strain rate tensor is given as the following 
equation based on the overstress type of viscoplastic theory 
(Perzyna, 1963): 

1( )
'
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f
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�
�
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�

�                                                   (2.22)

where the symbol  is the Macaulay’s bracket. 
Based on the experimental results of strain-rate constant tri-

axial tests, material function 1�  is defined as 
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in which C is the viscoplastic parameter corresponding to the 
viscoplastic strain rate at the initial stress state. 

In the above formulation, we assumed that viscoplastic parame-
ter C  was scalar. However, we can generalize this assumption 
with a tensorial value for C such as fourth order isotropic tensor 

1 2 ( )ijkl ij kl ik jl il jkC C C� � � � � �� � � , as has been adopted by Oka 
(1982, 1992) and Oka et al. (2003). 

2.7 Determination of the material parameters 

There are ten material parameters for the proposed constitutive 
model. The procedure for determining these parameters is as 
follows. Initial void ratio 0e  can be obtained from tests for 
physical properties. Compression index �  and swelling index 
�  are given by the slope of the isotropic consolidation and 
swelling tests, respectively. Compression yield stress 'mbi� is
assumed to be determined from the yield point of the isotropic 
consolidation tests. Elastic shear modulus 

0G can be determined 
from the initial slope of the triaxial compression tests. 

(a) NC region 

(b) OC region 

Figure 2.1. Yield surface and potential surface for isotropically 
consolidated clay. 

The stress ratio at maximum compression *
mM  is defined as 

the stress ratio whereby maximum compression occurs in the 
drained compression tests. For clay, however, it has been as-
sumed to equal the stress ratio at the critical state. Herein, *

mM
is determined from the stress ratio at the residual state in the 
undrained triaxial compression tests. 
Viscoplastic parameter 'm  can be determined from undrained 

triaxial compression tests with different strain rates as 

(1) (2)(1)
11
(2)
11

2exp '
3 ' 'm m

q qm�
� � �

� �� �� � � �� �� �� �� � � �� �� � � �� �� � � �� �� �� �

�

�
               

(1) (2)
11 11
(1) (2)

3 ln ln'
2

' 'm m

m
q q

� �

� �

�
�

� � � �
�� � � �

� � � �

� �
                                         (2.25) 

where 11 33( ' ' )q � �� �  is the deviator stress, 'm�  is the mean 
effective stress, and superscripts (1) and (2) denote two stress 
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states on the stress paths with different strain rates and the same 
mean effective stress. 
When 'm  is determined, viscoplastic parameter C  is obtained 

from the deviatoric strain rate by the constitutive equation.  
Alternatively, we can determine parameters 'm and C  through 

the secondary compression rate and the initial volumetric strain 
rate as 

'
(1 )

m
e

� �
�

�
�

�
                                                                      (2.26) 

*
(0) /vp

kk mC M�� �                                                                    (2.27) 

where �  is a secondary compression rate, namely,  

0 0ln /p pv t t v�� � , p vp
kkv ��

The relationship given by Eq. (2.26) can be rewritten by the 
secondary compression index as 

' c sC Cm
C�

�
�                                                                       (2.28) 

where cC  is the compression index, sC is the swelling index, 
and C� is the secondary compression rate, namely, 

0 0log /e e C t t�� �  in the one-dimensional consolidation tests. 
When it can be assumed that 0.1s cC C� � , the viscoplastic 

parameter is approximately given as ' 0.9 /cm C C�� � .
Leroueil and Hight (2003, p. 126) have shown that based on 

Mesri’s work, /cC C�  is between 17 - 35. For these values, 'm
becomes 15 - 30. 'm  is larger for the inorganic clay than for the 
organic clay. For example, Mesri et al. (1995) have experimen-
tally obtained experimental evidence for the ratio of 

/ 0.03cC C� �  for Batiscan and Saint-Hilaire clays. 
Structural parameter 'maf�  is determined by the decrease 

from the peak stress to the residual stress in the undrained tests. 
Structural parameter �  is determined by curve fitting for the 
strain-softening process in the undrained tests.  

2.8 Application to Osaka pleistocene clay 

The model is applied to Osaka Pleistocene clay, namely, Kyu-
hoji clay. It was sampled from the upper Pleistocene layer 
called Ma12, which is distributed widely in the western and 
eastern parts of Osaka at a depth of 20 - 40 meters. This is ma-
rine clay containing diatoms, and it exhibits sensitive behavior 
due to the effect of the structures formed during the sedimenta-
tion process. Fig. 2.2 compares the undrained compression test 
results between the undisturbed and the reconstituted samples of 
Kyuhoji clay (Yashima et al., 1999; Shigematsu, 2002). Both 
the undisturbed and the reconstituted clays were sheared with an 
axial strain rate of 0.005% / min after isotropic consolidation at 
a confining pressure of 392 kPa, which is a little larger than the 
compression yield stress of 340 kPa. The initial void ratio of the 
undisturbed clay is larger than that of the reconstituted clay, 
specifically, 1.41 for the undisturbed clay and 1.02 for the re-
constituted clay. The undisturbed clay exhibits larger strength 
and the deviator stress decreases after the peak stress in Fig. 2.2. 
Fig. 2.3 shows the results of simulations, by giving compressive 
strain rates under the triaxial stress state. An axial strain rate of 

11��  = 0.005% / min is provided for the calculations. The mate-
rial parameters used in the simulations are shown in Table 2.1. 
Structural parameter 'maf�  is set to be 280 kPa for the undis-
turbed clay, and �  is set to be 10 for the undisturbed clay and 0 
for reconstituted clay. �  = 0 provides the original model which 
does not describe structural changes. The values for C  contain 

( )s
myi� concerning the degree of initial structures in the derivation. 

Since the degree of the initial structure of the reconstituted clay 

is thought to be lower than that of the undisturbed clay, a larger 
value for C  is given for the reconstituted clay. Fig. 2.3 con-
firms that the proposed model can describe the difference in be-
havior between the highly structured and the lowly structured 
soil.

Table 2.1: Material parameters for Kyuhoji clay 

Undisturbed Reconstituted 
Elastic shear modulus G0 8333 (kPa) 6330 (kPa)
Compression index � 0.327 
Swelling index � 0.028 
Initial void ratio 0e  1.41 1.02 
Compression yield stress maimbi '' �� � =392 (kPa) 
Stress ratio at failure *

mM 1.22 
Viscoplastic parameter 'm 21.5 
Viscoplastic parameter C 4.5×10-11 (1/s) 2.5×10-8 (1/s) 
Structural parameter 'maf�  280 (MPa) 392 (MPa) 
Structural parameter �  10.0 0 
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Figure 2.2. Experiments of undrained triaxial tests for Kyuhoji clay 
(Yashima et al., 1999). 
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Figure 2.3. Simulations of undrained triaxial tests for Kyuhoji clay. 
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2.9 Consolidation analysis 

It is well known that there are two types of time-dependent be-
havior for soil. One is consolidation and the other is brought 
about by the inherent viscous nature of the soil skeleton. The in-
teraction between the pore water and the soil skeleton results in 
consolidation. The viscous properties of the soil skeleton are re-
lated to the microstructure of the soil particles. Although many 
problems due to the consolidation of various types of soil have 
been solved, some problems still exist. One of them is the inter-
action between the viscosity and the changes in the soil struc-
ture. In the following, two problems will be discussed. One is 
the influence of the soil specimen thickness on consolidation 
and the other is the interaction between the viscoplastic proper-
ties and the strain softening due to structural changes. 

It has been reported that the influence of the specimen thick-
ness on consolidation plays an important role in the prediction 
of the actual settlement due to the consolidation (e.g. Ladd et al., 
1977; Aboshi, 1973; Aboshi and Matsuda, 1981; Oka et al. 
1986; Leroueil, 1995; Mesri et al., 1995; Tang and Imai, 1995, 
etc.). As is well known, in the general report for the 9th 
ICSMFE, Ladd et al. (1977) showed two hypotheses for con-
solidation behavior by compiling the previous results (Fig. 2.4). 
Curve A is supported by Ladd et al. (1977) and Mesri and 
Rokhsar (1974). Curve B is based on the hypothesis that there is 
a unique strain-time relationship with respect to time-dependent 
characteristics and that creep deformation occurs from the be-
ginning of the consolidation. Curve C is between Curves A and 
B, and appears to correspond to the experimental results of 
Aboshi (1973, 1995, 2004) (Fig. 2.5).  

Curve A 

Curve B 

Curve C 

Thick sample 

Thin sample 

log t

�

Figure 2.4. Schematic diagram of the average strain to time. 

Figure 2.5. Comparison of settlement curves (Aboshi, 1973). 

Many researchers have reported that the behavior which ap-
pears to be associated with the collapse of the soil structure can 
be recognized during the consolidation process. Bishop and 
Lovenbury (1969) conducted constant stress creep tests under 
drained conditions on undisturbed clay, and observed a sudden 
increase in the strain rate. Concerning field cases, the anoma-
lous pore-pressure behavior during the consolidation of soft 
clay has been reported by many researchers. Mitchell (1986) re-
ported that pore-pressure stagnation or a continuous increase af-
ter all the fill placement occurred because of a structural break-
down during compression. Furthermore, Leroueil (1988) and 
Kabbaj et al. (1988) observed increases in the pore water after 
the completion of the construction of test embankments, reflect-
ing the fact that the effective stress temporarily diminished in 
the stress-strain curve. The prediction of these phenomena by 
numerical methods has been studied since the 1980s. Kabbaj et 

al. (1985) analyzed one-dimensional creep tests by the finite dif-
ference method using an elasto-viscoplastic constitutive model 
(Oka, 1981). They showed that the strain rate remained momen-
tarily constant during creep simulations around the preconsoli-
dation pressure. 

In this section of the present study, one-dimensional consoli-
dation behavior is simulated using an elasto-viscoplastic consti-
tutive model taking into account the effect of structural degrada-
tion. We will discuss the influence of the sample thickness with 
respect to the soil structure and the initial strain rate. 

2.9.1 One dimensional consolidation problem 
One-dimensional consolidation has been numerically examined 
by a finite element analysis. For boundary value problems re-
lated to the soil-water coupled consolidation problem, Biot's 
two-phase mixture theory is adopted. The infinitesimal strain is 
valid for these problems since large deformations are not ex-
pected. A four-node quadrilateral element with a reduced Gaus-
sian integration is used for the displacement, and the pore-water 
pressure is defined at the center of each element. The top of the 
specimen is set to be permeable while the bottom and the sides 
are set to be impermeable. The size of each element is 0.4 
cm×0.4 cm for all the calculations. 
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b) Generated pore-water pressure with time 

Figure 2.6. Effects of parameter C (without structure � =0, 
0C =1.3×10-13). 

Table 2.2: Initial conditions and material parameters  

Initial mean effective stress:       )0('m� =580 kPa 
Coefficient of earth pressure:             K0=0.5 
Coefficient of permeability:      k0=0.8�10-9 m/s 
Permeability change index:               Ck=0.1 
Elastic shear modulus:              �0=360 kPa 
Compression index:                  �=0.508 
Swelling index:                    � �0.0261 
Initial void ratio:                      e0=1.70 
Compression yield stress:  mbi'� (= mai'� )=580 kPa 
Stress ratio at maximum compression:   *

mM =1.09 
Viscoplastic parameter:                m’=18.5 

Viscoplastic parameter:     C=1.3�10-13 1/s (=C0)
Structural parameter:            maf'� =290 kPa 
Structural parameter:             �=0, 5, 20, 40 

53



2.9.2 Effect of sample thickness 
Simulations have been performed for normally consolidated 
clay. The initial stress conditions of the calculations and the ma-
terial parameters are shown in Table 2.2. Elastic modulus G0
was set at 36100 kPa in the previous calculations (Kimoto, 
2002), and the settlement during the first consolidation was 
much smaller than that obtained during the secondary consoli-
dation. For comparison, G0 is supposed to 360 kPa in the pre-
sent study. Viscoplastic parameter C, which describes the initial 
viscoplastic strain rate, is set to be 1.0×10-13 (1/s) (=C0) at first. 
An excess pore-pressure level of 1160 kPa, which is twice as 
large as the compression yield stress, is applied as the initial 
loading for all the analyses.  

In the first calculation, viscoplastic parameter C is assumed 
to be C0 for samples with different heights ( H =2, 20cm). Ver-
tical strain reaches almost the same value at 6×106 seconds (= 
70 days). The results correspond to curve B as shown in Fig. 2.6.  

In the next calculation, initial viscoplastic strain rate C is as-
sumed to be inversely proportional to 2H , that is, 

� �2
0 0 /C C H H�  (H is the height of the specimen and H0 is set at 

2 cm). The results are shown in Fig. 2.6. The two lines (C=C0
for H0=2 and C=0.01C0 for H=20) are parallel to each other; this 
corresponds to Curve A. 

 Aboshi (1973) experimentally observed that the initial strain 
rate for the thick sample is lower than that for the thin one. Fig. 
2.5 illustrates the consolidation curves obtained by loads (19.6 - 
78.4 kPa) for samples with different thicknesses (Aboshi 1973). 
The strains (0)v�  are just after the preparatory consolidation. 
The strain rates (0)v��  are average values between consolidation 
stress of 9.8-19.6 kPa except No.5. For No.5, the strain rate is 
calculated between consolidation pressures of 0-19.6kPa (pri-
vate communication with Aboshi is presented in Oka, 2000): 
Specimen No.1 (H=2cm):  

(0)v�� =2.36 310�� %/min (9.8-19.6kPa), (0) 4.7%v� �

Specimen No.2 (H=4.8cm):  
(0)v�� =1.736 310�� %/min  (9.8-19.6kPa), (0) 5.3%v� �

Specimen No. 3 (H=20cm):  
(0)v�� =1.05 410�� %/min  (9.8-19.6kPa), (0) 4.1%v� �

Specimen No. 4 (H=40cm):  
(0)v�� =6.43 510�� %/min  (9.8-19.6kPa), (0) 5.0%v� �

Specimen No. 5 (H=100cm):  
(0)v�� =7.58 510�� %/min  (0-19.6kPa), (0) 4.7%v� �

 As shown in the above, the initial strain rate of the thick 
sample just before consolidation is smaller than that of the thin 
sample, although the strain just after the preparatory consolida-
tion is almost equal. The reason for the difference in strain rates 
is that the periods of preconsolidation are different, namely, 
from 1 day for the thinner sample to 4 months for the thicker 
one. 

In the last calculation in Fig.2.6, we assumed that 
� �2

0 0 0 0 0/ ( / )C H H C C H H C� � � , namely, C=0.1 0C  for 
H=20. In this case, Curve C is obtained when the value of C is
larger than � �2

0 0 /C H H and smaller than 0C , which is consis-
tent with Aboshi’s experiments. Consequently, it was found that 
the effect of the sample thickness depends on the value of C, 
that is, 

� �2
0 0 /C C H H�                                                  (for Curve A) 

� �2
0 0 0 0 0/ ( / )C H H C C H H C� � �                   (for Curve C) 

0C C�                                                                  (for Curve B)

The effect of the sample thickness on the time-settlement 
curve is mainly due to the difference in strain rates before con-
solidation. This explanation was first pointed by Oka, Adachi 

and Okano (1986) and was confirmed by Tang and Imai (1995). 
Of course there might be other reasons such as sample distur-
bance and the natural variability (Leroueil, 1995; Mesri and 
Choi, 1985). 

2.9.3 Effect of degradation 
In the calculations in Fig. 2.7, �  is set at zero. Next, let us dis-
cuss the effect of the parameter on structural degradation � .

 Calculations are performed for different values of parameter 
�  (= 0, 5, 20, 40). The case of � =0 corresponds to the origi-
nal model without considering structural changes. The vertical 
settlement with time and pore-water generation with time are 
shown in Fig. 2.7. The excess pore pressure shows a temporary 
increase when the rate of structural changes takes a high value, 
in other words, � = 40 (Fig. 2.7(b)). The average void ratio e-
log m'� relations for � = 0, 20, 40 are shown in Fig. 2.8. It 
shows a temporary decrease in the mean effective stress for the 
e-log m'� relations for �  = 20 and 40. A similar tendency is 
obtained from the test embankment (Leroueil, 1988). The bend-
ing points in the curve correspond to points where the pore-
water pressure begins to be stagnant or to increase in Fig. 2.7(b), 
at about 40 s for �  = 0 and 66 s for � = 40. 
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(b)Generated pore-water pressure with time 

Figure 2.7. Effects of structural parameter � .
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Figure 2.8. Average e-log 'm� curve. 

2.9.4 Two-dimensional consolidation problem 
Stagnation and/or an increase in the pore-water pressure after 
loading and during the consolidation of soft clay is called 
“anomalous pore pressure” and it has been observed after load-
ing and during consolidation by Professor J.K. Mitchell in his 
20th Terzaghi Lecture (1986). This problem has hitherto been 
studied, but it has not yet been fully solved. Asaoka (2003) tried 
to analyze a similar problem by an elasto-plastic approach con-
sidering the degradation of materials. We would say that the 
reason is the rate-dependent structural degradation of soft clay, 
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as discussed above. Oka, Leroueil and Tavenas (1991) numeri-
cally analyzed such a phenomenon observed in the clay founda-
tion at St. Alban’s test embankment D using an elasto-
viscoplastic model (Fig.2.9). They used a model with volumet-
ric strain softening and a comparatively better solution than the 
conventional model. However, the stagnation or the temporary 
increase in pore-water pressure after the construction of the em-
bankment could not be reproduced. In this section, we have ana-
lyzed the same problem using an elasto-viscoplastic model with 
the above-mentioned structural degradation (Karim et al., 2005).  

Figure 2.9. FEM mesh. 
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Figure 2.10. Construction process for embankment D. 

The finite element mesh is shown Fig. 2.9. At the base of the 
soil layers, the displacements are fixed. Fig. 2.10 illustrates the 
loading history of this embankment.  

The parameters used in the analysis and related formulas are 
listed in Tables 2.3 and 2.4. 

We assumed that the top layer is modeled as being elastic 
with� =0.25 and � =0.01125(1+e) (2.5 times higher than the 
other layers). In addition, we modified the equation that controls 
the structural degradation as follows:  

� � � �expma maf mai maf z� � � � �� � � �� � � �                               (2.29) 

instead of Eq. (2.15). 
Fig. 2.11 shows the development of the pore-water pressure 

in the analysis and in the field. The numerically predicted pore-
water pressure at a depth of 3 m (element No. 35) agrees well 
with the observed value in the field. We can see the stagnation 
and the temporary increase in pore-water pressure in the sensi-
tive clay. The lateral displacement at the toe of the embankment 
is shown in Fig. 2.13. The predicted results match the measured 
ones quite well.  

Table 2.3: Material parameters 

Layer Depth 
(m) 0� 1� 2�

1 0 ~ 0.66 0.02 0.300 0.100 
2 0.66 ~ 1.50 0.0523 1.000 0.363 
3 1.50 ~ 3.00 0.0719 1.140 0.495 
4 3.00 ~ 4.80 0.0387 1.040 0.411 
5 4.80 ~ 6.70 0.0246 0.560 0.282 
6 6.70 ~ 9.60 0.0104 0.409 0.175 
7 9.60 ~ 13.50 0.008 0.409 0.100 

Layer 0e � �22 0� �
(kgf/cm2)

p� �
(kgf/cm2)

0G
(kgf/cm2)

1 1.10 10.0062 0.739 8.97 
2 1.70 13.0473 0.582 15.3 
3 2.30 18.0504 0.469 21.2 
4 1.80 25.9965 0.720 30.7 
5 1.80 35.0217 0.900 41.2 
6 1.40 45.0279 0.140 57.1 
7 1.40 70.0434 0.180 112 

Table 2.4: Dependency of the parameters on the volumetric plastic 
strain 

Volumetric viscoplastic 
strain vp� (%) m� � C  (1/sec) 

0.01vp� �  26.7 0�
121.2 10��

0.01 22.2vp�� �  26.7 1�
115.9 10��

22.2vp� �  26.7 2�
115.9 10��

� =0.00451(1+ e ) 2.2OCR �
*
kC =0.5 e � �02 1 3mai pK� �� �� �

0 0.8K � maf mai OCR� �� ��
* 0.98M � 4.15� �

-8
0 1.05  10  m/sk � � 29.81 kN/mw� �
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Figure 2.11. Observed and calculated pore-water pressure levels of ele-
ment 35 beneath the center of the embankment at a depth of 3 m. 
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Figure 2.12. Observed and calculated displacement below the centerline 
of the embankment (Node 1). 

1 3 5 7 9 11 13 15 17
19 21 23 25 27 29 31 33

35 37 39 41 43 45 47 49 51

53 55 57 59 61 63 65 67

69 71 73 75 77 79 81 83 85

87 89 91 93 95 97 99 101

103 105 107 109 111 113 115 117 119

Horizontal distance (m)

V
er

tic
al

de
pt

h
(m

)

0 9 18 27 36 45 54 63 72

0

6.9

13.8

Node1 Node 9 

CL 

3.8m 13.4m 

3.28m Embankment 

Clay foundation 14.04o

55



0 10 20 30 40 50 60 70 80 90 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

La
te

ra
l d

is
pl

ac
em

en
t, 

u x (c
m

)

Time (day)

 Simulation
 Field data

At Node 9

Figure 2.13. Observed and calculated lateral displacement at the toe of 
the slope (Node 9). 

 The settlement at the bottom of the embankment is illus-
trated in Fig. 2.12. During the early stage of loading, the pre-
dicted value agrees well with the observed data. However, there 
is some difference after the end of the construction, namely, we 
can see a smaller value for the settlement and it reaches the 
measured value again. This tendency is similar to that in the last 
analysis by Oka et al. (1991). Possible reasons for this differ-
ence are thought to be 
1)  The analysis was carried out using the infinitesimal strain 

theory,  
2)  The property of the first layer is not relevant,  
3)  Viscoplastic parameter C is not scalar, but tensorial,  
4)  Degradation of elastic modulus, etc.  

Although more studies are needed to predict the settlement, the 
analysis brought out the fact that the introduction of structural 
degradation affects the unstable behavior of sensitive clay such 
as an increase in pore-water pressure or stagnation after the end 
of construction, as was pointed out by Professor Mitchell and 
others. 

2.10 Cyclic elasto-visoplastic model 

We need a cyclic plasticity model for the dynamic analysis of 
clay. For that purpose, we have developed a cyclic viscoplastic-
ity model with a non-linear kinematic hardening model (Oka, 
1992) and a cyclic viscoelastic-viscoplastic model with a kine-
matic hardening model (Oka, Kodaka and Kim, 2003). The 
models have been successively applied to the dynamic analysis 
of the ground during earthquakes, considering liquefaction, and  

(a) Stress-strain relations            (b) Volume changes 
Figure 2.14. Stress-strain realations and volume change characteristics. 

shown in the last chapter (Oka et al., 2003b). The cyclic elasto-
viscoplastic model was applied to undrained triaxial tests with 
step-changed strain rates. It was found that the model can de-
scribe the isotaches characteristics well (Oka et al., 2003a).  

2.11 Elasto-viscoplastic model for unsaturated soil 

For unsaturated soil, we have applied the viscoplastic model 
considering the effect of suction and extended viscoplastic pa-
rameter C  (Kim, Kimoto, Oka and Kodaka, 2005).  

Starting from the effective stress by Bishop (1960), several 
considerations have been given to the stress variables (Fredlund 
and Morgenstern, 1977; Alonso et al. 1990; Kohgo et al. 1993; 
Wheeler and Karube, 1995). We have adopted an average skele-
ton stress for the model. The definition for the average skeleton 
stress, which includes the average fluid pressure acting on the 
soil pores, incorporates the first above-mentioned point in a di-
rect manner (Houlsby, 1997; Jommi, 2000). However, it is 
noted that the unsaturated behavior of collapsible soil cannot be 
reproduced by merely adopting the average skeleton stress in a 
constitutive model. The collapsing behavior of unsaturated soil 
is macroscopic evidence of the structural instability of the soil 
skeleton, and it is totally independent of the stress variables 
adopted in the constitutive modelling (Oka, 1988; Jommi, 2000). 
This interpretation was explained by the experimental results of 
Matiotti et al. (1995). Therefore, it is necessary to consider the 
suction effect in order to include the collapsing behavior. In this 
section, we have considered the effect of suction within the 
framework of a constitutive model. In the proposed model, the 
basic stress variable is the average skeleton stress, ''ij� , which 
is defined by the following equations (Bolzon et al., 1996; 
Ehlers, 2002): 

'' (1 )s F
ij ij ijn P� � �� � �                                                    (2.30) 

f
ij r w ijnS u� ��                                           (2.31) 

(1 )g
ij r a ijn S u� �� �                                        (2.32) 

''s f g F
ij ij ij ij ij ijP� � � � � �� � � � �                        (2.33) 

where s
ij� , f

ij� , and g
ij�  are the partial stress values for the 

solid phase, the fluid phase, and the gas phase, respectively.  n 
is the volume fraction, au  is the pore-air pressure, wu  is the 
pore-water pressure, rS is the degree of saturation, ij� is
Kronecker's delta, and FP is the averaged pore pressure, which 
is given through Dalton's law as follows:  

(1 )F
r a r wP S u S u� � �                                     (2.34)

Therefore, the average skeleton stress may be rewritten in the 
following way: 

'' (1 )ij ij r a r w ijS u S u� � �� � � �� �� �                         (2.35) 

It is worth noting that this cannot be called “effective stress”, 
since the average skeleton stress is used with the suction in the 
constitutive parameter. 

able 2.5: Material parameters 
tial suction s (kPa) 200 400 
tial void ratio e 0.599 0.577 
mpression index �  0.13 0.091 
elling index �  0.03 0.015 
tial mean average skeleton 
ess me''� (kPa) 354 496 

scoplastic parameter 'm 22.0 22.0 
scoplastic parameter  1C (1/s) 1.3×10-14 1.3×10-13

scoplastic parameter 2C (1/s) 4.0×10-14 3.3×10-13

ess ratio at critical state *
mM 0.91 0.89 

astic shear modulus G (kPa) 11100 18000 
mpression yield stress ''mbi� (kPa) 474 692 

uctural parameter ''maf� (kPa) 474 692 

uctural parameter � 0 0 
aterial parameter b  0 0 
ction effect parameter 1 1i i rS S 1 10 

ction effect parameter 2 2i i rS S 1 8.25 
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In the model, we assumed the following flow rule: 

1( )
''
pvp

ij ijkl y
kl

f
C f�

�
�

� �
�

�                                 (2.36)

' '( )ijkl ij kl ik jl il jkC a b� � � � � �� � �

1 2 ',C b� � 2 3 ' 2 'C a b� �                                     (2.37) 

1 2
1 01 2 02

1 2

,i i

i r i r

S SC C C C
S S
� � � �

� � � �� � � �
� � � �

�                         (2.38) 

in which  are Macaulay’s brackets, 1 1( ) ( )x x� � � , if 
0x � , 1( )x� =0, if 0x � , and Si denotes the suction effect. 

01C and 02C  are the viscoplastic parameters when the suction is 
riS 1 and riS 2 , respectively. 

1C and 2C  are the viscoplastic parameters considering the 
suction effect. 

A series of triaxial compression tests on unsaturated com-
pacted silt is numerically simulated. Material parameters used in 
the analysis is listed in Table 2.5 The results show that the 
model is very applicable for describing the behavior of unsatu-
rated soil. The average skeleton stress is not an effective stress, 
because it has to be used with both the suction-saturation rela-
tion and the introduction of suction into the material parameters 
in the constitutive model when the suction exists. 

2.12 Summary  

Elasto-viscoplastic models for soil have been developed and 
successively applied to the behavior of saturated and unsatu-
rated cohesive soil. In particular, the proposed model considers 
structural changes and reproduces the unstable behavior en-
countered during consolidation, such as the temporary increase 
in pore pressure after stagnation. The effect of the sample thick-
ness on the consolidation is reproduced by considering the dif-
ference in the initial strain rates. In the next section, the models 
are used to reproduce the strain localization behavior in the 
laboratory and such boundary value problems as the bearing ca-
pacity and an excavation analysis. 

3 STRAIN LOCALIZATION  

3.1 Strain localization problems in geomechanics 

In order to analyze failure, we have to deal with strain localiza-
tion near and/or after failure. It is well known that the strain lo-
calization of geomaterials causes such important problems as 
slope failure. In slope failure, deformation occurs in a narrow 
zone, namely, strain localization is closely related to the onset 
of failure (e.g., Scott 1987). The development of a failure sur-
face is a classical issue in soil mechanics. Coulomb (1773) con-
sidered a failure surface in order to determine the collapse load 
in his famous work. Sokolovsky (1942) analyzed a slip plane as 
a stress characteristic at the limit equilibrium. As has been 
pointed out by Taylor (1948), the failure phenomenon of geo-
materials is progressive. Hence, strain localization is a precursor 
to the development of a failure surface, and is a very important 
subject to investigate. Over the last three decades, the problem 
of strain localization in geomaterials such as soil and rock has 
been extensively studied within the context of experimental, 
theoretical, and numerical approaches. Many researchers (i.e., 
Hill, 1962; Rice, 1975, 1976; Rudnicki and Rice, 1975; Mühl-
haus and Vardoulakis, 1987; Oka et al., 1994d; Muir Wood, 
2002; Gudehus and Nübel 2004; etc.) have been working in this 
area from both experimental and analytical points of view. Rice 

(1976) and Rudnicki and Rice (1975) pointed out that the nature 
of this problem can be solved under the general framework of 
bifurcation problems and that localization problems should be 
studied within a wider framework of mechanics, including the 
rapid degradation of the material strength.  

Angle of a shear band  
The classical Mohr-Coulomb law gives the angle of the fail-

ure surface (shear band) as 

4 2M
� �� � �                                                                           (3.1) 

where �  is the internal friction angle. 
On the other hand, as is well known, Roscoe (1970) reported 

in his Rankine lecture that the rupture (failure) surface does not 
coincide with the stress characteristics, but with the zero-
extension lines. This means that the angle of a shear band to 
major principle stress plane �  (see Fig. 3.1) is given by 

4 2R
� �� � �                                                                           (3.2) 

where �  is the dilatancy angle.  
In addition, Roscoe (1970) pointed out that the thickness of a 

shear band is approximately 10 grains.  
For the angle of a shear band, Arthur et al. (1977) proposed a 

shear band angle based on the experiments as 

1 ( )
4 4A
�� � �� � �                                                                (3.3) 

Since � ��  and R A M� � �� � . The angles experimentally ob-
tained by Arthur et al. (1977) were supported by theoretical 
works (Vardoulakis, 1980; Vermeer, 1982). Vardoulakis (1980) 
reported that the experimental results coincide with Eq. (3.3). 
However, the experimental results for sand, obtained by Des-
rues (1990) and Lade (2003), are close to M� . Vardoulakis 
(1977) illustrated that the shear band angle depends on the par-
ticle diameter, in other words, the larger the soil particle size, 
the smaller the shear band angle. Tatsuoka et al. (1990) showed 
the shear band angle depends on b-value and anisotropy. These 
indicate the other effects on the angle of the shear band. For 
clay, Oka et al. (2004d) numerically indicated that the angle of a 
shear band depends on the strain rates and the permeability, as 
shown in Sections 3.8 and 3.9. 

Figure 3.1. Angle of shear band 

3.2 Localization analysis 

It has been theoretically found that the onset conditions for 
strain localization can be captured by a bifurcation analysis (e.g., 
Hill, 1962; Rice, 1976). Rice (1976) showed that shear band 
formation is a problem because a shear band is the result of 
bifurcation from a homogeneous deformation. The onset 
conditions for localization are given by linear and non-linear 
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incremental constitutive models. For static problems, the 
conditions involve a loss of the elliptic onset condition, the 
thickness, the angel, and the distribution. Post localization 
behavior and the loss of ellipticity correspond to the loss of 
uniqueness, namely, the instability discussed within the 
framework of bifurcation and material instability. 

Within the framework of a linear incremental model, the onset 
conditions are derived as the condition of equilibrium which re-
quires the time rate of change in stress traction ij jn�� at the shear 
band to be zero, namely,  

[ ] 0ij jn� ��               �������������������������           (3.4) 

where jn  is the unit normal to the shear band.�The bracket [ ] 
of a quantity denotes the difference in values of that quantity 
across the shear band. 

The velocity is continuous, but the gradient of velocity is 
discontinuous. 

,[ ]i j i jv n��      ��������������������������������      (3.5) 

where ,i jv  is the velocity gradient. 
The incremental constitutive model is given by 

,ij ijkl k lM v� ��        ��������������������������           (3.6) 

From Eqs.(3.4), (3.5) and (3.6), 

0ik kH � � ,    ik ijkl j lH M n n�                                            (3.7) 

where ijklM  is the stiffness tensor. 
The onset conditions for non-zero k�  are 

det[ ] 0ikH �                                                                           (3.8) 

From these conditions, we can obtain shear band angle �  in 
a two-dimensional case. 1 2cos , sinn n� �� �  are the angle be-
tween the unit normal to the shear band and the major principle 
stress plane, respectively.  

It is seen that Rice’s bifurcation condition is the same as the 
singularity of the acoustic tensor (Mandel, 1964). This means 
that the occurrence of a shear band coincides with the acceler-
ated wave trapping in the narrow zone. For the propagation of 
an acceleration wave [propagation of the discontinuity of accel-
eration], it is necessary for the eigenvalues to be positive and 
real. Acceleration is discontinuous across the wave front for the 
acceleration wave, although the displacement and the velocity 
are continuous. When the eigenvalues are negative and zero, 
discontinuity cannot propagate and it is referred to as stationary 
discontinuity, namely, shear bands or complex (flutter) instabil-
ity. 

The zero determinant of the accoustic tensor by Eq. (3.7) 
corresponds to a change in the type of partial differential gov-
erning equations from elliptic to hyperbolic (Hill and Hutchin-
son, 1975). Bigoni and Hueckel (1991) found that the loss of 
strong ellipticity coincides with the nullity of the determinant of 
the symmetric part of the acoustic tensor. 

Strain localization has been well recognized as the develop-
ment of shear bands. On the other hand, another type of strain 
localization has also been observed, namely, compaction bands 
(Mollema and Antonellini, 1996; Olsson, 1999). Compaction 
bands were experimentally found for sandstone as a tabular 
zone that exhibits closure, but no shear offset (Mollema and An-
tonellini, 1996). The compaction bands comprise a kind of 
volumetric strain localization due to a pore collapse. The com-
paction bands of porous sandstone exhibit a sharp reduction in 
permeability that causes difficulties in oil production. Olsson 
(1999) has shown that compaction bands can be described by 

the strain localization theory of Rudnicki and Rice (1975) as 
well as by shear localization problems. The re-examination of 
Rudnicki and Rice’s theory comes from the corrections of the 
Rudnick and Rice theory by Perrin and Leblond (1993). They 
showed that the possible range for the sum of the dilatancy fac-
tor and the coefficient of internal friction is wider than that 
shown in Rudnicki and Rice’s paper, in other words, 

3 / 2� �� �  should be read as 3 3� �� � � � .
Rudnicki and Olsson (1998) re-examined the fault angles 

predicted by the shear localization theory and obtained the fol-
lowing convenient form: 

1 arcsin
4 2
�� �� � ,

2

(2 /3)(1 )( ) (1 2 )
4 3

N
N

� � � �� � � � �
�

�
   (3.9) 

' /IIN � ��                                                                          (3.10) 

where 2ij ijs s� � , ijs  is the deviatoric stress tensor, �  is 

Poisson’s ratio, �  is the gradient of the plastic potential sur-
face, 'II�  is the intermediate principal deviatoric stress and �
is the gradient of the yield surface. 

Using Eq. (3.9), it has been realized that the smaller angle of 
the compaction bands can be described. 

In order to observe compaction bands for soil, Castellanza 
and Nova (2004) reported a compaction band forming in the 
cemented granular soils during the oedometer test. They ob-
served a stress-strain relation with a plateau that occurred after 
the peak stress had been reached, which is a typical stress-strain 
relationship for compaction bands. Oka and Kimoto (Kimoto 
and Oka, 2004; Kimoto and Oka, 2005) pointed out that the 
large compression of structured clay is due to the development 
of compaction bands, and they numerically analyzed the unsta-
ble consolidation of clay with degradation. This problem will be 
discussed in the following section. 

3.3 Instability of geomaterials 

As mentioned above, strain localization can be described as bi-
furcation conditions by Eq. (3.8), namely, a zero determinant of 
the acoustic tensor (Rice, 1976; the loss of the positive definite-
ness of constitutive matrix D). The loci on the �  plane for 
which the determinant of the acoustic tensor is zero, namely, the 
loci of the localization conditions, never intersect the stress 
axes. This means that shear banding cannot occur in conven-
tional triaxial compression tests before the failure state. On the 
other hand, shear bands may easily develop in plane strain tests. 
The stress state reaches the surface by the zero determinant of 
the acoustic tensor before it reaches the limit state. The limit 
state is characterized by the conditions under which the deter-
minant of the constitutive matrix equals zero (Tokuoka, 1971) 
and it is called the failure condition.  

Nova (1994) studied the other bifurcation criteria and found 
that the conditions for the loss of controllability are obtained as 
a zero determinant of the symmetric part of stiffness tensor sD :

det[ ] 0sD �                                                                  (3.11) 

In general, for the non-associated plasticity model, 
det[ ] 0sD �  even when det[ ] 0D � . [ ]D  is the stiffness tensor 
({ } [ ]{ }D� �� �� ).

In the experiments on soil, we can choose the variables for 
controlling the system; e.g., we control the axial strain rates and 
maintain the lateral stress constant in the strain control triaxial 
tests. When the conditions are satisfied, we cannot continue the 
experiments. For instance, we cannot execute triaxial tests for 
strain hardening-softening material after the peak stress by the 
axial stress control. Nova found that the loss of controllability is 
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equal to the negative second-order work. This indicates that if 
the stress states satisfy the zero determinant of the symmetric 
part of the material stiffness matrix, , bifurcation 
may occur. Lade’s instability condition (1992) is equivalent to 
the conditions under which the volumetric compliance is zero 
under the isotropic loading of the material. This state comes af-
ter the peak stress in the triaxial tests.  

det[ ] 0sD �

 Since the non-associative flow rule of plasticity is not sym-
metric, a variety of unstable conditions may arise. They are the 
strain localization condition (the loss of the determinant of the 
acoustic tensor, Rice, 1976), the zero secondary work condition 
(Hill, 1958), and the loss of the controllability condition (Nova 
1994), etc. The zero secondary work condition and the loss of 
the controllability condition may lead to diffuse bifurcation or 
instability that manifests as a barreling or bulging type of phe-
nomenon (Nova, 1998; Darve, 2001). The surfaces that define 
these types of instability are inside the failure surface (Imposi-
mato and Nova, 2001). Benallal and Comi (2003) studied using 
a perturbation approach and found that the failure mode of non-
associated material exhibit either diffuse(long wavelength) 
mode and localization mode (short wavelength).  

For the incremental strongly non-linear law, the onset condi-
tions for a shear band have been obtained by Chambon et al. 
(2000) and Kolymbas et al. (1989). The incrementally non-
linear model has been proposed as hypoplastic models by 
Kolymbas et al. (1989) and Chambon et al. (2000).  

For the hypoplastic models, 

For the hypoplastic models, several criteria for bifurcation 
have been obtained based on the invertibility of ijkl k lM n n .
Namely, three types of bifurcation criteria were given as: 1) the 
norm criteria, 2) the determinant criteria, and 3) the tangential 
criteria. The norm criteria are first met and the determinant cri-
teria are never met (Chambon et al., 2000; Tamaganini et al., 
2001) . 

3.4 Non-coaxiality

It is known that the direction of the principle strain rates does 
not need to coincide with the direction of the stress rates even 
for anisotropic materials. However, even for isotropic materials, 
the direction of the principle strain rates does not need to coin-
cide with the direction of the stress rates; this is called non-
coaxiality. The yield vertex that comes from the micromechani-
cal consideration leads to the non-coaxiality. Rudnicki and Rice 
(1975) introduced this vertex effect into the model by a non-
coaxial term called the Mandel-Spencer modulus term. The 
non-coaxial term was naturally derived into the planer model 
from the double slip theory by de Josselin (1971). Spencer 
(1964) proposed a double shearing model by assuming a mi-
cromechanical slip along the stress characteristic lines obtained 
from the equilibrium equations and Mohr-Coulomb failure cri-
teria (Sokolovsky, 1942). The double shearing model was gen-
eralized to be a model with dilatancy by Mehrabadi and Cowin 
(1978). They have resulted in the non-coaxial term which is 
workless, e.g., purely deviatoric. Anand �1983�generalized it 
into the isotropic hardening model. This non-coaxial model has 
accounted for the vertex of the plastic potential surfaces (Rud-
nicki and Rice, 1975). Yatomi et al. (1989) used the non-coaxial 
term in Cam-clay model and showed that the non-coaxial term 
easily led to instability as shear banding or as accessibility to bi-
furcation from an elliptic to a hyperbolic type of governing 
equation. Papamichos and Vardoulakis (1995) developed a dif-
ferent type of non-coaxial theory by introducing a kinematical 
concept. Hashiguchi et al. (2004) developed a tangential plastic-

ity theory accounting for non-coaxiality. All of the models are 
rate-independent plasticity theories. Oka (1993b) developed a 
rate-dependent non-coaxial viscoplastic model using a trans-
formed stress tensor with the current stress-induced quasi-
anisotropy shown in the next paragraph. The other source of 
non-coaxiality is the anisotropy of the materials (Nemat-Nasser, 
1983).

3.5 Current stress-dependent characteristics and anisotropy 

As mentioned above, the non-coaxial term called the Mandel-
Spencer modulus term is derived from the characteristic plane. 
There are several constitutive models based on the characteristic 
plane. Matsuoka and Nakai (1974) proposed a model in which 
the failure criteria depend on the interim principal stress, al-
though Mohr-Coulomb’s criteria depend on the maximum and 
the minimum principal stresses. Oka (1993a, 1993b) proposed a 
transformed stress tensor to describe the current stress-
dependent behavior of soil, by which Matsuoka and Nakai’s 
failure criteria (1985) can be derived. In addition, the deviatoric 
flow rule can be reproduced by which the direction of the strain 
rate is different from the direction of the stress path. The trans-
formed stress tensor 

( , )A
ij ij ijF A� ��                                                                  (3.13) 

is derived from Wang’s representation theorem as a function of 
the stress tensor and the structural tensor (Spencer, 1987). The 
structural tensor was first adopted by Boehler and Sawczuk 
(1977) as 

ij i jA m m�                                                                          (3.14) 

where  is a unit normal to the characteristic plane. i
Considering Matsuoka and Nakai’s well-known failure crite-

ria (1974), im  can be taken as the unit normal to the spatial 
mobilized plane. If we take the sedimentation plane as the char-
acteristic plane, we can construct a transversely isotropic theory 
(Oka, 1993a; 1993b; Oka et al., 2002c). Nakai’s ijt  theory can 
be classified as being similar to the transformed stress tensor 
(Nakai and Mihara, 1984; Chowdhury and Nakai, 2001), al-
though they originally proposed the theory based on physical 
considerations.

m

3.6 Regularization of ill-posedness 

The onset conditions for a shear band can be obtained analyti-
cally or numerically, but it is also necessary to predict the post-
localization behavior. After a shear band has occurred, the 
boundary value problem becomes ill-posed. Hence, ellipticity 
(well-posedness) must be retrieved. Well-posedness is the 
uniqueness of a solution and the continuous dependence on the 
boundary conditions. In the finite element analysis, this instabil-
ity leads to a strong mesh-size dependency and, in turn, the 
thickness of the shear band becomes zero, although the thick-
ness of a shear band is finite in the experiments.   

There are several methods for the regularization of the ill-
posedness of governing equations. 
1) Non-local formulation of constitutive models 
 Non-local models, such as the higher order strain gradient-

dependent model (Aifantis, 1984; Mühlhaus and Aifantis, 
1991; Vardoulakis and Aifantis, 1991), and micropolar 
models, such as the Cosserat model (Mühlhaus, 1986; 
Teichman and Wu, 1993; Bauer and Huang, 2001), have 
been used for the post-localization analysis. An integral type 
of non-local model has been developed to account for the 
non-local effect. The feature of non-local models is that 
they contain the material length scale. Mühlhaus and Oka 
(1996) clarified that the higher strain gradient term naturally 
comes from the fact that the material is discrete and has an 
inherent length scale. 

ij ijkl kl ij klM F b D� � ��� � �                                                   (3.12) 

where ijklM  is the constitutive fourth order tensor, ijb  is the 
constitutive second order tensor, klF�  is the rate of deformation 
gradient, ijD is the stretching tensor, and � �  denotes the 
Euclidian norm. 
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2)   Solid-fluid two-phase formulation 
 For water-saturated soil, a Biot type of two-phase mixture 

theory can be applied with an elasto-plastic model for the 
soil skeleton. In this type of formulation, Zhang and Schre-
fler (2001) found that the critical hardening moduli become 
smaller than those for a single material (the permeability is 
large). This indicates that the localization is delayed for the 
case of water-saturated soil. They also pointed out that there 
exists a domain of permeability where stability is lost, but 
the hyperbolicity remains in the dynamic analysis of water-
saturated soil.  

  Vardoulakis (1996a, 1996b) reported that the boundary 
value problem encountered ill-posedness even when the 
two-phase formulation was adopted. However, from the 
numerical studies, it was found that the strain localization is 
depressed in the case of low permeability (Loret and Prévost, 
1991; Oka et al., 1995b; Asaoka et al., 1997). 

3)   Viscoplastic regularization 
 An elasto-viscoplastic formulation can retrieve the ill-

posedness of the governing equations through the instanta-
neous elastic response. For example, Loret and Prévost 
(1991) adop�ed a viscoplastic regularization technique us-
ing Duvaut and Lions’s theory (1976) by which the invisid 
model can be transformed into a viscoplastic model with 
one viscous parameter.  

  The elasto-viscoplastic model which is transformed 
from an elasto-plastic model can maintain the well-
posedness, namely, it can avoid the strong mesh-size de-
pendency in the finite element analysis if the growth of vis-
coplastic strain is bounded. It is worth noting that the elasto-
viscoplastic models can delay the instability, e.g., shear 
bands but cannot stabilize the catastrophic instability. 

4)   Dynamic formulation 
  The dynamic formulation of boundary value problem has 

been successfully used to solve static boundary value prob-
lems. This may be due to the fact that the type of governing 
equations remains to be hyperbolic. Vardoulakis (1996a, 
1996b) proposed a regularization method that introduced 
micro-inertial and strain gradients into the non-associated 
plasticity model called the “2nd grade elastoplasticity 
model”.  

5)  Discrete model and finite element analysis with strong dis-
continuity 

 Since discrete analyses such as DEM (e.g., Cundall and 
Strack, 1979; Kishino, 1988; Thornton, 1998) include an in-
ternal length scale, the instability could be avoided, al-
though it needs many degrees of freedom. Oda and Kazama 
(1998) clearly showed that the shear band was able to be re-
produced by DEM through the weak restriction of the mo-
ment between the particles. The finite element method with 
strong discontinuity has been developed to capture the slip 
surface without mesh-size dependency (e.g., Regueiro and 
Borja, 2001; Oliver et al., 1999). 

As mentioned above, large amounts of studies have been 
done on the strain localization problems of geomaterials, both 
experimentally and theoretically (e.g., Geomaterials, Darve ed. 
Elsevier Appl. Sci. 1993; Vardoulakis and Sulem, Blackie Aca-
demic & Professional, 1995). However, many of them are for 
cohesionless soils. On the other hand, comparatively fewer 
studies have been performed for cohesive soil, such as clay, al-
though Palmer and Rice (1973) pointed out the strain localiza-
tion of overconsolidated clay as a slip surface.  

It is well known that cohesive soil such as clay exhibits 
strain-rate sensitivity. Hence, in the modeling of clayey soils, it 
is more natural to adopt elasto-viscoplastic models instead of 
elasto-plastic ones, although the elasto-plastic models are ex-
treme models for such materials. As has been mentioned above, 
elasto-viscoplastic models have been developed for clay to take 
into account the rate sensitivity. 

Strain localization has been found to be the change in the 
type of partial differential equations of the governing equations 
of boundary value problems for the rate-independent modeling 
of materials such as sand. In other words, the type changes from 
elliptic to hyperbolic for static problems. On the other hand, for 
elasto-viscoplastic modeling, such instability as strain localiza-
tion can be treated as the exponential growth of fluctuation, i.e., 
Lypunov instability, and as the growth of kinetic energy and 
momentum for dynamic cases (see Table 3.1). 

Table 3.1: Classification of plastic and viscoplastic instability 
 Rate-independent model Rate-dependent model 

Body Elasto-plastic body Elasto-viscoplastic body 

Static 
conditions 

Loss of ellipticity 
Loss of controllability 

Zero secondary order work 
Loss of Lyapunov stability 

Exponential growth of fluc-
tuation 

Loss of Lyapunov stability 

Dynamic 
conditions 

Loss of hyperbolicity 
Loss of Lyapunov stability 

Growth of kinetic energy 
and momentum 

Loss of 
Lyapunov stabiity 

3.7 Effects of the transport of pore water and material 
heterogeneity on strain localization 

In this section, we will clarify the effects of permeability and 
initial heterogeneity on the strain localization of fluid-saturated 
cohesive soil modeled by a strain gradient-dependent poro-
viscoplastic constitutive model.  

The effects of permeability and gradient parameters on the 
growth rate of the fluctuation were obtained by a linear instabil-
ity analysis. The deformation behavior of the clay specimens 
modeled with a viscoplastic model with a second order strain 
gradient during shear was numerically analyzed by a soil-water 
coupled FEM under both globally undrained and partially 
drained conditions. We found that the deformation pattern and 
the stress-strain curve greatly depend on the permeability, the 
drainage conditions, and the initial non-homogeneous proper-
ties.  

Rice (1976) and Rudnicki and Rice (1975) pointed out that 
the nature of this problem can be solved within a general 
framework of bifurcation problems and the localization problem 
should be studied within the wider framework of mechanics, in-
cluding the rapid degradation of the material strength. In addi-
tion, Rice (1975) indicated the importance of local-
inhomogeneity and the behavior of pore fluid. The effect of 
pore fluid on the localization problem has been analyzed by 
several researchers within the context of a two-phase mixture 
theory such as Biot's theory (1956) and de Boer (1996). Loret 
and Prévost (1991), Schrefler et al. (1995, 1996), and Ehlers and 
Volk (1998) numerically studied the localization problem of 
water-saturated geomaterials with the rate-independent constitu-
tive model. Vardoulakis (1996a, 1996b) found that boundary 
value problems with a non-associated rate-independent plastic 
model become mathematically ill-posed even if the pore water 
flow is included. 

Oka, Adachi and Yashima (1994b) have been dealing with 
the localization problem of water-saturated clay through the use 
of viscoplastic constitutive equations due to the rate-dependent 
nature of cohesive soil. Zhang et al. (1999) and Zhang and 
Schrefler (2000) investigated the interaction between permeabil-
ity and a gradient-dependent parameter with a one-dimensional 
instability analysis and a numerical simulation in the context of 
the dynamic strain localization of saturated and partially satu-
rated porous media. As for the experimental study, Finno et al. 
(1998) discussed the effects of drainage conditions on strain lo-
calization in sand specimens. In these studies, many points have 
been clarified such as the effect of dilatancy, permeability, 
strain rates, etc., for particular constitutive models. Loret and 
Prévost (1991) and Schrefler et al. (1995) showed that strain lo-
calizes in a narrow zone in the case of higher permeability lev-
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els. On the other hand, Oka, Adachi and Yashima (1995) re-
ported different results in which deformation was more local-
ized in the case of low permeability levels compared with a ma-
terial with absolutely very high permeability. Several problems 
remain which need to be studied. One of them is to clarify the 
roles of permeability and drainage conditions in the instability 
of the governing equations and the deformation patterning of 
non-local viscoplastic materials, such as a higher order strain 
gradient-dependent model. The other problem is to clarify the 
effect of the initial heterogeneity.  

3.7.1 Gradient-dependent viscoplastic model for clay  
Herein, we are adopting an elasto-viscoplastic model by Oka 
(1981), Adachi and Oka (1982), Adachi et al. (1987a), and Oka 
et al. (2003a) discussed in Chapter 2 and its generalized vis-
coplastic model with a higher order-strain gradient. The follow-
ing formulation is based on the model presented in Chapter 2, 
which is an extended model of the original model (Adachi and 
Oka, 1982) taking shear softening into account. 

The viscoplastic flow rule is given by  

1 2( ) ( )
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vp s
ij

ij s

f fD F F �� �
� �
� �

� � � � �
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               (3.15) 

'ij ij w iju� � �� �                                                                   (3.16) 

where vp
ijD  is the viscoplastic stretching, �  is the viscosity pa-

rameter, ij�  is the total stress tensor, and 'ij�  is Terzaghi’s ef-
fective stress tensor.  

2 1 �� � �                                                                           (3.17) 

Internal variable �  expresses the deterioration of the materi-
als and obeys the following evolutional equation:  
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� �                                                           (3.18) 

where fM �  is the value of stress ratio ��  at the failure state, 
2G�  is a material parameter, and ��  is the stress invariant ratio 

defined by  22 mJ� �� � � , where 2J  is the second invariant 
of deviatoric stress tensor ijS and m� �  is the mean effective 
stress. 
It has been experimentally found that the shear strength and the 

deformation characteristics of clay depend on the volumetric 
strain. The volumetric plastic strain is used as a hardening pa-
rameter in the well-known Cam-clay model (Roscoe et al., 
(1963)). The volumetric inelastic strain associated with both 
consolidation and dilatancy is a measure of the deterioration of 
the granular materials. On the other hand, Mühlhaus and Oka 
(1995, 1996) demonstrated that the higher order gradients may 
be attributed to the fact that the soil is discrete. Frantziskonis 
(1993) also showed that the material inhomogeneity can be de-
scribed by the constitutive model with higher order strain gradi-
ents. Thus, in the present paper, we have introduced the second 
order gradient of the viscoplastic volumetric strain into the con-
stitutive model to describe more accurately and more suffi-
ciently the deformation of clay by considering the non-local and 
the viscoplastic effects of the material. In practice, the yield 
function includes the Laplacian of the viscoplastic volumetric 
strain and it is proposed as follows:  
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in which 0sf �� �  indicates static state ( sf f� ), s�  is the 
hardening parameter, pv  is the viscoplastic volumetric strain 

( vp
kkD dt� � ), 2

3
pa v�  is the gradient term with 3a  defined as a 

material constant, 2J  is the second invariant of deviatoric stress 
tensor ijS , and 'm�  is the mean effective stress. 'my�  is a 
hardening parameter. The evolutional equation of my� �  is
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                                                             (3.20) 

where pdv  is an increment of pv .
We assume that the dynamic yield function is the same as the 
static yield function. Following the experimental results, 

1( )F��  in Eq. (3.15) is given by  
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where m�  and C  are viscoplastic parameters and a gradient co-
efficient 3a  is assumed to be constant. 'me�  is the initial value 
of 'm� , 0'my�  is the initial value of the hardening parameter, 
�  is the consolidation index, �  is the swelling index, and e  is 
the void ratio.  

Elastic stretching e
ijD  (or strain rate tensor e

ij�� ) is given by 
an isotropic Hooke’s type law, i.e.,  
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                                        (3.23) 

where G  is the elastic shear modulus, ˆ ijS  is the deviatoric part 
of the Jaumann rate of effective Cauchy stress rate tensor, ˆ m�
is the Jaumann rate of mean effective stress, and ij�  is 
Kronecker’s delta.  

The Jaumann rate of Cauchy’s effective stress tensor is given 
by  

' 'ˆ 'ij ij ik kj ik kjW W� �� �� � ��                                                  (3.24) 

where ijW  is the spin tensor.  
The total stretching ijD  (or the strain rate tensor for the 

small strain case of ij�� ) is decomposed into the elastic part and 
the viscoplastic part as  

ore vp e vp
ij ij ijij ij ijD D D � � �� � � �� � �                                         (3.25) 

3.7.2 Instability analysis of a fluid-saturated viscoplastic ma-
terial model 

Instability under locally undrained conditions 
We can easily discuss the instability of the model given by Eq. 
(3.15) to study the conventional undrained creep behavior under 
locally undrained conditions, i.e., the permeability coefficient is 
zero. Oka, Adachi and Yashima (1995) obtained the time rate of 
the second invariant of viscoplastic strain rate 2

vpI  under the 
undrained creep conditions where the deviatoric stress levels are 
constant as 

* 2
2 2( )[ ]vp vpI a I���                                                                (3.26) 

where 2
vp vp vp

ij ijI � �� � � , *
22 'mJ� ��

When *( ) 0a � � , 2
vpI�  is negative or zero, namely, the sys-

tem is stable. On the other hand, when *( ) 0a � �  , the system 
becomes unstable because the small fluctuation in the viscoplas-
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tic strain rates will grow. It is worth noting that * *
c M� �  ( *M

is the value of *� at the critical state and *
c�  is the value of *�

when *( ) 0a � � ). This indicates that the clay will be unstable 
before the critical state under the locally undrained conditions in 
which the permeability coefficient is zero in the normally con-
solidated region. 

In addition, Oka, Adachi, and Yashima (1995) obtained the 
growth rate of small fluctuation �  under plane strain locally 
undrained conditions using the linear stability analysis as 
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                                                        (3.27) 

where �  is the angle of the shear band and 1 0Z � , 0� � , and 
1 0H � .

Hence if 2 0Z � , the material becomes unstable and the 
fluctuation will grow in the orientation of 45� � � . This means 
that the angle of the shear band is 45 degrees. These results co-
incide with the prediction by the bifurcation analysis for an 
elasto-plastic model (e.g., Vardoulakis, 1996). The results of the 
above-mentioned instability are limited in the normally consoli-
dated region (Fig. 3.2). However, the instability analysis for the 
viscoplastic model with degradation proposed by Kimoto 
(2002) (Eq. (2.22)) showed that the material is more instable in 
the overconsolidated regions (Fig. 3.3). This point will be nu-
merically discussed in Section 3.8. 

Figure 3.2. Unstable regions ( * *M� � ). 

Figure 3.3. Unstable regions ( * *M� � ).

Instability analysis considering the pore water flow  
Let us consider instability considering the pore water flow in 
the soil. Loret and Prévost (1991) and Schrefler et al. (1995) 
studied the effects of permeability on the dynamic strain local-
ization analysis using a Mohr-Coulomb law with the associated 
flow rule. Loret and Prévost (1991) stated that in the case of low 
permeability levels, the instability may develop more slowly 
than in the case of high permeability levels. On the other hand, 
Oka et al. (1995) conducted a numerical analysis of strain local-
ization under quasi-static conditions using an elasto-viscoplastic 
model. From the numerical results, they pointed out that the dis-
tribution of pore-water pressure is moderate with higher perme-
ability levels and the strain localization is weaker. In their pa-
per, the two results were compared and they suggested that the 
difference between the two results might be due to the different 
dilatancy characteristics; they pointed out that they took differ-
ent loading conditions such as quasi-static and dynamic condi-
tions and indicated the difference between rate-dependent and 
rate-independent models. However, the effects of permeability 
on the strain localization for a viscoplastic material under quasi-
static conditions have not yet been fully studied.  

Oka et al. (1995) stated only the effect of permeability on 
the strain localization obtained through the distribution of pore-
water pressure in their conclusions. Hence, it should be pointed 
out that the effect of permeability on the strain localization us-
ing an elasto-viscoplastic model under quasi-static conditions 
has to be studied by both a numerical simulation and an instabil-
ity analysis. In order to more clearly discuss the effects of per-
meability on strain localization, an instability analysis was car-
ried out under two-dimensional conditions within the context of 
a small strain theory for simplicity (Oka et al., 1999c; Higo et 
al., 2005a). An instability analysis has been conducted by Oka 
et al. (1999) in which a simplified linear rigid-viscoplastic 
model was used. 

3.7.3 Perturbed governing equations  
1)  Constitutive equations
A simplified elasto-viscoplastic model is used in this analysis 
with a small strain field assumption. The strain rate tensor is 
broken down into an elastic strain rate tensor and a viscoplastic 
strain rate tensor. 
The elastic strain rate is given based on the linear elasticity 

theory as   

� �12 3 2
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e e
ij ij kk ijG K G �� � �� � �� � ��                                           (3.28) 

where the superimposed dot denotes differentiation with respect 
to time t , K  is the elastic bulk modulus, G  is the elastic shear 
modulus, and ij�  ( 1 2i � � , 1 2j � � ) is Kronecker’s delta.   

Viscoplastic strain rate vp
ij��  is given as  

1 12 ' 2
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vp vp
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in which �  and k��  are parameters of the viscosity, G��  and 
K �  are the viscoplastic hardening parameters, and the accumu-
lated strain is defined by vp vp

ijij dt� �� �� �
When we introduce a second order gradient of the viscoplas-

tic volumetric strain, Eq. (3.29) becomes  
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(3.30) 
where 3a  is the gradient parameter.  

2)  Equations of equilibrium
Let us consider the equilibrium equations, namely, undrained 
conditions in a perturbed configuration. The equilibrium equa-
tions can be written as follows:  

0ij jij j w j iju� �� �� �� � ��                                                       (3.31) 
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where ij�  is the total stress tensor, wu  is the pore-water 
pressure and, as usual, the commas denote differentiation with 
respect to spatial coordinates.  

3)  Pore fluid flow
From the solid-fluid two-phase mixture theory, the governing 
equation for the pore fluid is given by  
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�

� � ��                                                                  (3.32) 

where k  is the permeability coefficient and w�  is the unit 
weight of the pore water.  

4)  Perturbed governing equations
The perturbations of pore-water pressure wu  and velocities iv
are assumed to be of the periodic form in a two-dimensional 
form as  

* * *[ , , ' ] [ , , ' ] exp[ ( ) ]T T
w i ij w i ij k ku v u v iq n x t� � �� �� � �               (3.33) 

where the perturbed variable is indicated by tilde, q  is the wave 
number ( 2 l�� � , l : wave length), �  is the speed of the fluc-
tuation growth, in  is the component of the unit vector n ,
which is normal to the shear band, and superscript �  indicates 
the amplitude of each variable.  

1 2( sin cos ) ( )n n n� �� � � � �                                                 (3.34) 

The perturbed equilibrium equations are  

0ij j ij j w j iju �� �� � �� � ��� � �                                                       (3.35) 

while the perturbed continuity equation is  
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and the perturbed constitutive equations are given as  
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Using the following relations,  

� �1
2 i j j iij v v� � �� �� � ��                                                                 (3.38) 

We can rewrite the equations of equilibrium and pore fluid 
flow and the constitutive equations in a matrix form as  
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The eigenvalue is obtained from the condition det[ ] 0A � .
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where i�  (i=1, 2, 3) depends on the material parameters and 
the wave number. 

3.7.4 Instability of the material system  
In the following, we discuss the instability of the material sys-
tem. If the growth rate of perturbation � , which is the root of 
Eq. (3.40), is positive, the material system is unstable. On the 

other hand, if �  is negative, the material system is stable. In 
order to investigate whether �  is negative or positive, we adopt 
the Routh-Hurwitz criteria. The roots of Eq. (3.40) have nega-
tive real parts when the coefficients of the characteristic poly-
nomial satisfy  

1 2 3 1 2 30 0 0 0� � � � � �� � � � � � � �                                (3.41) 

Since similar results have been obtained for the elasto-
viscoplastic case, the results for the rigid viscoplastic model 
will be shown in the following (Higo et al., 2005a). 

1)  Rigid-viscoplastic model without a gradient term
In order to study the instability of the material system more 
simply, we herein assume a rigid-viscoplastic constitutive 
model that is achieved by G �� and K �� .

With this assumption and det[ ] 0A � , we obtain  

2

(4 )
2 (4 )w k

G K
kq

�
� � �

�� �� �
�

�� � �
                                                   (3.42) 

As shown in Eq. (3.42), in the case of the analysis with a 
rigid-viscoplastic model, we can discuss not only whether or not 
speed of fluctuation �  is positive, but also whether or not the 
quantity of �  is dependent on the permeability. For example, 
when �  is negative, namely, the material system is stable, the 
material with a larger �  can reach the stable state earlier than 
that with a smaller � . This means that the material with a lar-
ger �  (negative) is more stable than that with a smaller �
(negative). On the other hand, the material with a larger �
(positive) is more unstable than that with a smaller �  (posi-
tive), since the former becomes unstable earlier than the latter.  

In the case of 0G�� � , the viscoplastic-hardening case, �
becomes negative. These results are the same as those of the 
elasto-viscoplastic model, but further discussions can be con-
ducted as follows. When k  is relatively smaller, �  becomes 
smaller. The system then becomes relatively less stable. When 
k  is relatively larger, however, �  becomes larger and the sys-
tem becomes relatively more stable.  

In the case of viscoplastic softening, namely, 0G�� � , �
becomes positive. In this case, when k  is relatively smaller, �
becomes smaller. The system then becomes relatively less un-
stable. When k  is relatively larger, however, �  becomes lar-
ger, and the system becomes relatively more unstable. These re-
sults obtained in the viscoplastic softening region are consistent 
with those for the case of the elasto-viscoplastic model.  

An instability analysis using a rigid-viscoplastic model, dis-
regarding the effects of elasticity on instability, provided an ad-
ditional conclusion that the material with lower permeability 
levels is relatively less stable than that with higher permeability 
levels in the strain-hardening range. From Eq.(3.42), it is worth 
noting that the unbounded growth of the fluctuation does not 
occur even when q ��  or k ��  for viscous materials. The 
presence of viscous effects delays the instability as already 
pointed out by Leroy (1991) for single materials.  

2)  Gradient-dependent rigid-viscoplastic model
In the case of the gradient-dependent rigid-viscoplastic model, 
we have obtained a growth rate of fluctuation �  as
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Even though 0G�� �  in the strain-softening regime, the nu-
merator can be negative when 3 0a �  is large enough and/or q
is large, that is, the wave length is small enough. In other words, 
the material system can be stable even in the case of 0G�� �  if 
the gradient term is large enough. In any case, the gradient term 
can act as a stabilizer in the analysis, as has been observed in 
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previous analyses (see Aifantis et al., 1999 and Oka et al., 
2000b). Similar results have been obtained for elasto-
viscoplastic cases (Higo et al., 2005a). 

3.8 Finite element analysis of a fluid-saturated material 
modeled by a gradient-dependent elasto-viscoplastic 
model 

A finite element formulation for two-phase mixtures, based on 
the finite deformation theory, is shown in this section. Biot’s 
two-phase mixture theory (1962) is adopted to give the govern-
ing equations for soil-water coupling problems (Oka et al., 
2002b; Kimoto et al., 2004; Higo et al., 2005a). For simplified 
and practical formulations, both the grain particles and the fluid 
are assumed to be incompressible.  

The strain localization phenomenon is a geometrically 
nonlinear problem since the deformation of shear bands is large. 
In addition, the constitutive equation for clay used in this study 
is nonlinear and is defined in an incremental form. In order to 
deal with such a nonlinear large deformation problem, using an 
incremental constitutive model, an updated Lagrangian method 
with the objective Jaumann rate of Cauchy stress is used for the 
weak form of the rate type of equilibrium equations. As for the 
element type, an eight-node quadrilateral isoparametric element 
with a reduced Gaussian four-point integration is used for the 
displacement in order to eliminate shear locking as well as to 
reduce the appearance of a spurious hourglass mode. The pore-
water pressure is defined by a four-node quadrilateral 
isoparametric element. In this section, direct notation is used for 
vectors and tensors; the notation is indicated by boldface letters. 
A dot denotes a contraction of inner indices, e.g., i ia b a b� � , so 
that ij ijA B A B� � .

3.8.1 Equilibrium equations for the fluid-solid mixture  
In this study, we deal with static and small scale problems, so 
that the acceleration and the body force can be assumed to be 
zero. Consequently, this assumption provides a rate type of 
equilibrium equations for the fluid-solid mixture as follows: 

div 0tS ��                                                                              (3.44) 

where tS�  is the total nominal stress rate tensor (Yatomi et al., 
1989). 

The effective nominal stress rate tensor, 'tS� , is given by the 
following equation:  

T' ' ' tr 'tS L L� � �� � �� �                                                        (3.45) 

where '�  is Terzaghi’s effective stress defined by Eq. (3.16), 
L  is the velocity gradient tensor, and the superimposed dot in-
dicates the time differentiation..  

The relation between tS�  and 'tS�  is given as follows:  

't t wS S u I U� � �� � �                                                               (3.46) 

Ttr w wU Lu I u I L� �                                                            (3.47) 

where wu  is the pore-water pressure and I  is the second order 
identity tensor.  

When we consider closed domain D , the weak form of the 
rate type of equilibrium equations is given as follows:  

div 0tD
v dvS �� �� �                                                              (3.48) 

in which v�  is the virtual velocity vector.  
The displacement boundary is denoted by uD�  if the dis-

placement is prescribed; tD�  denotes a traction boundary if the 
traction is prescribed.  

on uv v D� � , ontt tn DsS � �� �                                    (3.49) 

in which v  is the velocity vector, n  indicates the unit normal 
to the body, ts�  is the nominal traction rate vector, and the 
specified values are designated by a superposed bar. 

Using Eqs. (3.45), (3.46), and (3.47) and taking account of 
the boundary conditions, the weak form of the rate equilibrium 
equation, Eq. (3.48), becomes 
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in which D  is the stretching tensor. 
The elasto-viscoplastic constitutive model is written as  

ˆ ' C D Q� � � �                                                                     (3.51) 

where ˆ '�  is the Jaumann rate of the effective Cauchy stress 
tensor, Q  is the relaxation stress tensor, and C  is the tangential 
stiffness of the fourth order tensor. Herein, the tangent modulus 
method (Peirce et al. 1984) is adopted in order to evaluate vis-
coplastic stretching tensor vpD  (see Oka et al., 1992b).   

With the definition of Jaumann rate of effective stress, we 
have 

� � � �{ '} [ ]C D Q W� �� �
� �
� �

� � ��                                               (3.52) 

where [ ]C  is the tangential stiffness matrix and � �Q  is the re-
laxation stress vector. kj ikik kjW W W� ��� �

� �
� �

� �� �  is the vector re-
lated to the spin tensor.  

By all the matrix and vector relations obtained previously, 
and based on the theory of virtual displacement, we have ob-
tained the following weak form of the equilibrium equations:  

� � � �T T[ ] [ ] [ ] [ ] [ ] { }wL vD D
K v B Q dv B W dv K v K Fu� � �� � � � � � �

� � � � � �
� � � � � �

� � � � �� � ��

(3.53) 
where [ ]K  is the stiffness matrix, [ ]B  is the B  matrix, and 
[ ]vK  and [ ]LK  are related matrixes. 

3.8.2 Continuity equation  
Darcy’s law and the conservation of mass for the mixture give 
the continuity equation as  

2 tr 0w
w

k u D
�

� � �                                                               (3.54) 

where k  is the coefficient of permeability, w�  is the unit 
weight of the pore water, and D  is the stretching tensor.  

Considering the test function of ˆwu , we can obtain the weak 
form of the continuity equation as  

2 tr 0ˆ ˆw wwD D
w

k u dv D dvu u
�

� � �� �                                      (3.55) 

pD�  is the boundary where the pore pressure is specified and 
vD�  is the boundary where the flow of water is specified.  

onww pu Du� �    onw f v
w

k u v D
�

� � �                      (3.56) 

in which the specified values are designated by a superposed bar 
and fv  is the velocity of the pore water through the boundary 
surface.  
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After manipulation, the finite element discretization of the 
continuity equation is obtained as follows:  

T[ ] [ ] [ ]v h wK v K u V� �� � � �
� � � �
� � � �

� �                                                  (3.57) 

T[ ] [ ] [ ]h h hD
w

kK B B dv
�

� �                                              (3.58) 

3.8.3 Finite element formulation of the gradient-dependent 
elasto-viscoplastic model  

For the higher order gradient-dependent constitutive equations, 
a second order gradient of viscoplastic volumetric strain pv  is 
used in the constitutive equation. In order to obtain the second 
order gradient by the finite element method, the discretization 
of pv  as an independent variable by the eight-node quadrilat-
eral element is needed. Hence, we assume the weak form of the 
yield function and define viscoplastic volumetric strain pv  at 
each node in the same manner as that by Aifantis et al. (1999).  

In order to obtain the weak form of the yield function, we 
adopt a Taylor series expansion around the current state and 
consider the first term. We can rewrite the yield function as  

2( ' )p pp
ijG v vv �� � � ��                                                          (3.59) 

Expanding the viscoplastic volumetric strain rate in a Taylor 
series and disregarding the second and higher order terms, we 
obtain a linearized yield function in the form  

� �2
0 [ ][ '] ( )p
pp p p

v
G G Gv v v v� ��� � � � ��� � � �                            (3.60) 

where  

2' ( )p p pv
ij

G G GG G G
v v� ��

� � �
� � � � �
� � � �

                       (3.61) 

0
pv�  denotes the value of the volumetric strain rate at the current 

state. Using a Taylor series expansion and truncating the first 
order term, we obtain the following expression for the total 
strain rate tensor.  

From Eq. (3.60), stress rate tensor [ ']��  is obtained as  

2
0[ '] [ ][ ] [ ][ ] [ ][ ] [ ][ ]p p pL L L A L Av v� � � ��� � � � ��� � � �            (3.62) 

1 1[ ] [ ] [ ]L L A� � � �� �                                                              (3.63) 

where [ ]��  is the total strain rate tensor, 0[ ]p��  is the viscoplastic 
strain rate tensor at the current state. 

3.8.4 Strain localization analysis by the gradient-dependent 
elasto-viscoplastic model  

Effects of permeability 
In Fig. 3.4, the boundary conditions are shown for the plane 
strain problem used in the numerical analysis, while the pa-
rameters used in the computation are shown in Table 3.2. The 
gradient parameter, in principle, can be determined by the width 
of the shear band, namely, the wavelength of the localized pat-
tern. The strain rate of the compression is 1.0%/min. The hori-
zontal displacement at the top and the bottom of the specimen 
was fixed as a trigger of the localization. All of the boundaries 
are assumed to be impermeable, while the pore fluid is allowed 
to flow in the specimen.  

Figure 3.4. Boundary conditions and the size of the specimen.

Table 3.2: Material parameters for the strain localization analysis with 
different permeability coefficients

Compression index �  0.172 

Swelling index �  0.054 

Initial void ratio 0e  1.28 

Initial mean effective stress 'me�  200 (kPa ) 

Coefficient of earth pressure at rest 0K  1.0 

Viscoplastic parameter 'm  21.5 

Viscoplastic parameter C  4.5×10-8 (1/s) 

Stress ratio at failure *
fM  1.05 

Elastic shear modulus G  5500 (kPa) 

Softening parameter 2G�  100 

Gradient parameter 3a  0.0, 5.0, 30.0 (×10-4m2)

Coefficient of permeability x yk k�  1.54×10-6, ×10-8, ×10-12
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Figure 3.5. Average vertical stress-strain relations with different coeffi-
cients of permeability. 

Figure 3.6. Deformed mesh at an average axial strain of 7%.  

k = 1.54�10-8 m/s k = 1.54�10-12 m/s

Half of the specimen was 
calculated for symmetry 

20 cm

40 cm
Impermeable

boundary 

Impermeable 
boundary 20 cm

20 cm 

20�20= 
400 elements

: Vertically fixed 

: Horizontally fixed 

: Fixed 

Top and bottom edges  
are fixed as a trigger of  

strain localization 

Compelled displacement 
1%/min 

k = 1.54�10-6 m/s

65



Figure 3.7. Distribution of the velocity vector at an average axial strain 
of 7%.  

Figure 3.8. Distribution of p�  at an average axial strain of 3% and 7%.  

Figure 3.9. Distribution of pore water pressure at an average axial strain 
of 7% (unit: kPa).  

Figure 3.10. Distribution of p�  at an average axial strain of 7% (k = 
1.54�10-8 cm/s ). 

The average vertical stress vs. strain relations with different 
coefficients of permeability are shown in Fig. 3.5. In the early 
stage of loading, i.e., in the hardening range, little difference 
can be seen among these three cases. On the other hand, in the 
strain-softening range, the material with a low permeability 
level of 1.54 1210�� (m/s) is less unstable i.e., it is relatively sta-
ble because the average stress is larger than materials with 
higher permeability levels of 610�� (m/s) and 810�� (m/s) be-
fore an average axial strain of 5%. This behavior is consistent 
with the theoretical consideration mentioned in Section 3.7. Af-
ter an axial strain of 5%, however, the average stress in the case 
of 810�� (m/s) is smaller than that in the case of 610�� (m/s). 
These results indicate that a material with a small permeability 
coefficient is not necessarily more stable than one with a larger 
permeability coefficient.  

The calculations with coefficients of permeability of 
81 54 10k �� � � (m/s) and 1210� (m/s) diverged around 8% of the 

axial strain. The calculations with 61 54 10k �� � � (m/s) also di-
verged around 11% of the axial strain. This may be because the 
constraint conditions, i.e., no lateral displacements at either the 
top or the bottom plates, induce numerical instability near the 
top and the bottom of the specimen. Fig. 3.6 shows the de-
formed mesh at an average axial strain of 7% with different co-

efficients of permeability k . It is shown that the pore fluid has 
an apparent influence on the formation of shear bands. It is 
found that a symmetrical deformation can be seen in all cases, 
in particular, a clear shear band formed in the case of 

61 54 10k �� � � (m/s). In Fig. 3.7, velocity vectors are shown in 
half of the specimens at an average axial strain of 7% with dif-
ferent coefficients of permeability k . Discontinuous distribu-
tions of velocity fields are found in all cases due to the forma-
tion of shear bands. The patterns of distributions of the velocity 
vectors are consistent with the deformed mesh.  

Fig. 3.8 shows the distributions of accumulated viscoplastic 
shear strain p�  at an average axial strain of 3% and that of 7% 
with different coefficients of permeability k . p�  is defined as 
follows:  

1/ 2, ( )p p p p p
ij ijd d de de� � �� ��                                          (3.64) 

where p
ijde  is the viscoplastic deviatoric strain-increment ten-

sor. The localized patterns of the figures for 3% are very similar 
to each other, but the maximum value for p�  is larger as the 
coefficient of permeability k  decreases. On the other hand, at 
an average axial strain of 7%, the maximum value for p�  is 
larger in the case of higher coefficients of permeability than that 
of lower coefficients of permeability. It can be said that materi-
als with larger accumulated shear strain are more unstable than 
those with smaller shear strain. Following this point of view, 
when the average axial strain is small, i.e., in the viscoplastic-
hardening area, materials with lower permeability levels are 
rather unstable. On the other hand, when the average axial strain 
becomes large, i.e., in the viscoplastic-softening area, materials 
with higher permeability levels are relatively unstable. This ten-
dency is also consistent with the results obtained in Section 3.7. 
In addition, a larger difference between the maximum and the 
minimum values for p�  is also seen in the case of higher per-
meability levels. This suggests that the strain localizes promi-
nently when materials have high permeability levels. It is inter-
esting, however, that two shear bands appear in the case of 

61 54 10k �� � � (m/s), while the other cases have four shear 
bands and the distance between two shear bands is larger in the 
case of small permeability compared with the case of larger 
permeability.  

The inclination angles of the shear bands for all cases are 45 
degrees at the small axial strain of 3%. When the axial strain 
becomes 7%, the angles of the shear bands with higher perme-
ability become larger than those with lower permeability. Oka 
et al. (1995) demonstrated that the preferred orientation for the 
shear bands is 45 degrees under plane strain locally undrained 
conditions, i.e., 0k � , for Adachi and Oka’s viscoplastic model 
introduced in Section 3.7. The reasons why the angles of shear 
bands with lower strain are proximate to 45 degrees than mate-
rials with lower permeability levels are similar to those under 
locally undrained conditions. In Fig. 3.9, the distributions of 
pore-water pressure are shown with different coefficients of 
permeability k . When permeability k  is smaller, the pore-
water pressure is more localized. This trend is similar to the re-
sults obtained by Oka et al. (1995).  

The distributions of mean effective stress, the second in-
variant of deviatoric stress, and the volumetric viscoplastic 
strain are all affected by the formation of shear bands and are 
inhomogeneous. The mean effective stress inside the shear band 
becomes smaller than that outside the shear band. The maxi-
mum values for the deviatoric stress and the volumetric vis-
coplastic strain become larger with higher permeability levels.  

Effects of the strain gradient parameter  
Strain gradients, in principle, can describe the thickness of shear 
bands. In addition, it is found in the instability analysis of Sec-
tion 3.7 that strain gradients act as stabilizers. In this section, 
the effects of the strain gradient parameter on the strain localiza-
tion analysis are investigated. The boundary conditions and the 

k = 1.54�10-6 m/s k = 1.54�10-8 m/s k = 1.54�10-12 m/s

a3= 5.0 a3= 30.0

4444 44

a3=0.0 

Axial strain of 7%  

k = 1.54�10-6 m/s k = 1.54�10-8 m/s k = 1.54�10-12 m/s

k = 1.54�10-6 m/s k = 1.54�10-8 m/s k = 1.54�10-12 m/s

Axial strain of 3% 

56�56�
56�56�

49�49�
47�47�

45�45�45�45�45�45�

47�47�

k = 1.54�10-8 m/s k = 1.54�10-12 m/sk = 1.54�10-6 m/s 
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material parameters are the same as those mentioned in the last 
section. Fig. 3.10 depicts the distributions of accumulated vis-
coplastic shear strain p�  at an average axial strain of 7% with 
different gradient parameters. In this case, 101 54 10k �� � � (m/s). 
It can be found from the figure that the thickness, the spacing of 
the shear bands, and the extent of the strain localization also de-
pend on gradient parameter 3a . The accumulated strain is more 
localized when gradient parameter 3a  is rather small. This sug-
gests that the gradient term makes the system more stable. The 
distance between shear bands will decrease with gradient pa-
rameter 3a , while the angles of the shear bands are consistently 
48 degrees.  

Effect of the heterogeneity of the soil properties  
The boundary conditions are shown in Fig. 3.11, while Table 
3.3 shows the material parameters used in the analysis in this 
section. We assumed three cases of distribution for the stress ra-
tio at failure, fM � , as shown in Fig. 3.12. The perturbation of 

fM �  was obtained using a pseudo-random number by the linear 
congruential method. 

Figure 3.11. Boundary conditions and the size of the specimen 
(undrained plane strain condition). 

Figure 3.12. Initial distribution of fM �  (R=2.0%). 
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Figure 3.13. Stress-strain curves for Case 1 and Case 3 obtained by dif-
ferent R. 

In Fig. 3.13, the stress-strain relations for Cases 1-3 are ob-
tained by the different ranges in perturbation of fM � , R ;
R � 0 5%� , 1 0%� , and 3 0%� . 0%R �  means a homogeneous 
clay sample. The applied strain rate is 1.0/min. The effects of 
heterogeneity on the stress-strain relations are dependent on the 
initial distribution of  fM � . It can be seen in Case 1 that the av-
erage vertical stress of the non-homogeneous clay is a little lar-
ger than that of the homogeneous clay, but that it becomes 
smaller in the failure state. On the other hand, the heterogeneous 
clay in Case 3 shows softening behavior and the average stress 

is smaller than that of the homogeneous clay. The axial strain at 
the failure state is consistently smaller as the range of perturba-
tion R  is larger. Fig. 3.14 shows the deformed mesh and the 
distributions of p�  for a homogeneous one and for Case 1 with 
different R  at an average axial strain of 10%. Regarding the 
homogeneous case, the deformation and the distribution of p�
are uniform in the specimen. On the contrary, localized defor-
mations are seen in the non-homogeneous clay and the shear 
band of 3R � % is clearer than the others. Similar results have 
been obtained by Ehlers and Volk (1998). They showed that a 
random distribution of the Lamé constant within local devia-
tions of � 0.5% provide clear shear bands under plane strain 
conditions, although the homogeneous specimens do not. 

Table 3.3: Material parameters for the strain localization analysis of 
homogeneous and heterogeneous types of clay 

Compression index �  0.372 

Swelling index �  0.054 

Initial void ratio 0e  1.28 

Initial mean effective stress 'me�  600 (kPa ) 

Coefficient of earth pressure at rest 0K  1.0 

Viscoplastic parameter 'm  21.5 

Viscoplastic parameter C  4.5×10-8 (1/s) 

Stress ratio at failure *
fM  1.05 

Elastic shear modulus G  13210 (kPa) 

Softening parameter 2G�  100 

Gradient parameter 3a  0.0 (m2)

Coefficient of permeability x yk k�  1.16×10-14 (m/s) 

Case 1 Case 3Case 2

(i) Deformed mesh at an average axial strain of 10% 

Case 1 Case 2 Case 3

(ii) Distribution of p�  at an average axial strain of 10%
Figure 3.14. Deformed mesh and the distribution of p� for Case 1, 2, 
and 3 (R=2.0%). 

Mesh-size dependency  
Finally we should discuss the mesh-size dependency of the pre-
sent analysis. It is well known that the finite element analysis 
has an inherent mesh-size dependence and that many research-
ers have studied regularization methods. One method is to in-
troduce the rate dependency of the material through the use of 
an elasto-viscoplastic model or regularization in the numerical 
analysis (e.g. Hughes and Taylor, 1978). The second method is 
to introduce higher order strain gradients into the constitutive 
model (e.g. Aifantis, 1984). The third approach is to incorporate 
a Darcy type of soil-fluid interaction which can alleviate the 
problem of instability by delaying the onset of material instabil-
ity (e.g., Rice, 1975). Herein, mesh-size dependency is small 
since an elasto-viscoplastic model with the second-order strain 
gradient and a solid-fluid mixture theory was applied. Oka et al. 
(2002b) found that the analysis method has no significant mesh-
size dependency. It is worth noting that Zhang and Shrefler 
(2000) have shown that gradient dependence and permeability 
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can regularize the finite element solution and that the second 
sometimes prevails over the first.  

3.9 Three-dimensional strain localization analysis of water-
saturated clay  

Since strain localization is a precursor of failure, strain localiza-
tion is an important subject in geomechanics. Strain localization 
has been analyzed for geomaterials by many researchers. Many 
of them, however, were treated as two-dimensional problems al-
though the phenomena are generally three dimensional. In order 
to investigate the strain localization behavior of geomaterials 
under three-dimensional conditions, undrained triaxial compres-
sion tests using rectangular specimens and their simulation by a 
finite element analysis using an elasto-viscoplastic model have 
been conducted. In the experiments, both normally consolidated 
and overconsolidated clay samples were tested with different 
strain rates (Kodaka et al., 2001; Oka et al., 2005c). Using the 
distribution of shear strain obtained by the image analysis of 
digital photographs taken during deformation, the effects of the 
strain rates, the dilatancy, and the overconsolidation on strain 
localization are studied in detail. The method of numerical 
simulation is a soil-water coupled finite element method which 
is based on the finite deformation theory, using an elasto-
viscoplastic model for water-saturated clay considering struc-
tural changes.  

3.9.1 Undrained triaxial compression tests for clay using 
rectangular specimens 

Clay samples and the testing program 
The clay used in the experiment is Fukakusa clay which is a 
Pleistocene marine clay produced in the southeastern part of the 
Kyoto Basin. Liquid limit 62Lw � %, plasticity index 33pI � ,
and the density of soil solid 2 69s� � �  g/cm. Reconstituted clay 
samples were prepared by remolding them in slurry and then 
pre-consolidating them. The specimens were consolidated one 
dimensionally at a pre-consolidation pressure of 98 kPa. The 
pre-consolidated specimens were covered with paraffin and not 
to be disturbed. The scale of the transverse section is 4cm� 4
cm and the height is 8 cm (see Fig. 3.15). The test cases are 
listed in Table 3.4. All the specimens used in the present study 
were saturated by the double vacuum method and were acted 
upon by 200 kPa of back pressure. The normally consolidated 
clay specimens were isotropically consolidated to 200 kPa. The 
overconsolidated clay specimens were isotropically consoli-
dated to 300 kPa, and then isotropically swelled to 50 kPa. 
Therefore, the overconsolidation ratio (OCR) is 6. After the 
consolidation or the swelling procedure, axial pressure was ap-
plied under undrained conditions by an axial loading device 
with an axial strain or displacement control system. The three 
axial strain rates monotonically applied in the tests were 
1%/min, 0.1%/min, and 0.01%/min. The tests were stopped at 
an axial strain of 20%. 

Figure 3.15. Sizes of the specimens. 

Table 3.4: Test cases 
Normally consolidated clay

0 200m� ��  kPa (Consolidation pressure) 

No.  Sizes (cm) Strain rate 
(%/min) 

NC-1 4� 4� 8 1 
NC-2 4� 4� 8 0.1 
NC-3 4� 4� 8 0.01 

Overconsolidated clay
300mc� ��  kPa (Pre-consolidation pressure) 

0 50m� ��  kPa (Swelling pressure), OCR� 6

No.  Sizes (cm) Strain rate 
(%/min) 

OC-1 4� 4� 8 1 
OC-2 4� 4� 8 0.1 
OC-3 4� 4� 8 0.01 

Photo 1. An example of the photographs taken through the acrylic cell 

f

Triaxial cell

Support pillar

(Front)

(Side)

Specimen

Figure 3.16. Schematic figure of the photography. 

Image analysis 
We drew 2 mm square meshes on the rubber membranes cover-
ing the specimen. A digital camera was used to take photo-
graphs of two surfaces of the specimens during the tests. Photo 
1 and Fig. 3.16 show a sample of the digital photographs taken 
through the triaxial cell and a schematic figure of the photogra-
phy, respectively. After correcting the effects of the refraction, 
we digitized the nodal coordinates of the meshes. Using the co-
ordinates at the initial state, i.e., before the undrained loading, 
and those of each axial strain level, the nodal displacements 
were calculated. Adopting the B matrix for the four-node 
isoparametric finite elements provided the strain of each ele-
ment (Kodaka et al., 2001; Oka et al., 2005c).  

8 cm f

f: front surface

s: side surface

s

4 cm 4 cm

2 mm mesh 

68



3.9.2 Three-dimensional soil-water coupled finite element 
analysis method 

We formulated a three-dimensional finite element method, 
based on Biot’s two-phase mixture theory and the finite defor-
mation theory, to simulate the three-dimensional strain localiza-
tion tests for rectangular-shaped clay specimens. The strain lo-
calization phenomenon is a geometrically nonlinear problem 
since the deformation in a shear band is large. In addition, the 
constitutive equation for clay used in this study is nonlinear and 
is defined in an incremental form. In order to deal with such a 
nonlinear large deformation problem using an incremental con-
stitutive model, an updated Lagrangian method with the objec-
tive Jaumann rate of Cauchy stress is used for the weak form of 
the rate type of equilibrium equations. As for the element type, 
a 20-node quadrilateral isoparametric element with a reduced 
Gaussian four-point integration is used for the displacement in 
order to eliminate shear locking as well as to reduce the appear-
ance of a spurious hourglass mode. The pore-water pressure is 
defined by an 8-node quadrilateral isoparametric element. The 
formulation of the three-dimensional soil-water coupled finite 
element analysis method is the same as those presented in the 
last section. Detailed formulations are in the references (e.g., 
Oka et al., 2002b; Higo, 2003; Higo et al., 2004; Higo et al., 
2005b).  

3.9.3 Numerical simulation of triaxial tests for rectangular 
specimens 

1) Determination of the material parameters 
The material parameters required by the constitutive model in-
troduced in the last section are listed in Table 3.5. We deter-
mined �  to be 0.191 and �  to be 0.043 using the isotropic 
consolidation and the swelling test results for Fukakusa clay. 
For initial void ratio 0e , we used the average of them obtained 
in each test, i.e., 1.10 for normally consolidated clay and 1.11 
for overconsolidated clay, since calculating with different void 
ratios is not appropriate for a comparison of the simulation re-
sults.

Initial elastic shear modulus 0G  is determined by the initial 
slope of the undrained triaxial compression tests, namely, 

0 11(3 )G q �� � � � , in which q�  is the increment in deviator 
stress and 11��  is the increment in axial strain. In this study, 

11��  was determined to be 0.1%. 0G  is dependent on the strain 
rate because of the visco-elastic properties. Compression yield 
stress mbi� �  is assumed to be the pre-consolidation stress. 
Therefore, that of normally consolidated clay is 200 kPa and 
that of overconsolidated clay is 300 kPa. The stress ratio at 
maximum compression mM �  is defined as the stress ratio 
whereby maximum compression occurs in the drained compres-
sion tests. Herein, mM �  is assumed to be determined from the 
stress ratio at the residual state in the undrained triaxial com-
pression tests.  

Viscoplastic parameters m�  and C  can be determined from 
undrained triaxial tests with different strain rates. Adachi and 
Oka (1982) noted that viscoplastic parameter m�  is estimated 
from the slope of the relation between the stress ratio and the 
logarithm of the strain rate. In principle, material parameters are 
determined from elemental tests. In this study, however, 
undrained triaxial compression tests using cylindrical specimens 
were conducted only for a strain rate of 1.0%/min, since we 
could not prepare sufficient numbers of specimens for the tests 
using cylindrical specimens which are consolidated under the 
completely same conditions. Hence, we applied the test results 
using rectangular specimens (4cm � 4cm � 8cm) to estimate 
viscoplastic parameter m�  (Higo, 2003).  

Fig. 3.17 shows the relations between the applied strain rates 
and stress ratio mq �� �  in which q  is the deviator stress and 

m� �  is the mean effective stress. For normally consolidated 
clay, we plotted the stress ratios at 00 7m m� �� �� � , and estimated 
m�  to be 24.3. As for the overconsolidated clay, m�  is esti-
mated to be 20.5 from the stress ratios at 02 0m m� �� �� � . After 

m�  is fixed, viscoplastic parameter C  is determined by the 
peak stress.  

Structural parameter maf� �  can be obtained by the deviator 
stress at the residual stress state, while � , which dominates the 
decreasing rate of deviator stress. 
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Figure 3.17. Relations between the logarithm of the strain rate and the 
stress ratio (NC clay: m� � =0.7 0m� � , OC clay: m� � =2.0 0m� � ).

Table 3.5: Material parameters used in the numerical simulation 
Parameter N.C. clay O.C. clay

Compression index �  0.191 0.191 

Swelling index �  0.043 0.043 

Initial void ratio 0e  1.10 1.11 

0.01%/min 16300 (kPa) 9190 (kPa) 

0.1%/min 17700 (kPa) 9920 (kPa) 
Initial elastic 

shear modulus 
0G 1%/min 23400 (kPa) 13080 (kPa) 

Initial mean effective stress 0m� �  200 (kPa) 50 (kPa) 

Compression yield stress mbi� �  200 (kPa) 300 (kPa) 
Coefficient of earth pressure at 
rest 0K 1.0 1.0 

Stress ratio at maximum com-
pression mM � 1.14 1.14 

Viscoplastic parameter 'm  24.3 20.5 

Viscoplastic parameter C  5.8 1010��  (1/s) 2.7 910��  (1/s) 

Structural parameter maf� �  170 (kPa) 270 (kPa) 

Structural parameter �  10 5 

Coefficient of permeability k 1.63 910��
(m/s) 

2.86 910��
(m/s) 

2) Boundary conditions 
Fig. 3.18 shows the boundary conditions, which are set up ac-
cording to the same boundary conditions as those of the 
undrained triaxial compression tests with displacement control. 
All the boundaries are assumed to be impermeable, however, 
the transport of pore water between each element is allowed. 
Constant displacements (z-direction) of 0.01%/min, 0.1%/min, 
and 1%/min are applied to the nodes on the bottom surface. The 
time increment is determined by the increment of average strain 

0 05�� � � %. As for the top and the bottom surfaces, frictional 
force occurs between the top and the bottom surfaces and the 
top cap and the pedestal. Hence, the top and the bottom surfaces 
deform. However, it is difficult to accurately estimate the fric-
tion force. In addition, the displacements of the top and the bot-
tom surfaces, which were measured after the tests (see Higo, 
2003), are rather small. Consequently, we assumed that the 
horizontal (x-direction and y-direction) displacement of the 
nodes on both the top and the bottom surfaces is constrained.  
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Figure 3.18. Boundary conditions for three-dimensional finite element 
analysis. 

3) Comparison between the experimental results and the simu-
lation results 
Undrained triaxial compression tests for normally consolidated 
clay and overconsolidated clay with different axial strain rates 
have been simulated. Figs. 3.19 and 3.20 show the experimental 
results and the simulation results for normally consolidated clay 
and overconsolidated clay, respectively.  

Stress-strain relations and effective stress paths 
Figs. 3.19(a) and 3.20(a) illustrate the stress-strain relations for 
both the simulation and the experiment. The deviator stress, the 
mean effective stress, and the pore-water pressure used in the 
stress-strain curves and the effective stress paths for simulation 
results are calculated in the same manner as the experimental 
data. The deviator stress and the pore-water pressure are ob-
tained using the average of those nodal values of the top sur-
face. 

We can see that the stress-strain relations for both the ex-
periment and the simulation are greatly dependent on the strain 
rate and the dilatancy characteristics. In the experimental re-
sults, we can also observe gradual strain-softening behavior for 
both normally consolidated clay and overconsolidated clay. On 
the other hand, in the case of the simulation, it is seen that the 
stress-strain relations for normally consolidated clay consis-
tently show strain-hardening behavior, while those for overcon-
solidated clay show strain-softening behavior just after the peak 
stress around an axial strain of 2%, and then they show a grad-
ual hardening.  

It is seen in Figs. 3.19(b) and 3.20(b) that the effective stress 
paths for normally consolidated clay exhibit negative dilatancy, 
i.e., a decrease in mean effective stress, while those for over-
consolidated clay exhibit positive dilatancy, i.e., an increase in 
mean effective stress.  

We can say that the stress-strain curves and the effective 
stress paths for normally consolidated clay are well reproduced 
by the presented analysis method. However, there are some dif-
ferences between the experiment and the simulation for both 
cases. We would say that the differences can be improved by 
the inverse analysis technique to accurately determine the input 
parameters.  

Distribution of shear strain 
Figs. 3.19(c) and 3.20(c) show the distributions of shear strain 
�  for the experiment, and Figs. 3.19(e) and 3.20(e) are those 
for the simulation. Figs. 3.19(d) and 3.20(d) are the pictures 
taken after the tests, and Figs. 3.19(f) and 3.20(f) indicate the 
deformed meshes at an axial strain of 20%. In these figures, ’s’ 
and ’f’ indicate the ’side surface’ and the ’front surface’ of the 
specimens, respectively (see Fig. 3.15).  

Figure 3.19. Comparison between the experimental results and simula-
tion results (NC clay, 0.1%/min). 

Figure 3.20. Comparison between the experimental results and simula-
tion results (OC clay, 0.1%/min). 
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In order to obtain the distributions of shear strain �  on the 
surfaces of the specimens for simulation results, we used a spe-
cial method, which is the same method as that for experiment. 

We can see in the experimental results (Figs. 3.19(c) and 
3.20(c)) that strain localization starts at an axial strain of 8% 
and that shear bands are clearly seen at an axial strain of 12%. 
In addition, shear bands develop from the edges of the top and 
the bottom of the specimens since the friction force generated 
between the specimen and the top cap or the pedestal acts as a 
trigger of strain localization. As the axial strain becomes large, 
clear shear bands appear on the side surface and the front sur-
face, and develop with increases in the thickness of the shear 
bands.  

As shown in Figs. 3.19(e) and 3.20(e), the simulation results 
can well reproduce the strain localization behavior observed in 
the experiment. Although homogeneous deformations can be 
seen until an axial strain of 4% is reached, the strain starts to lo-
calize at an axial strain of 8%, and then four or two shear bands 
appear at an axial strain of 12% and develop with an increased 
thickness on both surfaces. The generating process of the shear 
bands is well simulated in the both cases for normally consoli-
dated clay and overconsolidated clay.  

Figure 3.21. Schematics of the estimated process of the �X� mode for 
the experiment and simulation (OC-1, 1%/min). 

Figure 3.22. Estimated three-dimensional shear bands for experiment 
and simulation (NC-2, 0.1%/min). 

Strain localization pattern 
In the experiment and the simulation, we can see a deformation 
pattern in which two or four shear bands develop from the edges 
of the top and the bottom of the specimens. This mode is due to 
the material instability induced by the frictional boundary con-
ditions between the clay specimens and the top caps and the 
pedestals. The two shear bands intercrossing each other are just 
like an “X”, thus, we call it the “X” mode. Fig. 3.21 shows the 
schematics of the estimated process generating the “X” mode. 
The four shear bands generated finally develop two clear and 
thick shear bands. In the case of the finite element analysis, we 

depict the distribution of the second invariant of accumulated 
viscoplastic deviatoric strain p�  for all cases. In the distribu-
tions, by disregarding smaller values of p� , we can see local-
ized strain, i.e., three-dimensional shear bands. Note that p�  is 
obtained at the Gaussian integration points of the finite element 
method and is different from the ’shear strain � ’ used in the 
previous figures.  

4) Three-dimensional shear bands 
Estimated shear bands for case NC-2 (normally consolidated 
clay, 0.1%/min), tested and simulated, are depicted in Fig. 3.22.
In the contour for the simulation results, the accumulation of the 
second invariant of viscoplastic deviatoric strain p�  is illus-
trated if p�  is more than 0.32. Since the shear bands observed 
on the front surface are clearer than those on the side surface, 
two shear planes are estimated. It is found, however, that the 
"X" mode appears just on the surface and that higher levels of 
shear strain are distributed in the center of the specimen.  

5) Effects of the strain rates / Strain rate sensitivity 
It is well known that clay exhibits strain rate sensitivity. Oka et 
al. (2003a) reported the strain rate sensitivity of Fukakusa clay 
under undrained triaxial compression conditions. As shown in 
Figs.3.19(a),(b) and 3.20(a),(b), rate sensitivity of the stress-
strain relations and the stress paths in both cases of normally 
consolidated clay and overconsolidated caly can be observed. It 
can be seen that strain rate sensitivity observed in the experi-
mental results is smaller than that in the simulation results.  

Figure 3.23. Comparison of distributions of shear strain and inclination 
angles of shear bands for specimen B with different strain rates between 
simulation result and experimental results (Axial strain: 20%, front sur-
face); (a)shear bands develop from the top edge (b)(c)shear bands de-
velop beneath the top edge. 

Strain localization pattern 
The shear-strain distributions and the inclination angles of the 
shear bands for both the simulation and the experiment with dif-
ferent strain rates at an axial strain of 20% are shown in Fig. 
3.23. The numerical simulation very well reproduces the ex-
perimental results with respect not only to the “X” mode, but 
also to the effects of the strain rates on the strain localization 
pattern. Shear bands develop from the top and the bottom edges 
in the case of higher strain rates, while those with lower strain 
rates develop beneath the top and the bottom edges. Due to this 
tendency, the angles of the shear bands become smaller as the 
strain rate decreases. If we could assume that the effect of the 
strain rate is equal to the effect of permeability, i.e., the higher 
strain rates correspond to the lower permeability levels, and vice 
versa, we would then obtain a different trend from the one in the 
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present study, i.e., angles with higher strain rates are smaller 
than those with lower strain rates. Note that the constitutive 
equation used in Oka et al. (2002b) is slightly different from the 
one used in the present study. In addition, the maximum thick-
ness of shear bands with lower strain rates is larger than that of 
shear bands with higher strain rates. It should be noted that 
these types of behavior are more clearly seen in the case of 
overconsolidated clay.

Effect of the sample shape 
The effect of the sample shape has been studied by Kodaka et 
al. (2001) for normally consolidated clay. For the tall specimen 
with a high height over width ratio of H/B = 3.0, the bucking 
type of deformation mode is predominant for normally consoli-
dated clay. On the contrary, for overconsolidated clay with H/B 
= 3.0, the X type of shear bands were experimentally observed 
and well simulated by the model (Kodaka et al., 2001; Oka et al., 
2005c). 

3.10 Applications and recent advances 

3.10.1 Bearing capacity and earth pressure problems 
A series of analyses on the footing of a clay deposit with differ-
ent microstructure parameters was carried out (Siribumrung-
wong et al., 2004). The results of the analyses show that strain 
localization can be predicted during the loading of a footing on 
highly structured soil. This strain localization acts as a “slip 
line”, and it affects the bearing behavior of the strip footing. 
The effects of footing roughness on the failure mechanism were 
also discussed. 

For a smooth strip footing on clay soil with a constant level 
of undrained shear strength, both the Hill and the Prandtl failure 
mechanisms are theoretically possible. For a rough footing, 
however, the Hill mechanism is not appropriate as it implies 
horizontal soil movement at the soil-footing interface. It can be 
seen in Figs. 3.24 and 3.25 that the Hill mechanism (Hill, 1950) 
is predicted for a smooth footing and the Prandtl mechanism 
(1920) is predicted for a rough footing. Through a plasticity so-
lution, both mechanisms yield the same value of Nc = 5.14. 
However, a comparison shows that with a large footing dis-
placement, the reaction force predicted for the smooth footing is 
lower than that for the rough footing.Fig. 3.26 illustrates the be-
havior of backfill due to the movement of the wall analyzed by 
the same elasto-viscoplastic model for clay as that mentioned 
above. It is well simulated that the strain localization depends 
on the friction of the wall. 

Figure 3.24. Distribution of viscoplastic deviatoric strain at a footing 
displacement of 10 cm for homogeneous soil case. 

Figure 3.25. Vectors of incremental nodal displacements at a footing 
displacement of 10 cm for homogeneous soil cases. 

3.10.2 Thermo-hydro-mechanical-coupling problems 
Thermo-hydro-mechanical (THM) coupling problems are very 
important in the field of Geomechanics. THM has been applied 
to several problems such as nuclear waste disposal, ground heat-
ing, thermal consolidation, clean-up techniques for contami-

nated grounds and rapid landslides (e.g., Cleall, 2004; Vardou-
lakis, 2002). Vardoulakis (2002) studied the effect of thermal 
softening on catastrophic landslides. The temperature-dependent 
viscoplastic behavior was incorporated into the elasto-
viscoplastic model by Yashima et al. (1998) based on the ex-
perimental results by Boudali et al. (1994). They showed that 
viscoplastic parameter 'm  in Eq. (2.26) is not dependent on the 
temperature, but viscoplastic parameter C in Eq. (2.27) is tem-
perature dependent. The model was then incorporated into the 
finite element program and successfully applied to the thermal 
consolidation analysis using FEM with the energy balance law 
(Oka et al., 2005b). The other application of the temperature-
dependent model is the analysis of the ground deformation due 
to the dissociation of a methane hydrate (Oka et al., 2005a). 

Figure 3.26. Comparison of deformed mesh and the accumulated vis-
coplastic shear strain from soil with different friction conditions be-
tween the soil and the wall in the case of active earth pressure. 

3.10.3 Slope stability  
Based on an elasto-plastic model with strain hardening and 
strain softening by Oka and Adachi (1985), Adachi et al. (2000) 
conducted a finite element analysis of a soil-water coupled 
problem to investigate the progressive failure of a cut slope in a 
model ground composed of soft rock. The mechanical behavior 
of the cut slope, such as changes in the excess pore-water pres-
sure, the redistribution of the stress in the ground due to strain 
softening, the propagation of shear bands, and the progressive 
failure, were discussed in detail. It was found that a soil-water 
coupled analysis based on an elasto-plastic model with strain 
softening can simulate the progressive failure of a cut slope.  

(1) Elasto-plastic model with strain softening 
Oka (1985) proposed a new method to construct an elasto-
viscoplastic model based on a generalized simple body in which 
a yield function depends on a stress history tensor. Oka’s model 
(1985) can be continuously reduced to the inviscid model in 
limited cases. Oka and Adachi (1985), Adachi and Oka (1995) 
derived a strain-softening model for geologic materials based on 
a stress history tensor in which the stress history is defined by 
the generalized strain measure. The strain measure adopted in 
that model is similar to the endochronic concept advocated by 
Valanis (1971).  

Adachi, Oka and Poorooshasb (1990) proposed a new type 
of viscoplasticity model for frozen sand by introducing a new 
time measure instead of real stress for frozen sand as 

��� dzzdtgdz ij ,)( *��                                               (3.65) 

where dz  is an increment of the new time measure, dt  is the 
real time increment, function g  is a function that describes 
strain rate dependency to be determined experimentally for the 
particular medium, and *

ij��  is a state parameter for the strain 
rate history. Under the three-dimensional conditions, Eq. (3.65) 
can be rewritten as 

�=0, rough �=20, rough �=20, smooth 

�=0, rough �=20, rough �=20, smooth 

Smooth wall (A-A2) 48�

44�Very rough wall (A-B1) 

72



dtFgdz a)(�                                                       (3.66) 

),( 21 IIFF �

where 1I  and 2I  are the first and the second invariants of the 
strain rate tensor, namely, ijijkk eeII ��� �� 21 ,� , and a  is the 
state parameter for the strain rate history. 

When the function of g in Eq. (3.66) depends on the strain 
rate with a degree of one, dz  becomes a rate-independent strain 
measure. 

An elasto-plastic model with strain softening for soft rock in-
troduces a strain measure and is expressed as 

1 2( )ij ijdz de de�                                               (3.67) 

where dz  is an incremental strain measure and ijde  is an in-
crement in the deviatoric strain component. Stress history tensor 

*
ij�  is expressed by introducing a single exponential type of 

kernel function as 

� �� � � � � �� �*

0

1' (0) exp ' / ' ' ' 0
z

ij ij ij ijz z z dz� � � � �
�

� � � � �� (3.68) 

where �  is a material parameter expressing the retardation of 
stress with respect to the strain measure, 'ij�  is the stress ten-
sor, and � �' 0ij�  is the value of the stress tensor at 0�z . Total 
strain increment tensor ijd�  is composed of elastic e

ijd�  and 
plastic p

ijd� components. 
Plastic strain increment p

ijd�  is given by the non-associated 
flow rule as 

� �/ 'p
ij p ij yd f df� �� � � �                                              (3.69) 

where pf  is the plastic potential function, yf  is the yield func-
tion, and �  is a positive function describing the strain harden-
ing-softening characteristics. The subsequent yield function is 
defined by 

* * * * *0, /y ij ij mf s s� � � �� � � �                                     (3.70) 

where *
ijs  is the deviatoric stress history tensor and *

m�  is the 
mean stress history. �  is the strain hardening-softening pa-
rameter and it is given by the following evolutional equation: 
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p deded ��                (3.71) 

where p
ijde  is an increment in the deviatoric plastic strain ten-

sor. *
fM  is the value of stress history invariant ratio *� at fail-

ure (residual strength state), and 'G  is the strain-hardening pa-
rameter (initial tangent of the curve defined by Eq. (3.71). 

 It is assumed that the relation expresses the plastic potential 
function 

ln ( ' ) /( ' ) 0p m mbf M b b� � �� � � � �� �� �                                (3.72) 

and 
1/ 22/( ' )ij ij ms s b� �� �� �� �                                          (3.73) 

where ijs  is the deviatoric stress tensor, 'm�  is the mean stress, 
and M  is the parameter that controls the development of the 
volumetric strain. 
The following relation expresses a boundary surface, which de-
fines the normally consolidated and the overconsolidated re-
gions: 

ln ( ' ) /( ' ) 0b m m mbf M b b� � �� � � � �� �� �                                (3.74) 

in which mM  is the value of �  when maximum compression 
takes place during the shearing process. 
Based on relation (3.74), the value of M  in Eq. (3.72) can be 
determined based on the boundary surface, namely,  

/ ln ( ' ) /( ' )m mbM b b� � �� � � �� �� �               if 0�bf

mM M�                                                  if 0�bf                 (3.75) 

/( ' )ij ij ms b� �� �                                                                 (3.76) 

The elastic strain increment is given in a linear elastic form by 
'

2 3
ije m

ij ij

ds dd
G K

�� �� �                                                        (3.77) 

where G  is the elastic shear modulus and K  is the elastic bulk 
modulus. 

There are eight parameters in the model, namely, G , K , b ,
'mb� , mM , *

fM , 'G , and � . The parameters can be deter-
mined from the results of conventional triaxial compression 
tests, and Adachi and Oka (1995) have given detailed descrip-
tions of the determination of these parameters. 

(2) Finite element analysis of the progressive failure of cut 
slopes in an ideal model ground 

For strain-softening material, when it is subjected to a shearing 
force, it will firstly exhibit strain hardening. After it reaches a 
peak value, strain softening will occur. It will finally reach the 
residual state if the shearing deformation continues. 

In a boundary value problem such as an excavation, a stress 
concentration will occur which often results in a localized sof-
tening zone. Due to strain softening, the stress around the zone 
in this case will redistribute to satisfy the equilibrium equation. 
For this reason, the strain-softening zone will develop gradually 
due to the redistribution of stress. If the development of the 
zone stops, an overall failure of the slope will not occur. How-
ever, if the zone develops to such an extent that the surrounding 
ground cannot bear any more stress transferred from the soften-
ing zone, then an overall failure, called progressive failure, will 
occur. The material parameters of the ground used in the finite 
element analysis are as follows: 

Young’s modulus E (MPa) = 100.0, Poisson’s ratio �  = 
0.33, strain-softening parameter 'G (MPa) = 45.2, residual stress 
ratio *

fM = 1.0, plastic potential parameter b  (MPa) = 0.87, 
plastic potential parameter 'mb�  (MPa) = 16.0, plastic potential 
parameter mM = 1.25, material parameter �  = 0.025, density 

'�  (g/cm3) = 1.0, and permeability k  (cm/sec) = 610� .
 Fig. 3.27 shows the finite element mesh adopted in the 

analysis of the cut slope in the water. The size of the considered 
section is 1000 m in length and 360 m in depth. The height and 
the slope gradient of the cut slope are 150 m and 5:1, respec-
tively. The numbers of the nodes and the 4-node isoparametric 
elements are 1120 and 1053, respectively. 

 The boundary conditions are given as: (a) for displacement, 
it is fixed at the bottom in both x and y directions and it is fixed 
at the vertical boundaries in the x direction and (b) for excess 
pore-water pressure, the ground surface is the drainage bound-
ary and the other boundaries are impermeable. The initial stress 
field is a gravitational field with 43.00 �K . In the calculation, 
the excavation of the slope is completed within about 35 days, 
and it is simulated by releasing the initial stress in 500 steps (0.2 
% / step, 6000 sec/step). After the completion of the cut slope, a 
30000-step calculation with a time interval of 6000 sec/step is 
conducted to simulate the dissipation of the excess pore-water 
pressure caused by the excavation of the slope. 
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unit: m

Figure 3.27. Finite element mesh of the cut slope. 

In order to study the process of the progressive failure, the 
following two points are discussed, namely, overall changes in 
the field quantities such as the plastic strain, the excess pore-
water pressure, and the stress state, and the time history of the 
stress history, the stress ratio, the strain rate, and the dilatation 
of the individual element. 

Overall view of the changes in the field quantities of the pro-
gressive failure 
Fig. 3.28 shows the changes in the distribution of the stress his-
tory ratio. In the residual state, the cohesion or the cementation 
of the geologic material tends toward zero and only the fric-
tional strength that depends on confining stress remains. 
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Figure 3.28. Distribution of the stress history ratio with time.

In this case, stress history ratio *�  will be the same as the 
stress ratio at the residual strength and takes the value of *

fM .
In the figure, 0�T  means the time immediately after the com-
pletion of the excavation. At the beginning, the value of *�  is 
kept constant at about 0.80. It increases abruptly 4.57 years after 
the completion of the excavation at the toe of the slope, and 
then the phenomenon propagates to other regions. A failure 
band forms six months later from the toe to the surface where 

*� reaches the residual value. Finally, an unstable block appears 
with the shear band as a boundary connecting the stable area of 
the ground. 

Fig. 3.29 shows the changes in the distribution of the plastic 
shear strain. Similar to the stress history ratio, the shear strain 
develops very quickly in the zone at the time of 4.57 years. The 
propagation of the shear zone in which large shear occurs, takes 
the same form as the failure zone shown in Fig. 3.28. 

Fig. 3.30 shows the changes in the distribution of excess 
pore-water pressure with time. At the time immediately after the 
completion of the excavation, a large excess pore-water pres-
sure develops in the ground, resulting in an apparent shear 
strength that keeps the slope stable. After 4.57 years, it dissi-

pates gradually and the failure zone shown in Fig. 3.28 begins 
to develop due to the loss in the apparent shear strength. At this 
moment, the excess pore-water pressure reaches its minimum 
value. When the shear zone appears, strain softening occurs and 
dilatancy develops in some zone, resulting in an increase in ex-
cess pore-water pressure, as shown in Fig. 3.30. 
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Figure 3.29. Changes in the plastic strain. 
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Figure 3.30. Changes in excessive pore-water pressure (� 98kPa). 

From Figs. 3.28-3.30, it is clear that because of the dissipa-
tion of excess pore-water pressure due to the excavation, the 
ground of the cut slope loses its apparent strength and strain sof-
tening occurs in some areas. Then, a redistribution of stress 
leads to the start of propagation in the softening zone, resulting 
in the formation of a failure band and the shear zone. The fail-
ure band develops gradually and a global failure of the cut slope 
finally occurs. From the numerical analysis of the progressive 
failure of the cut slope, the following results were obtained: 
(1)  A cut slope in soft rock may remain stable for a long time 

after the completion of a rapid excavation. However, if a 
failure band appears abruptly in the slope, the slope may 
then collapse overwhelmingly after just a few months. 

(2) The propagation of the shear zone in a cut slope takes the 
same form as the propagation of the failure zone.  

(3)  The progressive failure of a cut slope is caused by the redis-
tribution of stress due to strain softening. 
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Before the global failure of a cut slope, an acceleration in 
the strain rate and an increase in negative excess pore-water 
pressure, that had dissipated a long time before, can be observed 
in a localized zone. 

The progressive failure of a cut slope can be simulated with 
a soil-water coupled analysis based on an elasto-plastic model 
with strain softening. 

3.11 Summary  

From the perturbation approach of the viscoplastic instability, 
the followings have been found. In the hardening range, the 
growth rate of the perturbation is negative, namely, the material 
system is stable. In contrast, the material system may become 
unstable in the softening regime. It was confirmed that materials 
with higher permeability levels are more unstable than those 
with lower permeability levels. An instability analysis using a 
rigid-viscoplastic model gave the additional conclusion that the 
system is less stable in the hardening regime when the coeffi-
cient of permeability is rather small. In addition, the strain gra-
dient term makes the system stable if gradient parameter 3a  is 
large enough. From the numerical study, it was found that in the 
range of small strain, i.e., in the viscoplastic strain-hardening 
range, the viscoplastic material system with low permeability 
levels is less stable. On the other hand, in the large strain, i.e., in 
the strain-softening range, the material system is less unstable. 
These trends are consistent with the theoretical results obtained 
from the instability analysis. As for the deformation pattern, 
permeability, namely, the transport of pore water, has a great in-
fluence on the formation of shear bands. When gradient term 

3a  is large, the accumulated shear strain is less localized. It was 
confirmed that the gradient term acts as a stabilizer under glob-
ally undrained conditions. Material heterogeneity causes strain 
localization, although the deformation of homogeneous clay be-
comes uniform. The initial distribution of material parameters 
affects the deformation pattern.  

From the simulation of three dimensional analysis of clay 
during compression,  we have obtained the three-dimensional 
distributions of strain, stress, and pore-water pressure which are 
difficult to determine from experiments. Through the three-
dimensional distributions, we have discussed the difference in 
strain localization behavior inside the specimens between nor-
mally consolidated clay and overconsolidated clay, e.g., the di-
latancy characteristics and the local volume changes.  

We confirmed that the simulation methods in this study can 
be very effectively applied to the strain localization behavior of 
clay under three-dimensional conditions. In the future, analyses 
of case studies which are related to strain localization, such as 
slope failure and excavations, will be necessary in order to prac-
tically verify the proposed method.  

Finally, the viscoplastic analysis method have been success-
fully applied to the bearing capacity problem, earth pressure 
problem, thermo-hydro-mechanical coupling problem and cut 
slope stability problem. Then classical methods have been re-
evaluated. 

4 LIQUEFACTION ANALYSIS  

Liquefaction is the typical failure mode of water-saturated 
sandy grounds. Soil liquefaction has been studied by many re-
searchers, both theoretically and experimentally, since the 
earthquakes in Niigata and Alaska (1964). It has been recog-
nized through in-situ research that civil structures were heavily 
damaged during such large earthquakes as the 1995 Hyogo-ken 
Nambu Earthquake due to the occurrence of liquefaction (Shi-
bata et al., 1996).  

There are two approaches for conducting a liquefaction 
analysis. One is a total stress analysis and the other is an effec-
tive stress analysis. Effective stress analyses include both cou-
pled and uncoupled analyses. In a coupled analysis, the water 

flow is taken into account. At present, the fully coupled effec-
tive stress analysis is a representative method. 
In this chapter, the computational modeling of the liquefaction 

of a sandy ground during an earthquake is demonstrated using 
the coupled stress analysis. The fully coupled method, which is 
based on the effective stress and is used for the dynamic analy-
sis of a ground considering soil liquefaction, has been devel-
oped by many researchers. For the fully coupled effective stress 
analysis of the liquefaction of a ground, a cyclic plasticity 
model and governing equations are needed for the solid-fluid 
two-phase mixture. At present, a cyclic elasto-plastic model and 
a Biot type of mixture theory, the so-called theory of porous 
media, are used. 

4.1  Equations of motion and the mass balance of two-phase 
materials 

The following items can be assumed when formulating the gov-
erning equations for solid-fluid two-phase mixtures: 
(1)  When the relative acceleration of the fluid phase to that of 

the solid phase is much smaller than the acceleration of the 
solid phase, we can adopt a so-called u-p (displacement - 
pore pressure) formulation.  

(2)  When the relative acceleration of the fluid phase to that of 
the solid phase cannot be neglected, a u-w-p (displacement - 
relative displacement - pore-water pressure) formulation 
should be employed. 

(3) Grain particles in the soil are incompressible. 
(4) The distribution of porosity in the soil is sufficiently smooth. 
(5) The densities of the soil skeleton and the pore water are spa-

tially homogeneous. 
(6) The body force is evenly distributed throughout the space. 

In the theory of the two-phase mixture, the mixture is expressed 
by the superposition of two phases, namely, the solid phase and 
the fluid phase. The solid phase and the fluid phase represent 
the soil skeleton and the spatially distributed pore fluid, respec-
tively. 

The apparent densities of the solid and the fluid phases are 
given by the following relations:  

S F� � �� �                    (4.1), (1 ) S Fn n� � �� � �             (4.2) 

(1 )S Sn �� � �             (4.3), F Fn�� �                       (4.4) 

where �  is the density of the fluid saturated soil, S�  is the 
density of the soil particles, F�  is the density of the pore fluid, 

FS �� �  are the apparent densities of the solid and the fluid 
phases, respectively, and n  is the porosity. 

4.1.1 Definition of partial stress tensor based on the two-
phase mixture theory  

Cauchy’s total stress is given by  

S F
ij ij ij� � �� �                                       (4.5) 

where S
ij�  is the partial stress of the solid phase, F

ij�  is the par-
tial stress of the fluid phase, and ij�  is Kronecker’s delta. From 
the principle of effective stress by Terzaghi, Cauchy’s effective 
stress tensor is given by  

'ij ij ijp� � �� �                                           (4.6) 

where p  is the pore-water pressure and  

F
ij ijnp� ��                                             (4.7) 

Hence, from Eqs. (4.5), (4.6), and (4.7),  

' (1 )S
ij ij ijn p� � �� � �                                     (4.8) 
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Equations of motion for the two-phase mixture
Equations of motion for the solid and the fluid phases are given 
by  

2 2

2
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j
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t x k t
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where S
iu  is the displacement of the soil skeleton, F

iu  is the 
displacement of the pore fluid, ib  is the body force, k  is the 
coefficient of permeability, and F

w g� ��  is the unit weight 
density of the pore fluid.  

From Eqs. (4.9) and (4.10), we obtain  
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                        (4.11) 

Using Eqs. (4.1), (4.4), and (4.5), the above equation be-
comes  
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                                (4.12)

From assumption (1), where we can disregard S F
i ia a� , we 

obtain equations of motion for the two-phase mixture as  
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                                              (4.13) 

4.1.2 Continuity equation for the pore fluid  
The continuity equation is derived by the mass conservation 
laws and the equation of motion for the fluid phase. The mass 
conservation laws for the two phases are  
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After manipulation, we have  
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where 
S
i S

ii
i

u D
x

�
�

�
�                        (4.17),    � �F S

i i inw u u� �� � �            (4.18) 

From assumption (3), 0S� ��  and 0F� ��  hold. From as-
sumption (4), it then follows that 0in x� �� � . Moreover, 

0S
ix�� �� �  and 0F

ix�� �� �  hold from assumption (5). From 
the above assumptions, Eq. (4.16) becomes  
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From Eq. (4.4), Eq. (4.10) becomes  
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holds from Eq. (4.7), Eq. (4.20) can be written from Eqs. (4.4) 
and (4.21), assumptions (1) and (4), as  
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By taking the derivative of Eq. (4.22) with respect to ix ,
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From Eqs. (4.19) and (4.23), we have  
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From assumption (6), 0i ib x� �� �  holds. Hence, the above 
equation becomes  
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4.2 Formulation of the governing equations 

The above governing equations are then spatially discretized by 
numerical methods such as FEM and FDM, etc. Among the dis-
cretization methods, there are three methods, namely, the u-p 
formulation (Zienkiewicz et al., 1980; Oka 1994b; etc.), the u-U 
formulation (Prévost 1982; Zienkiewicz 1984), and the u-w-p 
formulation (Zienkiewicz, 1982; Lin, 2000; Oka, 2002), in 
which u is the displacement of the soil skeleton, U is the dis-
placement of the pore water, p is the pore-water pressure, and w 
is the relative displacement between the displacements of the 
soil skeleton and the water which is defined by Eq. (4.18). 

4.2.1 u-U formulation  
In this formulation, the unknown variables are the displace-
ments of the solid and the fluid phases. The corresponding pore 
pressure is determined by the constitutive equation for the pore 
fluid (Prévost 1982, 1985; Zienkiewicz and Shiomi 1984). 
However, the u-U formulation is not appropriate for cases with 
incompressible pore fluid. In addition, the degree of freedom 
becomes larger than with the u-p formulation. The displacement 
of U is replaced by relative displacement w. This formulation is 
used by Ghaboussi and Wilson (1972) and is called the u-w 
formulation. 

4.2.2 u-p formulation 
In this formulation, the unknown variables are the displace-
ments of the soil skeleton and the pore-water pressure. The rela-
tive acceleration is small compared with the solid acceleration. 
This formulation is sufficient. The degree of freedom is com-
paratively small, and this is a great advantage for the numerical 
analysis. This u-p formulation has been used in many numerical 
codes (Zienkiewicz 1982; Zienkiewicz and Shiomi 1984; Simon 
et al. 1984; Aubry and Moderessi 1989; Oka et al. 1994b; etc.). 

4.2.3 u-w-p formulation 
The unknown variables of this formulation are u, w, and p. As 
has been studied by Zienkiewicz, Chang and Bettess (1980), a 
u-w-p formulation is necessary for high- frequency problems 
and problems with high permeability in which the relative ac-
celeration cannot be disregarded. In the case of a dynamic 
analysis with high frequency, it is necessary to use a u-w-p for-
mulation. In reality, a u-w-p formulation is recommended for 
soil composed of gravel and/or improved by a gravel drain. In 
addition, this u-w-p formulation is applicable for both com-
pressible and incompressible pore fluids (Zienkiewicz, 1982; 
Lin 2000). The applicability of the u-w-p formulation is nu-
merically evaluated in Fig. 4.1 (Oka 2002).  
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4.2.4 Finite deformation theory 
The above formulation is done within the context of an infini-
tesimal strain theory. However, when we simulate a large de-
formation of the ground, the formulation has to be carried out 
using the finite deformation theory (Oka et al., 2001; Oka, 
2002). 

Figure 4.1. Evaluation of u-p and u-w-p methods. 

4.3 Constitutive equations 

4.3.1 Introduction 
Over the last three decades, many elasto-plastic constitutive 
models have been proposed. The elasto-plastic theory is known 
as a representative tool for modeling the non-linear and the hys-
teretic behavior of soil. In the realm of soil mechanics, an asso-
ciated flow rule has been used for modeling the behavior of soil, 
in particular, soil with negative dilatancy such as normally con-
solidated clay. In contrast, the non-associated flow rule is fre-
quently adopted to model sand with positive-negative dilatancy. 
One of the well known models for soil is the Drucker-Prager 
model (1952). The Drucker-Prager model is a model that in-
cludes a dependency on the mean effective stress. However, 
there are several shortcomings with this model, namely, the un-
reasonable amount of dilatancy, etc. DiMaggio and Sandler 
(1971) proposed an elasto-plastic model for sand called the 
"Cap model" to generalize the Drucker-Prager model. The 
model contains two yield functions, i.e., a modified Drucker 
Prager model and a model that intersects the mean effective 
stress axis in the space of the second invariant of the deviatoric 
stress tensor and the mean effective stress. This model im-
proved the behavior of the soil in the process with an increase in 
the mean effective stress. Although this Cap model is a simple 
model, it has been used for a variety of geological materials in-
cluding rock. Nishi and Esashi (1978) and Vermeer (1978) then 
proposed a double hardening model based on the non-associated 
flow rule. 

These models are consistent with the experimental results 
obtained by Poorooshasb et al. (1966). A number of constitutive 
models for sand have been proposed and then applied to design 
practices with appropriate numerical methods, such as the finite 
element method. In order to analyze the dynamic behavior of a 
liquefiable ground, it is necessary to predict the cyclic behavior 
of saturated sand.  

For the cyclic behavior of sand, many models have been 
proposed, namely, Ghaboussi and Momen (1979); Oka and 
Washizu (1981); Pastor and Zienkiewicz (1986); Hashiguchi 
(1980, 1989); Nishi and Kanatani (1990); Ishihara and Kabila-
many (1990); Prévost and Keane (1990); Oka et al. (1992a); 
Gajo and Muir Wood (1999); Oka et al. (1999a); Li, Dafalias 
and Wang (1999) have proposed cyclic elasto-plastic models for 
sand.  

Many of them have tried to incorporate their models into 
computer programs for two-dimensional liquefaction analyses 
(e.g., Arulanandan et al., 2000). The present author proposed a 
constitutive model based on the rotational hardening rule (Ada-
chi and Oka, 1982b; Oka, 1982) that can incorporate the Masing 
rule (Masing, 1926). This model was incorporated into a two-
dimensional liquefaction analysis and some practical problems 
were solved by it (e.g. Oka et al., 1994b). Furthermore, the non-
linear kinematic hardening rule originally proposed by Arm-
strong and Frederick (1966) for metal, and later modified by 
Chaboche and Rousselier (1983), was introduced (Oka et al., 
1992a) into the rotational hardening model (Oka, 1982) for gen-
eralizing kinematic hardening. This non-linear kinematic hard-
ening rule is described by an evolutional differential equation 
which is a generalized Prager’s kinematic hardening rule and 
can take into account the initial anisotropy as well as the 
Bauschinger effect. The model (Oka et al., 1992a) is based on 
the non-linear kinematic hardening rule and has shown a better 
performance for describing the behavior of sand under cyclic 
loading than the model based on the concept of rotational hard-
ening (Oka and Washizu, 1981, Akai et al., 1981). It has already 
been applied to several types of liquefaction problems.  

The effectiveness of the cement mixing column method and 
the gravel drain method as countermeasures against liquefaction 
has been clarified by numerical work and by a two-dimensional 
liquefaction analysis (Shibata et al., 1992; Kato et al., 1994). 
The liquefaction of a seabed due to ocean waves (Oka et al., 
1993c) and the seepage failure of loose sand layers (Oka et al., 
1994a) were also studied with the original kinematic hardening 
model. The deformation of river embankment due to seepage 
was numerically analyzed in the context of liquefaction (Kato et 
al., 2005). Kodaka et al. (2005) developed a cyclic elasto-plastic 
model for the sand improved by colloidal silica. 

In the model proposed by Oka et al. (1999a), a generalized 
flow rule was incorporated in order to accurately describe the 
cyclic behavior of sand and the liquefaction strength curve that 
relates the number of loading cycles to the shear stress ampli-
tude.  

The following two important factors have been incorporated 
into the constitutive model for sand to simulate the liquefaction 
process:  
1)  The mean effective stress decreases and becomes approxi-

mately zero during undrained cyclic loading with a constant 
shear stress amplitude for sand with low density. In some 
model simulations, however, the effective stress path often 
ends up describing a closed loop with a finite value for the 
mean effective stress that is much greater than zero even for 
sand with low density. This type of behavior is not always 
consistent with the test results for sand.  

2)  Predictions by some elasto-plastic constitutive models show 
that the slope of the liquefaction strength curve is quite a bit 
steeper than that obtained by the experiments.  

4.3.2 A constitutive model for sand with a generalized flow 
rule  

Oka et al. (1999a) developed an elasto-plastic constitutive 
model based on the non-linear kinematic hardening rule. Sev-
eral modifications to the original kinematic hardening model 
(Oka et al., 1992a) are proposed based on a comparison between 
the experimental results and the numerical predictions by the 
model. The first feature of the model is the flow rule, the second 
one is the introduction of the cumulative plastic strain depend-
ence of the plastic shear modulus, and the third one is the intro-
duction of a fading memory of the initial anisotropy. The non-
linear kinematic hardening variables are used in both the yield 
function and the plastic potential function. 

Basic assumptions
The basic assumptions are taken as follows: 
�infinitesimal strain theory  
�elasto-plastic theory  

u-p� u-w-p

u-p�u-w-p

1.0�10-8   10-7    10-6    10-5     10-4    10-3    10-2    10-1

Permeability (m/s) 
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�non-associated flow rule  
�overconsolidated boundary surface 
�non-linear kinematic hardening rule 

Overconsolidation boundary surface
An overconsolidation boundary surface is adopted which distin-
guishes the overconsolidated region from the normally consoli-
dated region. The overconsolidation boundary surface, 0bf � ,
is defined as  

*
(0)

' 0
'

m
b m

mb

f M ln ��
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�� � �                                             (4.26) 

1 2*
(0) (0) (0)ij ij ij ij� � � � �

�� �� � � ��� � � ��
� �� � � �
� �� � � �� �

� � �                                  (4.27) 

'ij ij ms� �� � �                                                              (4.28) 

where 'm�  is the mean effective stress, ijs  is the deviatoric 
stress tensor, mM �  is the value of the stress ratio expressed by 

ij ij� �� �  when the maximum volumetric strain during shearing 
takes place and which could be called the phase transformation 
stress ratio, and (0)ij��  denotes the value of ij��  at the end of the 
consolidation.  

The condition 0bf �  means that the stress state stays in the 
overconsolidated region (O.C. region), while 0bf �  means that 
the stress state stays in the normally consolidated region (N.C. 
region). Herein, 'mb�  in Eq. (4.26) is given as follows:  
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                                              (4.29) 

where 'mbi�  is the initial value of 'mb�  , �  is the swelling in-
dex, �  is the compression index, e  is the void ratio, and Pv  is 
the plastic volumetric strain.  

'mbi�  is determined by considering the volume change char-
acteristics of sand, although it is usually thought that for isot-
ropically consolidated soils, 'mbi�  is equal to the preconsolida-
tion pressure in the context of the conventional concept of 
overconsolidation. The 'mbi�  of sand samples is not always 
equal to 0'm� (the mean effective stress at the end of the con-
solidation) due to the material anisotropy, the method of the 
sample preparation, the degree of compaction, aging, etc. 

0' 'mbi mOCR � �� � �  should be called the quasi-
overconsolidation ratio (quasi-O.C.R.). Furthermore, 'mc� ,
which is the mean effective stress at the intersection of the 
overconsolidated boundary surface and the 'm�  axis, is defined 
as

(0)' ' expmc mb
mM

�
� �

�

�

� �
� � �� �

� �
                                          (4.30) 

The overconsolidated boundary surface, i.e., the surface for 
isotropically consolidated sand in the 22 'mJ ��  plane, is 
shown in Fig. 4.2. 2J  is the second invariant of deviatoric 
stress tensor ijs , i.e., 1

2 2 ij ijJ s s�  . 

Fading memory of the initial anisotropy
During cyclic loading in soils, the effect of the initial anisotropy 
decreases. In the original model, the overconsolidation bound-
ary surface depends on the initial anisotropy of the soils, as 
shown in Eq. (4.30), so that the existence of the initial anisot-
ropy influences the shape of the overconsolidation boundary 
surface. Herein, the initial anisotropy is assumed to fade during 
cyclic loading in soils. To take this into account, the following 
coefficient, ( )P� � � �� , is used in Eq. (4.30):  

(0)' ' expmc mb
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                                   (4.31) 
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1 2P P P
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� �

�                                               (4.33) 

in which, P� �  is the cumulative plastic shear strain from the ini-
tial condition, P

ijde  is the plastic deviatoric strain increment ten-
sor, and dC  is a constant which controls the rate of disappear-
ance of anisotropy. When sand is initially in an isotropic state, 
Eq. (4.31) is equivalent to Eq. (4.30) because the value of (0)��

is zero. 

Yield Function
The yield function for changes in the stress ratio, 1yf , is de-
noted as  

1 2

1 0y ij ij ij ijf k� � � �
�� �� � � ��� � � ��

� �� � � �
� �� � � �� �

� � � � �                             (4.34) 

where k  is a numerical parameter which controls the size of the 
elastic region and ij��  is the non-linear kinematic hardening pa-
rameter. ij��  has the same dimensions as stress ratio ij��  and is 
the so-called back stress parameter. The evolution equation for 
the hardening parameter is defined by Eq. (4.35), namely,  

P P
ij ij ijd B A de d� � �� � � � �� �

� �
� �

� �                                       (4.35) 

in which A�  and B�  are material parameters. A�  and B�  are 
related to the stress ratio at failure, fM � , and the initial plastic 
shear modulus normalized with the mean effective stress, PG ,
respectively, as follows:  

P

f
f

GA M B
M

� � �
�� � �                                                    (4.36) 

In general, parameter B�  can be considered to follow the 
evolution equation as  

1( ) P
fdB C B B d�� � � �� �                                             (4.37) 

in which fC  and 1B�  are material parameters. P
ijd� �� �  in Eq. 

(4.35) is the non-linear term that depends on the magnitude of 
the increment of plastic shear strain. If P

ijd� �� �  is negligible, 
Eq. (4.35) will lead to the well known Prager’s linear kinemati-
cal hardening rule given by ijd�� P

ijB A de� �� P P
ijG de� .

After the stress state earnest cyclic mobility, the rate of de-
crease in PG  due to the accumulation of plastic strain is accel-
erated. Therefore, a decrease in PG  with an increase in ( )

P
n� �  is 

introduced as  

max min ( ) min( )exp( )P P P P P
f nG G G C G� �� � � �                           (4.38) 

( ) ( )

P P
n n

d� �� �� �                                                             (4.39) 

where max
PG  is the initial value of PG , min

PG  is the lower limit of 
PG , and fC  is a constant. Using Eq. (4.38), three parameters, 
max min
P PG G� , and fC , can be identified at each cycle. ( )

P
n� �  is the 

accumulated plastic shear strain between two sequential stress 
reversal patois at the previous cycle. Cycle n  can be easily in-
debted. In reality, a half cycle is defined as the process between 
two sequential stress reversal patois. The stress reversal point is 
judged by the changes in the sign of 1ydf , the increment of 1yf
in Eq. (4.34), in the general stress condition. This automatic 
identification of a cycle is one advantage of using the non-linear 
kinematic hardening rule. PG  decreases with an increase in 

( )
P
n� � (Oka et al., 1999). Herein, the onset of the cyclic mobility 

condition is judged when stress ratio ��  reaches mM � . During 
cyclic mobility, the value of max

PG  decreases with an increase in 
( ) max
P
n� � . Hara et al. (1984) also reported the same tendency with 
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the relationship between max
PG  and ( ) max

P
n� � . The remaining pa-

rameters, min
PG  and fC , are also generally found to be depend-

ent on ( ) max
P
n� � . In the modeling, however, only max

PG  is assumed 
to be dependent on ( ) max

P
n� � . The two remaining parameters are 

assumed not to be dependent on ( ) max
P
n� � , because max

PG  was 
found to have a stronger effect on the changes in PG  than the 
other two parameters. The relationship between max

PG  and 
( ) max
P
n� �  is assumed as follows:  

max 0
max

( ) max ( )1

P
P

P P
n n r

GG
� �� ��

� �
                                                (4.40) 

where max 0
PG  is the initial value of max

PG  and ( )
P
n r� �  is the refer-

ence value of ( ) max
P
n�  when the value of max

PG  is half the value of 
max 0
PG . The lower limit of max

PG  is min
PG . The same type of equa-

tion is also applied for modeling the reduction in the elastic 
shear modulus in which ( )

E
n r� �  is used as a reference value in-

stead of ( )
P
n r� � .

0

( ) max ( )1

E
E

E E
n n r

GG
� �� ��

� �
                                                      (4.41) 

where ( ) max
E
n� �  is the maximum accumulated elastic shear be-

tween sequential stress reversal points at past cycles.  0
EG  is the 

initial value of EG , namely, the elastic shear modulus normal-
ized with the mean effective stress.  

Changes in yield function 1yf  in Eq. (4.34) are governed by 
changes in the stress ratio. As for the analysis under general 
stress conditions, the second yield function, 2yf , which is de-
scribed based on changes in the mean effective stress, should be 
taken into account (Oka, 1992). 

Plastic strain dependence of the shear modulus
Thus far, three methods have been proposed by which the plas-
tic strain dependence of the plastic shear modulus is described 
as follows:  
1)  Method I  
 Oka (1993d) proposed a plastic strain dependency of B�  as

0 1 0 1( )exp( )P
fB B B C B�� � � � �� � � �                    (4.42) 

 in which 1B�  is the lower bound of B� and 0
P� �  is the accu-

mulated value of the second invariant of the deviatoric plas-
tic strain from the initial state. In Method I, the elastic 
modulus is assumed not to be dependent on the plastic 
strain.  

2)  Method II  
 Oka et al. (1999a) proposed the method using Eqs. (4.38), 

(4.40), and (4.41). Method II is the most general and the 
most complicated method among the three methods. In 
Method II, P

fB G M� �� �  is updated with the accumulated 
plastic shear strain between two sequential stress reversal 
patois at the previous n-th cycle when the stress reverses. 
Eq. (4.38) can be rewritten with B  as

max 1 ( ) 1( )exp( )P P
f f nB G M B B C B�� � � � � �� � � � � �          (4.43) 

 Moreover, maxB�  is reduced with the maximum accumulated 
plastic shear strain between sequential stress reversal points 
in the previous n-th cycle after stress ratio ��  has reached 

mM � .  Eq. (4.40) can be rewritten with *
0B  as

0
max max

( ) max ( )1
P

f P P
n n r

BB G M
� �

�
� �

� �� � �
� �

                                 (4.44) 

 The elastic modulus is also reduced by using Eq. (4.41) in a 
similar manner to the plastic modulus.  

3)  Method III  
B�  is determined by the following equation only when the 
stress ratio has reached the phase transformation line as  

0

1 P P
ap r

BB
� �

�
�

� ��
� �

                                               (4.45) 

 in which p
ap� �  is the accumulated value of the second invari-

ant of the deviatoric plastic strain tensor after it has reached 
the phase transformation line and P

r�
�  is the reference 

strain. The lower limit of B�  is given by 1B� . As for elastic 
shear modulus EG , a similar relation is adopted for updat-
ing it in Method III.  

4)  Method IV (Oka et al., 2004a) 
 In this method, Eq. (4.43) is used for the determination of 

*B , but *
maxB  is given by Eq. (4.45) as 

* 0
max 1 P P

ap r

BB
� �

�

� ��
� �

                                                         (4.46) 

In general, the second method has a high potential to repro-
duce the cyclic behavior of various types of soil. However, the 
method needs the special data to identify the parameters. It is 
not always easy for engineers to determine many parameters. In 
contrast, when we adopt the first or the third methods, the soil 
parameters can be determined more simply. It was found that 
the third method, Eq. (4.45), is effective for modeling the plas-
tic strain dependence of the plastic shear modulus and the elas-
tic shear modulus. From the numerical studies mentioned later, 
Method IV has been found to be effective for the simulation of 
loose sand, medium dense sand, and dense sand. 

Changes in the yield function, 1yf  in Eq. (4.34), are gov-
erned by changes in the stress ratio.  

As for the analysis under general stress conditions, the sec-
ond yield function, 2yf , which is defined on the basis of 
changes in the mean effective stress, should be taken into ac-
count (Oka 1992):  

2
0

'ln 0
'

m
y m m d

m

f M y R�
�

� �� �
� � � �� �

� �
                         (4.47) 

where my�  is the scalar kinematic hardening parameter, 0'm�  is 
the unit value of the mean effective stress, and dR  is the scalar 
variable. Since the strain levels brought about by changes in the 
mean effective stress are small in the overconsolidated region, it 
can be assumed that the second static yield function can be dis-
regarded in the overconsolidated region.  

Kinematic hardening parameter my  is decomposed into 1my�

and 2my� . The evolutional equations for these kinematic harden-
ing parameters are given by  

1 2m m mdy dy dy� � �� �                                       (4.48) 

1 2 2 1( )p p
m mdy B A dv y dv� � � �� � � �                               (4.49) 

2 2
p

mdy H dv� ��                                                 (4.50) 

Plastic potential function
The non-linear kinematic hardening variable is used in the plas-
tic potential function as well as in the yield function. Plastic po-
tential function g  is denoted as follows:  

1 2 'ln 0
'

m
ij ij ij ij

ma

g M
�� � � �
�

�� � �� � � ��� � � ��
� �� � � �
� �� � � �� �

� �
� � � � �� �

� �
�                   (4.51) 

where 'ma�  is a constant and M
��  is defined by   
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�
� �

�

�

�

�
� � � ��� ��
� � � ��

�        (4.52) 

mM �  is the stress ratio when a maximum contraction of the 
material takes place.  M

�� , which is a variable depending on the 
stress state, controls the direction of the plastic strain increment.  
When the stress state is inside the overconsolidated region, M

��
takes a value that is less than that of mM � . In addition, it is as-
sumed that M

��  becomes equal to mM �  once M
��  has reached 

mM � . The plastic potential function and the overconsolidated 
boundary surface are shown in Fig. 4.2.  

Figure 4.2. Plastic potential and O.C. boundary surfaces. 

The stress-dilatancy characteristic which is normally derived 
from the conventional flow rule sometimes gives a rather 
steeper slope to the liquefaction strength curve than that ob-
tained from laboratory tests. In order to counteract this short-
coming in the original model, the flow rule is generalized using 
the fourth rank isotropic tensor, ijklH  (Naghdi and Trapp, 
1975), as  

'
P
ij ijkl

kl

gd H�
�
�

�
�

                                                     (4.53) 

( )ijkl ij kl ik jl il jkH a b� � � � � �� � �                                    (4.54) 

namely,  

2 (3 2 )P P
ij kk

ij m

g gde b d a b
s

�
�

� �
� � � �

� � �
                      (4.55) 

Desai and Siriwardane (1980) adopted a similar approach to 
the general description of P

ijd�  by introducing the correction 
factor into the flow rule. Coefficients a  and b  in Eq. (4.54) 
generally depend on the state parameters, e.g., stress and strain. 
From Eqs. (4.51), (4.53), and (4.54), a stress-dilatancy charac-
teristic relation of the generalized model can be derived by the 
generalized flow rule, Eq. (4.53) as follows:  

( )
P

xP

dv D Md
�

�
�� �

� � ��                                                     (4.56) 

where  

3 1
2
aD
b

� � �                                                                          (4.57) 

D�  is a so-called coefficient of dilatancy which controls the 
proportion of the plastic deviatoric strain increment to the plas-
tic volumetric strain increment. As for the functional form of 

D� , two types of functions are used in this study. The first one 
is as follows:  

0D D const� �� � �                                           (4.58) 

A constant coefficient of dilatancy has often been used, e.g., 
by Pradhan and Tatsuoka (1989).  In the model, D�  is the 
nonlinear function as  

0 0 0( ' ' )

n nn

r m mc m m

MD D D D
M ln M

� �
� � �

�� �
� � � �

� � �

� � � �� �
� � �� � � �� �

�� � � � � �

�
      (4.59) 

where r�
�  is the value of the stress ratio on the overconsolida-

tion boundary surface with a current mean effective stress.  
When ��  is larger than r�

� , ��  is kept to the value of r�
� . In a 

case where the stress state is inside the overconsolidated region, 
Eq. (4.59) is the n -th power of the stress ratio invariant. When 
the value of n  is larger than one and the stress conditions are 
inside the overconsolidated region, the value of the coefficient 
of dilatancy changes drastically due to changes in the stress ra-
tio.

Stress-strain relation
The total strain increment tensor, kld� , is given by adding the 
elastic strain increment tensor, E

kld� , and the plastic strain in-
crement tensor, P

kld� , as  

E P
kl kl kld d d� � �� �                                             (4.60) 

The plastic part of the deviatoric strain increment is derived 
from Eq. (4.55) and the consistency condition, 0df � . The 
elastic part of the deviatoric strain increment is given as  

1
2( )

E
ij ijE

m

de ds
G � ��                                                       (4.61) 

where EG  is the elastic shear modulus normalized to the mean 
effective stress, namely, m� � . The elastic volumetric strain in-
crement is also obtained with swelling index �  and void ratio 
e  as

'
1 '

E m
kk

m

dd
e

� ��
�

�
�

                                                         (4.62) 

4.4 Performance of the proposed model 

Theoretical simulation of Toyoura sand 
A theoretical simulation of the behavior of Toyoura sand under 
undrained cyclic shear tests was conducted with torsional hol-
low cylinder test apparatus (Earthquake Engineering Committee 
JSCE (2003); Oka, Furuya and Uzuoka, 2004c). The specimen 
was consolidated under an isotropic pressure of 98kPa. The 
minimum void ratio was 0.605 and the maximum void ratio was 
0.977. Figs. 4.3 – 4.6 show the theoretical and the experimental 
results. 

(a) Experiment                     (b) Theoretical simulation 
Figure 4.3. Stress-strain relations (Dr = 60%). 
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(a) Experiment                       (b) Theoretical simulation 
Figure 4.4. Stress-strain relations (Dr = 90%). 

(a) Experiment                       (b) Theoretical simulation 
Figure 4.5. Stress paths (Dr = 60%). 

(a) Experiment                       (b) Theoretical simulation 
Figure 4.6. Stress paths (Dr = 90%). 

From Figs. 4.3 – 4.4, it is seen that the proposed model can 
successfully simulate the stress-strain relation of medium sand 
and dense sand (Dr = 60 - 90%). Figs. 4.5 – 4.6 indicate the cor-
responding stress paths. The simulated results are similar to the 
experimental results. From these numerical results, it can be 
concluded that the proposed model can well predict the behav-
ior of sand for a wide range of relative densities. 

4.5 Numerical applications 

Oka et al. (1994b) proposed a numerical method based on a u-p 
formulation with the finite element method and the finite differ-
ence method in the infinitesimal strain field. The equation of 
motion is discretized by FEM and the continuity equation is 
discretized by the finite difference method (Oka et al., 1994b). 
As for the time discretization in the time domain, Newmark’s 
�  method is used. In addition, Rayleigh’s damping is used in 
the analysis which is proportional to the initial stiffness matrix 
and the mass matrix. The numerical procedure is implemented 
in the computer program: LIQCA2D (two-dimensional, Oka et 
al., 2005) and LIQCA3D (three-dimensional) for the infinitesi-
mal strain field and LIQCAFD for the finite deformation theory 
(Oka et al., 2001; Oka, 2002). In these programs, a cyclic 
elasto-plastic model for sand (Oka et al. 1999a), its modified 
model, and an elasto-viscoplastic model for clay (Oka and Ya-
shima, 1995) are used. In this section, as a numerical example 
of a three-dimensional liquefaction analysis, a site response 
analysis on Port Island in Kobe City, Japan during the 1995 

Hyogo-ken Nambu Earthquake is presented (Oka, Uzuoka, 
Tateishi and Yashima, 2003b). 

Vertical array records at Port island 
Strong borehole motion vertical array observations on Port Is-
land have been conducted by the Development Bureau of Kobe 
City. Three components of the accelerations which consisted of 
N-S, E-W, and U-D directions have been recorded at four levels 
for depths of GL-83 m, GL-32 m, GL-16 m, and GL-0 m, as 
shown in Fig. 4.7. The depth of GL-83 m corresponds to the 
base layer which is on top of the diluvial dense sand, namely, 
Ds. The depth of GL-32 m is on the bottom of the alluvial me-
dium dense sand, namely, As. The depth of GL-16 m is on the 
bottom of the reclaimed gravelly sand, namely, B3. 

The acceleration histories of the main shock during the 1995 
Hyogo-ken Nambu Earthquake on January 17 were obtained. 
The epicenter was the northern edge of Awaji Island and JMA's 
magnitude was 7.2 (modified; 7.3, 2001). The obtained accel-
eration histories will be shown later with the simulated results. 

Numerical data for the analysis 
The computer code "LIQCA-3D" was used in the analysis. This 
program was developed based on the above-mentioned cyclic 
elasto-plasticity model for sand and a cyclic elasto-
viscoplasticity model developed by Oka and Yashima (1995). 
The cyclic elasto-plasticity model for sand was applied to layers 
B1, B2, B3, and As, as shown in Fig. 4.7. In this simulation, we 
used Method III for the shear modulus reduction depending on 
plastic shear strain history. The cyclic elasto-viscoplasticity 
model for clay was applied to the Ac layer in Fig. 4.7. To model 
the stiff sandy ground and sandy gravel, a generalized Ramberg-
Osgood model was used in which the second invariant of the 
deviatoric stress tensor is incorporated. The Ramberg-Osgood 
model was applied to the Ds/c, Dc, and Ds layers in Fig. 4.7. In 
Table 4.1, the material parameters used in the analysis are listed. 
These parameters are determined by the existing field and the 
laboratory testing data. 
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Figure 4.7. Soil profile at the observation. 

Basic ground parameters 
The soil profile and the ground water table were determined 
from Fig. 4.7, which was obtained through boring at the obser-
vation site. The density and the void ratio were determined from 
the density measurement of an undisturbed sample obtained af-
ter the earthquake.  

The coefficient of permeability was determined from labora-
tory permeability tests on the undisturbed sample obtained after 
the earthquake. The shear velocity was estimated from the PS 
logging tests at the observation site in 1995 and 1999. 
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Figure 4.8. Liquefaction strength for reclaimed soil. 

Parameters for the elasto-plasticity model 
It is important to estimate an appropriate shear modulus in an 
earthquake response analysis. The actual shear modulus of the 
elasto-plastic model is given as elasto-plastic shear modulus 

EPG  in the analysis.  
The failure stress ratio was determined from the undrained 

triaxial tests using the undisturbed sample. The phase transfor-
mation stress ratio was determined from past laboratory tests by 
Pradhan et al. (1989a, 1989b). 

The remaining parameters were determined by the data ad-
justing method for the undrained cyclic shear tests. In these tests, 
the values of the material parameters were selected in order to 
provide a good description of the stress-strain relations under 
cyclic loading conditions and liquefaction strength curves. The 
undrained cyclic shear tests for the reclaimed soil were con-
ducted with an in-situ frozen sample by Suzuki et al. (1997). 
The experimental and the simulated liquefaction strength levels, 
which were cyclic shear stress levels producing a double ampli-
tude strain of 7.5% with a particular number of cycles, are 
shown in Fig. 4.8. The simulated liquefaction strength for the 
reclaimed B2 layer agrees well with the experimental one. 

Parameters for the elasto-viscoplasticity model 
All the remaining parameters were determined in the undrained 
triaxial tests using the clay samples obtained at the observation 
site. In particular, the viscoplastic parameters were determined 
from the monotonic shear tests with two different loading rates. 
We confirmed the applicability of the determined parameters 
through a simulation for the dynamic strength obtained by the 
cyclic shear tests. 

Parameters for the ramberg-osgood model 
The remaining parameters were determined from the strain-
dependent shear modulus and the damping ratio, which were 
obtained by the undrained cyclic shear tests with multi-step 
loading. The Ds/c, Dc, and Ds layers modeled by the Ramberg-
Osgood model (Oka et al., 2004a) had no dilatancy, therefore, 
these layers generated no buildup of excess pore-water pressure. 

FE model and the numerical parameters 
A single column ground model composed of three-dimensional 
solid finite elements was used for the analysis. The number of 
finite elements was 31 with 128 nodes. The model displace-
ments were fixed at the base. Four nodes at the same depth were 
assumed to move coincidentally. The lateral and the bottom 
boundaries were assumed to be impermeable, while the ground 
water surface was assumed to be permeable. As an input earth-
quake motion at the base rock, the three components (NS, EW, 
and UD) of the acceleration records obtained at a depth of -83 m 
of the vertical array recording site on Port Island were used. 

Rayleigh damping, proportional to the initial stiffness, 
which was determined by assuming that the damping factor is 
1%, was used as the convenient method in this study. A time in-
tegration step of 0.002 seconds was adopted to obtain sufficient 
accuracy. �  and �  in Newmark's � -method were set to be 
0.3025 and 0.6, respectively, to ensure numerical stability. 

Figure 4.9. Time histories of observed and simulated horizontal accel-
eration. 

Figure 4.10. Time histories of the observed and the simulated relative 
horizontal velocities. 

Figure 4.11. Time histories of the simulated effective stress reduction 
ratio. 
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Table 4.1: Material parameters for the numerical analysis 

Name of soil profile B1 B2 B3 
Soil type Grav-

elly 
sand 

Grav-
elly 
sand 

Grav-
elly 
sand 

Model type E-P E-P E-P 
Density �  (t/m3) 1.90 2.10 2.10 
Initial void ratio 0e  0.42 0.42 0.42 
Coefficient of permeability k  (cm/s) - 0.003 0.003 
Compression index �  0.01 0.01 0.01 
Swelling index �  0.001 0.001 0.001 
Poisson’s ratio �  - - - 
Initial shear velocity sV  (m/s) 140 140 230 
Initial shear modulus ratio 0 'mG �  2002 730 1019 
Failure stress ratio *

fM  1.34 1.34 1.34 
Phase transformation stress ratio *

mM  0.91 0.91 0.91 
Internal friction angle '�  (deg) - - - 
Hardening parameter *

0B *
1B  6000 

0
1500 
150 

2100 
140 

Control parameter of anisotropy dC  2000 2000 2000 
Reference strain parameter *p

r�
*e

r�
1000 
1000 

0.005 
0.005 

0.004 
0.004 

Dilatancy parameter *
0D

n
0.0 
0.0 

1.0 
4.0 

1.0 
4.0 

 Ac As Ds/c Dc Ds 
Soil Marine 

clay 
Sand Sand 

with clay 
Marine 

clay 
Sand 

Model E-VP E-P R-O R-O R-O 
�  (t/m3) 1.67 2.00 2.00 2.00 2.00 

0e  1.41 0.50 0.50 1.20 0.50 
k
(cm/s) 

0.0002 0.002 0.002 0.0001 0.002 

�  0.331 0.01 - - - 
�  0.0425 0.001 - - - 
�  - - 0.35 0.35 0.35 

sV  (m/s) 180 230 330 280 450 
0 'mG �  328 516 - - - 

*
fM  1.23 1.26 - - - 
*
mM  1.03 0.91 - - - 

'�  (deg) - - 45 45 45 
*
0B
*
1B

55
-

5000 
100 

- - - 

dC  - 2000 - - - 
*p

r�
*e

r�
 0.010 

0.100 
-
-

-
-

-
-

*
0D

n
 - 

-
0.0 
0.0 

-
-

-
-

Numerical results 
A comparison of the simulated and the observed absolute accel-
eration histories are presented in Fig. 4.9. The amplitudes as 
well as the phases were reproduced in the simulation results, al-
though the peak acceleration at depths of GL-16 m and GL-32 
m were underestimated. The simulated peak acceleration was 
affected by the numerical parameters related to damping. In this 
simulation, we overestimated the damping of the lower layers 
more than the reclaimed layer. A comparison of the simulated 
and the observed relative velocity histories are presented in Fig. 
4.10. The relative velocity is given by subtracting the base ve-
locity at a depth of GL-83 m. The observed velocity was ob-
tained by integrating the acceleration histories in the time do-
main. The simulation reproduced the observed velocity very 
well for the amplitudes and phases.  

The simulated time histories of the effective stress decreas-
ing ratio, which is given by 01.0 /m m� �� �� , in reclaimed layers 
B2 and B3, are shown in Fig. 4.11. Complete liquefaction oc-
curred after a few strong motion cycles around about 8 seconds 

in the reclaimed layer. Changes in the frequency property in the 
acceleration and the velocity at the ground surface are due to the 
liquefaction in the reclaimed layer. It is well known that exten-
sive soil liquefaction was observed on Port Island, which is a 
man-made island in Kobe City (Shibata et al., 1996). It is seen 
that the proposed liquefaction method, based on the cyclic 
elasto-plasticity model, can well simulate the dynamic response 
of a liquefiable ground. 

4.6 Numerical analysis of the dynamic behavior of a pile 
foundation considering liquefaction  

Many structures were damaged during the 1995 Hyogo-ken 
Nambu Earthquake. It was found from the field investigations 
after the earthquake that not only the pile heads, but also the 
lower parts of the piles had cracked or failed. This phenomenon 
indicates that both the inertia force from the upper structures 
and the kinematic interaction between the piles and the ground 
play important roles in the mechanical behavior of piles. In par-
ticular, when the ground surrounding a structure liquefies due to 
seismic excitations, the behavior of the piles is more compli-
cated. Damage related to liquefaction may involve cases in 
which the pile foundation is damaged due to the lateral flow of 
liquefied soils, and/or the piles fail at the boundary between two 
different soil layers, of which one liquefies while the other does 
not. In this study, a series of numerical simulations were con-
ducted to study the dynamic behavior of a single-pile founda-
tion constructed in a two-layer ground, whose upper layer is 
filled with sandy soil which is dense sand, reclaimed soil, me-
dium dense sand or loose sand, respectively, and whose lower 
layer is filled with clayey soil employing a three-dimensional 
liquefaction analysis method (code name: LIQCA3D) to clarify 
the mechanism of the interactions among the soil-pile-structure 
(Lu, 2002; Oka, Lu and Zhang, 2004b). 
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Figure 4.12. Stress-strain relations of steel and concrete adopted in the 
AFD model for RC material. 

4.6.1 Numerical simulation methods 
The two-layer ground considered in this paper is a typical one 
near the shore of a major Japanese urban city, such as Kobe. In 
order to study the influence of the soil characteristics, four dif-
ferent sandy materials are considered for an upper sandy 
ground, that is, dense sand, medium dense sand, loose sand, and 
reclaimed soil. Table 4.2 shows the parameters involved in the 
constitutive models for the different types of soil, in which the 
constitutive model for sand is described in detail in Section 4.3. 
On the other hand, an axial force-dependent (AFD) model 
(Zhang and Kimura, 2002), in which the nonlinear behavior of 
steel and concrete is properly described and shown in Fig. 4.12, 
is used to describe the dynamic behavior of the RC pile which is 
1.5 m in diameter. The parameters of the RC pile are shown in 
Table 4.3. 

The governing equations for the coupling problems between 
the soil skeleton and the pore-water pressure are obtained based 
on the two-phase mixture theory. The liquefaction analysis is 
formulated using a u-p. The side boundaries of the simulated 
system are assumed to be equal-displacement boundaries, the 
bottom of the system is fixed, and the boundaries are imperme-
able except for the surface of the ground. In this dynamic analy-
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sis, a stiffness-matrix-dependent type of Rayleigh damping is 
adopted and the direct integration method of Newmark- �  is 
used in this dynamic analysis with a time interval of 0.01 sec. 
The ground water table is 1.5 m beneath the ground surface. 
The mass of the superstructure is 80,000 kg and the height of 
pier is 8 m. Fig. 4.13 shows the seismic wave used in this study 
and Fig. 4.14 shows the configuration of the single-pile system 
and the finite element mesh used in the calculation. 

4.6.2 Results and discussions 
Fig. 4.15 shows the history of the effective stress decreasing ra-
tio (ESDR = 0 0( ' ' ) / 'm m m� � �� ); 0'm� : initial mean effective 
stress ) of the soil in the middle of different types of sandy lay-
ers. Liquefaction occurs when ESDR is equal to 1. It can be 
seen that loose sand easily liquefies entirely, while medium 
sand and reclaimed soil almost liquefy at the end of the major 
seismic event (t = 10 sec). The effective stress of dense sand 
does not decrease much at all. Fig. 4.16 shows the histories of 
the bending moment at the pile head and in the pile segment at 
the boundary between the soil layers. Since the dense sand layer 
does not liquefy at all, the earthquake wave motion does not de-
amplify and the largest bending moment occurs at the pile head 
among the cases. On the other hand, the larger bending mo-
ments occur in the pile at the boundary between the layers at t = 
4 sec and t = 7 sec for loose sand, and medium dense sand and 
reclaimed soil, respectively, when the effective stress of the 
sand layers decreases significantly. Fig. 4.17 shows the distribu-
tion of the bending moment when the maximum bending mo-
ment takes place in each case and Fig. 4.18 shows the distribu-
tion of the bending moment at the end of the seismic event.  

The figures show that although the maximum bending mo-
ment takes place at the pile head (b15) in every case, the devel-
opment of the bending moment in the ground varies due to the 
features of the soil. 

The large bending moment takes place in the lower pile 
segment (b7) in the cases of liquefiable soil, but at the upper 
pile segment (b15) in the case of dense sand at the end of the 
seismic event. 

4.7 A case study of damage for a pile foundation due to 
liquefaction by the 1995 Hyogo-ken Nambu earthquake 

In this section, the mechanical behavior of single-pile and 
group-pile foundations in a two-layer ground during seismic ex-
citation was carefully studied (Oka et al., 2004f). In reality, 
however, the upper structure was not an elastic beam element 
with a mass, but a more complicated structure. Piles should be 
modeled as more realistic structures. In this chapter, therefore, 
an actual case record will be discussed using the same numeri-
cal technique as that in the previous chapter. 

The case study considered in this chapter involves a five-
story building, located near East Kobe Harbor, which was dam-
aged by the 1995 Hyogo-ken Nambu Earthquake. The effective 
stress based numerical analysis was conducted using a full sys-
tem composed of a five-story building, a group-pile foundation, 
and the ground. Uzuoka et al. (2001b) studied the damage to the 
pile foundation employing a bilinear model to represent the M-F 
relation of the piles and Oka et al. (2002a) showed the influence 
from the AFD model on the dynamic behavior of the structure. 
In this study, however, a detailed examination of the seismic 
behavior of the structure due to the earthquake is presented. 

Table 4.2: Material parameters for the soil 

So ils D ensity  M * f M * m G 0 /� ’
m 0

B * 0, B *1,
C f

D 0,n

Loose 2 .0  0 .80  0 .70 500 .0  2500 ,25 ,0 1 .0 ,1 .0
M edium  2 .0  1 .00  0 .80 1060 .0  4000 ,40 ,0 1 .0 ,2 .0

Reclaim ed 2 .0  1 .19  0 .91 2140 .0  5500 ,55 ,0 1 .0 ,4 .0
D ense 2 .0  1 .10  0 .85 1980 .0  8500 ,85 ,0 1 .0 ,2 .5
Clay 1 .7  1 .31  1 .28 300 .0  500 ,50 ,0  ----

Table 4.3: Material parameters for the pile

Young’s Modulus of concrete Ec (kN/m2) 2.5 � 107

Diameter of pile D (m)  1.5 
Compressive strength of concrete fc (kN/m2) 36000.00
Tensile strength of concrete ft (kN/m2) 3000.00 
Degrading parameter of concrete C�  0.20690 
Young’s Modulus of steel E (kN/m2) 2.1 � 108

Diameter of reinforcement d (m) 0.029 
Number of reinforcement N 24 
Yielding strength of steel Ys (kN/m2) 3.8 � 105
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Figure 4.13. Input wave. 
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Figure 4.14. Finite element mesh. 

Figure 4.15. Effective stress decreasing ratio time profile. 

4.7.1 Field observations at the site 
The configurations of the piles are shown in Fig. 4.19. The piles 
marked with circular symbols are the piles that were checked by 
a soundness investigation after the earthquake. Fig. 4.20 shows 
the soil profile obtained through the borehole tests. The first 
layer of the ground is reclaimed soil with a thickness of 11 m. 
The second layer is alluvial clay and the third is Pleistocene 
soil. The ground water table is about 2.2 m beneath the ground 
surface. Fig. 4.21 shows the configuration of the mesh designed 
for the numerical simulation in this case. In the FE analysis, 
4366 elements with 4803 nodes were used. The side boundaries 
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Figure 4.16. Histories of the bending moments in the pile. 
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of the simulated system were assumed to be equal-displacement 
boundaries. The bottom of the system was fixed and the 
boundaries, except for the surface of the ground, were imper-
meable. 

The bottom of the system was fixed and the boundaries, ex-
cept for the surface of the ground, were impermeable. The soil 
elements and the beam elements, whose numerical results will 
be discussed in detail later, are also shown in Fig. 4.21. 

The building is located on the west side of Fukaehama, re-
claimed land that was completed in 1965. The closest distance 
to the coastal line of the reclaimed land is about 350 m. The 
five-story building, made of RC material, was constructed in 
1988 and is supported by several group-pile foundations. Each 
pile was installed by connecting several short bars made of SC 
piles and two PHC-A piles at different depths in the ground in 
order to meet the requirements of seismic design. Since the piles 
were made from different materials, the mesh had to be de-
signed to reflect realistic conditions in the numerical analysis. 
Fig. 4.22 shows the deformation of the ground on which the 
building stood after the earthquake. The subsidence of the pile 

heads was found to be about 70 cm. The building inclined to the 
north at an inclination of 1/80 and to the east at an inclination of 
1/30. 

The superstructure itself, however, was not destroyed during 
the earthquake. In order to inspect the soundness of the piles, 
the direct observation method of the pile shaft surface, the bore-
hole television method, and the velocity logging method were 
used after the earthquake. Cracks were found on piles Nos. 1, 2, 
and 3 and an intrusion of the soils was found in pile No. 1. Sand 
boiling phenomena and subsidence of the ground were also 
found in the area. Therefore, liquefaction of the ground must 
have taken place during the earthquake. Furthermore, the dam-
age which occurred in the lower segments, located at the 
boundary between the sand layer and the clay layer, may have 
been caused by the influence of the large deformation of the re-
claimed layer. 

F6 F5

F2 F1

F4

F3

E3583 E3580

E3439E3436

E3468 E3471

E3383

16m

2.2 m beneath the ground surface

Figure 4.21. Finite element mesh used in the analysis. 

Figure 4.22. Location of the building and deformation of the ground. 
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Figure 4.17. Distribution of 
the bending moment when the 
maximum bending moment 
takes place in each case. 

Figure 4.19. Configurations of 
the pile foundation,  the soil 
elements, and the beam ele-
ments.

Figure 4.20. Soil profile 
and damage to the piles.

Figure 4.18. Distribution of the 
bending moment at the end of 
the event. 
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4.7.2 Numerical procedure 
The numerical analysis was conducted based on the above-
mentioned technique. The piles were described using the AFD 
model, the superstructure was represented by an elastic beam 
element, the slabs and the walls were represented by shell ele-
ments, and the weight of each floor was concentrated into each 
slab. In the present numerical simulation, the piles in one foot-
ing were simplified as a single pile whose area and inertia mo-
ment over the x-axis and the y-axis were the sums of the origi-
nal ones. The parameters for the axial force-dependent model of 
the piles are listed in Table 4.4. For input waves, two compo-
nents of earthquake motion observed at a depth of 33 meters 
near the Higashi Kobe bridge during the 1995 Hyogoken-
Nambu earthquake; N78E in the x direction and N348E in the y 
direction were used. The side boundaries of the simulated sys-
tem were assumed to be equal-displacement boundaries. The 
bottom of the system was fixed and the boundaries, except for 
the surface of the ground, were impermeable. In the analysis, a 
stiffness-matrix-dependent type of Rayleigh damping was 
adopted and the direct integration method of Newmark- �  was 
used with a time interval of 0.002 sec. 

In order to simulate the mechanical behavior of the structure 
with a group-pile foundation, it was necessary to determine the 
parameters of the constitutive models for sandy soil and clayey 
soil. Numerical simulations of the sandy soil and the clayey soil 
were firstly conducted on one element. The stress paths of the 
reclaimed soil, which were above the groundwater table, de-
creased but did not reach zero. On the other hand, the stress path 
response of the reclaimed soil under the groundwater table (GL-
2.2 m ~ GL-10.7 m) lead to a zero effective stress state. Fig. 
4.23 shows a comparison between the liquefaction strength lev-
els from the laboratory tests conducted on undisturbed samples 
from the field and the numerical simulations in which the pa-
rameters listed in Table 4.5 are used. In the present case, as ex-
pected, the Ac layer that is composed of a clayey soil did not 
liquefy. 

4.7.3 Results of a simulation by a 3-D dynamic analysis 
Comparison between the results of field observations and a nu-
merical analysis 

Fig. 4.24 illustrates a comparison in which the acceleration 
responses of the ground surface from the observations and the 
computed accelerations in the EW direction agree well with 
each other in phase, but slightly disagree in amplitude. The 
computed results are smaller than the observed ones at 6 sec for 
the amplitude. Accelerations in the NS direction agree well with 
each other in both amplitude and phase. 

Fig. 4.25 shows a comparison of the velocity responses of the 
ground surface from the observations and the computation. The 
results both in NS and EW directions agree well with each 
other. 

Table 4.4: Pile parameters 

Pile types SC 
Outer diameter D (mm) 600 500 
Inner diameter iD (mm) 510 420 
Thickness T (mm) 90 80 
Thickness of steel pipe t (mm) 6.0 6.0 
Thickness of concrete 

cd (mm) 45 40 
Diameter of reinforcement � (mm) 22.7 20.7 
Number of reinforcements N  28 28 
Compression strength of concrete 

c� (kPa)  
7.84 � 104 7.84 � 104

Tensile strength of concrete t� (kPa)  4.7 � 103 4.7 � 103

Yielding strength of steel s� (kPa) 2.35 � 105 2.35 � 105

Failure bending moment uM (kNm) 803.5 578.3 
Failure curvature (1/m) 2.75� 10-3 3.77 � 10-3

Pile types PHC-A
Outer diameter D (mm) 600 500 
Inner diameter iD (mm) 510 420 
Thickness T (mm) 90 80 
Thickness of steel pipe t (mm) 0.0 0.0 
Thickness of concrete 

cd (mm) 45 40 
Diameter of reinforcement � (mm) 7.1 7.1 
Number of reinforcements N 19 14 
Compression strength of concrete 

c� (kPa)  7.84 � 104 7.84 � 104

Tensile strength of concrete t� (kPa)  4.7 � 103 4.7 � 103

Yielding strength of steel s� (kPa) 1.27 � 106 1.27 � 106

Failure bending moment uM (kNm) 681.1 465.9 
Failure curvature (1/m) 2.48 � 10-3 3.48 � 10-3

Ec=4.50� 107(kPa), Es=2.1� 108(kPa) 
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Figure 4.23. Liquefaction strength. 
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Figure 4.24. Comparisons of the acceleration responses of the ground 
surface. 

Table 4.5: Parameters used in the analysis 
Name of the soil profile Bs Ac 

Density (t/m3) 2.0 1.7 
Initial void ratio 0.42 1.41 
Coefficient of permeability (m/sec) 2.2 � 10-5 3.8 � 10-11

Compression index 0.0100 0.3310 
Swelling index 0.0010 0.0425 
Initial shear modulus ratio 1686.0 401.0 
Failure stress ratio M*

f 1.20 1.23 
Phase transformation ratio M*

m 0.91 1.03 
Hardening parameter B0, B1, Cf for 
sand, B0, Bs, Ct for clay 

3500.0, 70.0, 
0.0 

55.0, 0.0, 0.0 

Parameter of anisotropy Cd 2000.0  
Dilatancy parameter D0, n 1.0, 4.0  
Viscoplastic parameter 'm ,
 C01, 

 C02 (1/sec) 

 14.0, 
5.54 � 10-6,
7.76 � 10-7
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Figure 4.25. Comparisons of the velocity responses of the ground sur-
face. 
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Figure 4.26. Comparisons of the displacement responses of the ground 
surface. 
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Fig. 4.26 shows a comparison of the displacement responses 
of the ground surface from the observations and the computa-
tion.  The general tendency is for the computed results to be lar-
ger than the observed ones in the whole time duration in both 
NS and EW directions. The phases of the displacement re-
sponses, however, are in good agreement. It is also known that 
in the EW direction, the residual displacement obtained from 
the computation has an opposite tendency to that of the re-
corded data.  

Fig. 4.27 shows a comparison of the orbit of the displace-
ments of the computed and the recorded results. The computed 
and the observed results are in good agreement with respect to 
tendency. 

Acceleration and lateral displacement responses 
The acceleration responses of the superstructure and the ground 
surface at a faraway field are shown in Fig. 4.28. It was found 
that the acceleration responses of the building were larger than 
the acceleration responses of the ground. After liquefaction, the 
acceleration responses of both the structure and the ground sur-
face decreased significantly. 

The lateral displacements of the superstructure and the pile 
heads are shown in Fig. 4.29. The displacement responses of the 
superstructure are similar to those of the ground surface. At the 
end of the calculation (t =20 sec), the building inclined and re-
mained in a residual displacement towards the NW, which is 
different from the observed tendency in which the building in-
clined towards the NE. The reason is that the computation of the 
analysis only considered the behavior of the pile foundation and 
the ground during an extensive earthquake (t= 20 sec), in which 
the consolidation after the major waves, which would influence 
the inclination of the pile foundation at an actual site, was not 
computed. 

(a) Acceleration responses of the structure (N1) (b) Acceleration responses of the ground surface (N2)
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Figure 4.28. Acceleration responses. 
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Figure 4.29. Displacement responses in the EW and NS directions. 

Effective stress decreasing ratio (ESDR)  
Fig. 4.30 shows the ESDR of the soil elements around the piles 
at the corners, at the neighboring areas of the pile foundation, 
and at the faraway field shown in Fig. 4.2, respectively. It can 
be seen that liquefaction took place at about 8 sec and that the 
excess pore-water pressure ratio of the soil elements around 
footings F2 and F5 developed significantly, while the others did 
not. It shows that the interaction between these soil elements 
and the piles remained intensive after liquefaction. It was also 
found that the liquefaction of the soils within the foundation oc-
curred faster than that of the soils at the faraway field. One pos-
sible reason for this is that the soil within the foundation was 
not firmly confined by the group piles, which were separated 
from each other at quite large distances. 

(a) Surrounding the piles at the corners (b) Within foundation and at faraway field

Figure 4.30. Decreasing effective stress ratio of different soil elements. 

Curvature responses 
Fig. 4.31 shows a so-called resultant curvature, whose value is 
equal to the root of the summation of the square of the curvature 
in the x direction plus the square of the curvature in the y direc-
tion, at the pile head and at the bottom of the reclaimed layer for 
F1 to F4, respectively. The curvature reached a large value at 
about the 6 sec point, when a large acceleration in the x direc-
tion also took place at N1. The curvature responses show a 
longer period after liquefaction and a large residual curvature 
remaining on F3, which corresponds to the location of the 
cracks examined by the investigation at pile No. 3. In Fig. 
4.31(b), the curvature responses express a large value at about 
the 7 sec point. Compared to the upper part of the piles, the cur-
vature of the piles at the bottom of the reclaimed layer after liq-
uefaction vibrated for a relatively shorter period, indicating that 
the kinematic behavior of the interaction between the soil and 
the piles at the bottom of the Bs layer is different from that at 
the pile head. 

According to Table 4.4, the failure curvatures of D = 500 
mm and D = 600 mm of the SC pile and the PHC-A pile are 
2.48×10-3 and 3.48×10-3 (1/m), respectively. In Fig. 4.31(a), the 
curvature response at the pile heads exceeds both failure curva-
tures of D =500 mm and D = 600 mm, which shows that the pile 
segments would be damaged due to the earthquake. In addition, 
it can be seen that the curvature responses of the segment at the 
bottom of the reclaimed (Bs) layer exceed the failure curvatures 
for both D = 500 mm and D = 600 mm. 
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Figure 4.31. Time histories of the curvature responses at different loca-
tions. 

4.8 Summary 

In the first part of the present chapter, studies on the liquefac-
tion analysis method and the constitutive model for sand, which 
are applicable for a liquefaction analysis, were reviewed. Then, 
the liquefaction analysis method was presented with a cyclic 
elasto-plastic model for sand. Finally, the application of the 
method to the liquefaction of a ground and a soil pile founda-
tion-structure were demonstrated and discussed.  

A cyclic elasto-plastic model for sand was successfully ap-
plied to medium to dense sand. It was confirmed that the model 
is applicable for the behavior of sand with a wide range of rela-
tive densities. Then, three-dimensional dynamic finite element 
analyses were conducted for a single pile foundation, based on 
the model and Biot’s theory, to investigate the mechanical be-
havior of the pile foundation when its surrounding ground had 
experienced liquefaction. The following conclusions were ob-
tained: 
1) The maximum bending moment at pile heads in a non-

liquefied ground are larger than those in a liquefiable 
ground;  

2) The liquefaction process may greatly increase the bending 
moment and the shear force of the piles at the boundary 
between two different layers;  

3) The responses in the cases of a medium dense sand and 
reclaimed soil are similar to those in the case of dense 
sand at the beginning;  

4) After the effective stress decreases significantly in the 
cases of medium dense sand and reclaimed soil, the re-
sponse becomes similar to that of loose sand. 

A case study, in which a building located on reclaimed land 
in Fukaehama, near Kobe City, was damaged in the 1995 
Hyogo-ken Nambu Earthquake, was presented by a 3-D effec-
tive stress analysis using FEM. In order to properly simulate the 
mechanical behavior of the soil, the parameters used in the con-
stitutive models for the soil were carefully investigated with 
laboratory tests and the liquefaction strength curve was exam-
ined. As a result, the computed acceleration responses, velocity 
responses, and displacement responses of the ground surface 
agreed well with the observations. The following points can be 
clarified: 
1)  The occurrence of liquefaction shelters the upper structure 

from being excited by an earthquake. 
2)  The occurrence of liquefaction causes a large bending mo-

ment and shear stress to develop in the pile segment at the 
boundary between the liquefied and the non-liquefied soil 
layers which may damage the piles. 

3)  The distance between the piles installed in the footing influ-
ences the buildup of excess pore-water pressure.  

4)  The damage to both the pile heads and the low segments of 
the pile at the boundary takes place before the completion of 
the liquefaction during these major earthquakes. 

5)  Even if the lateral spread of the ground does not occur, the 
damage to the piles due to liquefaction may still take place. 
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