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ABSTRACT
The background of limit analysis is given first, and various aspects, considered in the last decades, are described.  These include: ap-
plication of limit analysis for soils governed by the non-associative flow rule, solving problems with frictional boundaries, including 
pore water pressure in limit analysis calculations, application to materials with non-linear yield conditions, seismic effects, and appli-
cation to reinforced soils.  These aspects are presented briefly with the exception of the pore water consideration, where, in addition to 
a short description, some analytical background is given.  3D analyses are discussed.  Because the static approach of limit analysis is 
hindered by the difficulties in finding admissible stress fields, the major part of the report focuses on the kinematic approach.  The 
static approach, however, can be used conveniently if the numerical approach is used, and this approach is mentioned in the last sec-
tion.

1 INTRODUCTION

Although limit analysis is a well-established method in struc-
tural engineering, its application in geotechnical engineering 
has not been accepted as widely.  The first contributions to geo-
technical limit analysis (Drucker and Prager 1952) did not lead 
to immediate implementation in geotechnical engineering.  Sev-
eral developments in the last two decades made limit analysis 
more attractive as an engineering tool.  These include a practical 
approach to accounting for the nonassociativity of plastic de-
formation (flow), calculations with nonlinear yield conditions, 
accounting for presence of pore water pressure, and application 
of limit analysis to reinforced soil. In addition, development of 
numerical limit analysis methods now makes it possible to more 
efficiently address geotechnical problems with nonhomogene-
ous soils and complicated boundary conditions.  These contribu-
tions are summarized in this report. 

Emphasis is placed on the contributions to the kinematic ap-
proach of limit analysis, since the static approach is used rarely 
because of the difficulties in finding admissible stress fields.  
However, the numerical approach is mentioned in the last sec-
tion, and this approach has an advantage of being effective in 
both static and kinematic limit analysis. 

2 BACKGROUND 

A method that essentially makes use of the kinematic theorem 
of limit analysis can be traced back to the XVIII century when 
Coulomb, in his 1773 Essai, intuitively used the “maximum and 
minimum rules” to arrive at solutions to forces associated with 
structural collapse.  The modern use of this method is found 
more than 150 years later in the work of Gvozdev (1936), and 
the theoretical justification in terms of the formal theorems was 
presented later by Hill (1951) and Drucker, Prager and Green-
berg (1952).  The theorems of limit analysis can be considered 
as special cases of shakedown theorems (Melan 1938, Koiter 
1960).

The theorems of limit analysis can be proved for materials 
that conform to perfect plasticity with a convex yield crite-
rion, ( ) 0

ij
f σ = , and with deformation governed by the normal-

ity rule. The rate of work during true plastic deformation for 
such materials is not smaller than the rate of work of any stati-
cally admissible stress field, s

ijσ , during such deformation 

Figure 1.  Illustration of the principle of maximum plastic work. 

s

ij ij ij ijσ ε σ ε≥� �   (1) 

This inequality is often referred to as the principal of maximum
work.  For brevity, we dropped the superscript pl in the plastic-
strain rate.  Now, integrating inequality (1) and replacing the 
right-hand-side with the work rate of external forces using the 
principle of virtual work (in the rate form, power), we obtain 

S

ij ij i i i i

V S V

dV T v dS X v dVσ ε ≥ +� � ��  (2) 

Hence, the rate of work of external loads compatible with any 
statically admissible stress field on true plastic deformation is 
not larger than the true rate of internal plastic work.  If Ti is the 
load on S causing collapse of the structure (active load: �TividS >
0), then the inequality in (2) can be rephrased to read:  
 Theorem I:  If an equilibrium distribution of stress σij exists 
that satisfies stress boundary conditions and is everywhere be-
low yielding (f < 0), the structure will not collapse.  As this 
theorem allows bounding the limit load from below, it is often 
called the lower bound theorem.  However, this static approach 
of limit analysis will yield an upper bound to a reaction (passive 
force).  For passive load �Tivi dS < 0 and from eq. (2) one con-
cludes that the estimate of the work rate �Tivi dS  is an upper 
bound.  The use of this theorem requires construction of admis-

Ο f (σij) = 0

σij σij
s
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sible stress fields, which becomes cumbersome, particularly 
when the boundaries are complicated, and an extension of the 
stress field into the half-space needs to found. 
 The kinematic approach is based on constructing admissible 
mechanisms of failure, and the kinematic theorem is used more 
often, as reasonable collapse mechanisms are easier to construct 
than admissible stress fields.  Introducing kinematically admis-
sible strain rate field k

ijε� and associated stress k

ijσ , one can 
prove that, in any kinematically admissible mechanism, the rate 
of plastic internal work is not less than the rate of work of true 
external loads  

k k k

ij ij i i i i

V S V

dV T v dS X v dVσ ε ≥ +� � ��  (3) 

Theorem II:  If a kinematically admissible collapse mechanism 
can be found for which the rate of work of external forces ex-
ceeds the rate of internal work, the structure will collapse. 

This theorem is usually referred to as the upper bound theo-
rem, because it allows one to calculate an upper bound to the 
limit force causing failure (a lower bound if a passive force is 
sought).  It needs to be clarified that the theorem indicates 
whether the work rate of the unknown boundary force is an up-
per or lower bound; in order to pass judgment on the force it-
self, the boundary velocity needs to be constant, so that the 
work rate can be written as vi�Ti dS.

Limit analysis theorems are most often used to estimate a 
limit load, but they can be used to find an estimate of the critical 
height of a slope, the strength of reinforcement needed to avoid 
collapse, or the critical acceleration of a structure subjected to 
seismic shaking.  Developments of the last two decades are de-
scribed in the next sections; these developments make limit 
analysis useful in geotechnical engineering.  

3 NONASSICIATIVE FLOW RULE IN LIMIT ANALYSIS 

Because the proof of limit analysis theorems requires normality 
of the flow (associativity), the theorems are not valid for soils 
that are governed by the nonassociative flow rule.  It can be 
shown, however, that the true solution to active limit loads on 
structures built of nonassociative material is bounded from 
above by the solution for associative material, and it is bounded 
from below by an estimate made for a fictitious material with 
the yield condition G(σij) = 0.  Surface G = 0 is convex in the 
stress space and it is inscribed into the yield surface f = 0  (sur-
face G = 0 is constructed so that, for any σij such that f(σij) = 0, 
there is a corresponding stress ijσ ′′  on the G-surface such that 

ijε�  is normal to G = 0 at ijσ ′′ ).  The two statements were given 
by Radenkovic (1962), and they are often referred to as the limit 
analysis theorems for a nonstandard material.  Other early con-
tributions to limit analysis for materials that are not governed by 
the normality rule include de Josselin de Jong (1964), Palmer 
(1966), Collins (1969) and Mróz and Drescher (1969). 

While the two theorems of Radenkovic indicate how the re-
sults of limit analysis should be interpreted when the material 
does not conform to the normality rule, they do not indicate a 
practical manner in which to calculate the overestimation of the 
associative results versus those for the nonstandard material.  
Such a method was suggested by Drescher and Detournay 
(1993), and, even though no proof is available that it produces a 
rigorous bound, it is briefly described next, as it is a develop-
ment useful for applications in geotechnical engineering. 

This method was derived for rigid-block mechanisms and 
materials that obey the Mohr-Coulomb yield condition, and it 
stems from consideration of the traction on the velocity discon-
tinuities in nonassociative materials.  Since the velocity discon-
tinuities must be velocity characteristics, the inclination of trac-

tion on them differs for associative and nonassociative 
materials.  Consequently, the rate of internal work (dissipation) 
along velocity discontinuities is different for the two materials.  
For kinematically admissible translational mechanisms there is 
a unique solution to the traction forces on the velocity disconti-
nuities (Michalowski 1989).  As this solution is statically de-
terminate, it must be independent of the inclination of the veloc-
ity discontinuity vectors.  Consequently, one can calculate the 
limit load for nonassociative material by replacing the true me-
dium with a substitution associative material, but with the 
strength parameters replaced as follows 

cos sin cos cos
tan * *

1 sin sin 1 sin sin
, c c

ψ φ ψ φ
φ

ψ φ ψ φ
= =

− −
 (4) 

where ψ  is the dilation angle, and φ* and c* are the strength pa-
rameters of the substitution material.  This approach is used to-
day often in the kinematic approach, and it yields quite reason-
able results (Michalowski and Shi 1995). 

4 FRICTIONAL BOUNDARIES 

Calculations of work along frictional boundaries where sliding 
occurs are hindered due to unknown distribution of stress.  Such 
calculations are possible if sliding occurs with a uniform dis-
continuity vector, but if the velocity discontinuity vector varies, 
the integral dissipation rate on a sliding interface cannot be 
found directly.  This issue was addressed independently by 
Mróz and Drescher (1969) and Collins (1969) by introducing 
the normality sliding rule at frictional interfaces.  Such a sliding 
rule leads to perpendicular stress and velocity jump vectors on 
interfaces.  Consequently, the rate of work during interface slid-
ing becomes zero.  However, the normality rule on the interface 
leads to “interface separation.”  While such an incipient separa-
tion is not realistic, it does not contradict the assumptions used 
to prove the kinematic theorem of limit analysis, and active 
loads calculated are still rigorous upper bounds to true limit 
loads.  This technique of accounting for frictional boundaries 
was implemented by Mróz and Drescher (1969) in the problem 
of hopper flow, and by Collins (1969) in an analysis of a block 
squeezed between dies.  If this method is used in a case where 
the rate of work on the interface can be calculated directly, the 
technique suggested and the direct computations produce iden-
tical results in terms of limit loads.  

5 PORE WATER PRESSURE IN LIMIT ANALYSIS: 
SEEPAGE AND BUOYANCY FORCES 

Including water in the kinematic approach of limit analysis re-
quires that the pore water pressure be considered as an external 
(but distributed) load acting on the soil.  For instance, the work 
of pore water on soil particle B in Fig. 2 on virtual displacement 
δu is exactly equal to the work of the buoyancy force acting on 
particle B and the seepage force.  The work of both must be in-
cluded in limit analysis.  It is demonstrated here that this can be 
done conveniently by considering the work of the pore water 
pressure on the expansion (dilatancy) of the skeleton, much like 
the air pressure acting on the shell of a balloon.  If the balloon 
membrane expands, the air pressure inside the balloon does 
work on this expansion.  In the same manner the pore water 
pressure in the soil will do work on the volumetric strain of the 
skeleton.  Consequently, the work of the pore water pressure 
can be included as an additional term on the right-hand-side in 
theorem (3). 
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Figure 2.  Particle moving during failure in saturated soil. 

To derive the terms in the work rate balance equation that 
account for the presence of water, consider derivative ∂/∂xi of 
the product uvi, where u is the pore water pressure and vi is the 
velocity vector 

( ) wherei i
i i ii

i i i i

v vu
uv v u

x x x x
ε

∂ ∂∂ ∂
= + = −

∂ ∂ ∂ ∂
�  (5) 

iiε� is the volumetric strain rate (the minus sign appears because 
of the compression-positive sign convention).  The water pres-
sure u in eq. (5) can be represented as a function of the hydrau-
lic head h.  With the omission of the kinetic part, the hydraulic 
head is 

w

u
h Z

γ
= +   (6) 

where wγ is the unit weight of water, and Z is the elevation 
head.  Substituting the pore pressure u from eq. (6) into eq. (5), 
and after some transformations, one obtains  

ii i i

V S

w i w i

V Vi i

u dV un v dS

h Z
v dV v dV

x x

ε

γ γ

− =

∂ ∂
− +

∂ ∂

� �

� �

�

 (7) 

The second term on the right-hand side represents the work of 
the seepage force (-γw∂h/∂xi) in the entire mechanism, and the 
last term is the work of the buoyancy force.  To include the in-
fluence of the water on the stability of an earth structure, both 
the work of seepage and buoyancy forces must be included in 
the analysis.  These terms can be included explicitly, or, based 
on eq. (7), one can write  

u ii i i

V S

W u dV un v dSε= − −� �� �   (8) 

The first integral is the work of the pore pressure on the volu-
metric strain of the skeleton, and the second one is the work of 
the water pressure on boundary S of the structure.  The first 
term on the right-hand side is positive in a field with dilating 
soil and compressive pore pressure.  Examples of application of 
this technique can be found in Michalowski (1995, 1999). 

6 LIMIT ANALYSIS WITH NONLINEAR YIELD 
CONDITIONS

A benefit of using linear Mohr-Coulomb yield conditions in 
limit analysis stems from convenient calculations of the internal 
work rate (dissipation) both on discontinuities and within con-
tinually deforming regions.  For materials with linear yield con-
ditions and the associative flow rule, this rate is independent of 
the stress state in the soil.  This is not true, however, for materi-
als with nonlinear yield criteria.  Early calculations of the dissi-
pation rate for a non-linear yield condition are those in Chen 
and Drucker (1969), where the stress vector was uniquely re-
lated to the magnitude of an angle of dilatancy through the flow 
rule. A series of papers appeared on the subject in the late 

1980s, one with a suggestion of approaching the problem using 
variational technique (Zhang and Chen 1987), and others with a 
proposal of replacing the nonlinear yield condition with one, or 
a series of straight-line segments (Drescher and Christopoulos 
1988, Collins et al. 1988).   

Figure 3.  Limit analysis with a non-linear yield condition. 

As the non-linear yield condition is inscribed into a fictitious 
linear or piece-wise linear yield function, calculated limit loads 
remain rigorous upper bounds.  The central issue in this tech-
nique is the choice of the linear segment(s), so that the best es-
timate of the limit load is obtained.  The method suggested by 
Drescher and Christopoulos (1988) is particularly convenient, 
as it allows one to utilize existing solutions for the linear Mohr-
Coulomb criterion to assess limit loads for non-linear yield 
functions.

7 ACCOUNTING FOR SEISMIC EFFECTS USING LIMIT 
ANALYSIS 

Seismic effects are traditionally accounted for in stability con-
siderations of geotechnical structures by including a quasi-static 
force associated with some magnitude of seismic acceleration.  
Including such a force in the kinematic approach of limit analy-
sis is straightforward, through the inclusion of additional work-
rate term on the right-hand side of inequality (3).  However, 
such an approach ignores the seismic process (acceleration his-
tory) and does not give any insight into the behavior of the 
structure.  The kinematic approach of limit analysis lends itself 
to seismic analysis consistent with the ‘sliding block’ concept 
(Newmark 1965), allowing for calculations of permanent dis-
placements of the structure.  Both rotational (Chang et al. 1984) 
and multi-block translational mechanisms have been success-
fully used within the limit analysis framework (Michalowski 
and You 2000) and presented in a form suitable for practical 
calculations of displacements due to seismic shaking.   

8 REINFORCED SOIL STRUCTURES 

One of the more recent geotechnical applications of limit 
analysis is soil reinforcement.  It was first suggested in the late 
1980s with two approaches: (a) the continuum approach, where 
the soil and reinforcement are first homogenized, and the 
anisotropic continuum is considered (e.g., de Buhan et al. 1989, 
Sawicki 1983, 2000), and (b) the structural approach, where 
reinforcement is considered as separate structural members 
(Anthoine 1989, de Buhan and Salençon 1993, Michalowski and 
Zhao 1995). The latter is often called a mixed approach, since the 
reinforcement is considered as structural members and the soil is 
considered as a continuum.   

The kinematic approach of limit analysis requires that, when 
reinforcement is used, the rate of work in reinforcement during 
failure be added to the left-hand side of inequality (3). There are 
two modes of reinforcement collapse: tensile failure (or rupture), 
and pull out of reinforcement from the soil.  The former lends 
itself to rigorous limit analysis (strict bound) whereas the latter 
yields an approximate result.  This  is because the distribution of

τ

σ

εij

σij

f (σij) = 0
f '(σij) = 0

B
δu

sible stress fields, which becomes cumbersome, particularly 
when the boundaries are complicated, and an extension of the 
stress field into the half-space needs to found. 
 The kinematic approach is based on constructing admissible 
mechanisms of failure, and the kinematic theorem is used more 
often, as reasonable collapse mechanisms are easier to construct 
than admissible stress fields.  Introducing kinematically admis-
sible strain rate field k

ijε� and associated stress k

ijσ , one can 
prove that, in any kinematically admissible mechanism, the rate 
of plastic internal work is not less than the rate of work of true 
external loads  

k k k

ij ij i i i i

V S V

dV T v dS X v dVσ ε ≥ +� � ��  (3) 

Theorem II:  If a kinematically admissible collapse mechanism 
can be found for which the rate of work of external forces ex-
ceeds the rate of internal work, the structure will collapse. 

This theorem is usually referred to as the upper bound theo-
rem, because it allows one to calculate an upper bound to the 
limit force causing failure (a lower bound if a passive force is 
sought).  It needs to be clarified that the theorem indicates 
whether the work rate of the unknown boundary force is an up-
per or lower bound; in order to pass judgment on the force it-
self, the boundary velocity needs to be constant, so that the 
work rate can be written as vi�Ti dS.

Limit analysis theorems are most often used to estimate a 
limit load, but they can be used to find an estimate of the critical 
height of a slope, the strength of reinforcement needed to avoid 
collapse, or the critical acceleration of a structure subjected to 
seismic shaking.  Developments of the last two decades are de-
scribed in the next sections; these developments make limit 
analysis useful in geotechnical engineering.  

3 NONASSICIATIVE FLOW RULE IN LIMIT ANALYSIS 

Because the proof of limit analysis theorems requires normality 
of the flow (associativity), the theorems are not valid for soils 
that are governed by the nonassociative flow rule.  It can be 
shown, however, that the true solution to active limit loads on 
structures built of nonassociative material is bounded from 
above by the solution for associative material, and it is bounded 
from below by an estimate made for a fictitious material with 
the yield condition G(σij) = 0.  Surface G = 0 is convex in the 
stress space and it is inscribed into the yield surface f = 0  (sur-
face G = 0 is constructed so that, for any σij such that f(σij) = 0, 
there is a corresponding stress ijσ ′′  on the G-surface such that 

ijε�  is normal to G = 0 at ijσ ′′ ).  The two statements were given 
by Radenkovic (1962), and they are often referred to as the limit 
analysis theorems for a nonstandard material.  Other early con-
tributions to limit analysis for materials that are not governed by 
the normality rule include de Josselin de Jong (1964), Palmer 
(1966), Collins (1969) and Mróz and Drescher (1969). 

While the two theorems of Radenkovic indicate how the re-
sults of limit analysis should be interpreted when the material 
does not conform to the normality rule, they do not indicate a 
practical manner in which to calculate the overestimation of the 
associative results versus those for the nonstandard material.  
Such a method was suggested by Drescher and Detournay 
(1993), and, even though no proof is available that it produces a 
rigorous bound, it is briefly described next, as it is a develop-
ment useful for applications in geotechnical engineering. 

This method was derived for rigid-block mechanisms and 
materials that obey the Mohr-Coulomb yield condition, and it 
stems from consideration of the traction on the velocity discon-
tinuities in nonassociative materials.  Since the velocity discon-
tinuities must be velocity characteristics, the inclination of trac-

tion on them differs for associative and nonassociative 
materials.  Consequently, the rate of internal work (dissipation) 
along velocity discontinuities is different for the two materials.  
For kinematically admissible translational mechanisms there is 
a unique solution to the traction forces on the velocity disconti-
nuities (Michalowski 1989).  As this solution is statically de-
terminate, it must be independent of the inclination of the veloc-
ity discontinuity vectors.  Consequently, one can calculate the 
limit load for nonassociative material by replacing the true me-
dium with a substitution associative material, but with the 
strength parameters replaced as follows 

cos sin cos cos
tan * *

1 sin sin 1 sin sin
, c c

ψ φ ψ φ
φ

ψ φ ψ φ
= =

− −
 (4) 

where ψ  is the dilation angle, and φ* and c* are the strength pa-
rameters of the substitution material.  This approach is used to-
day often in the kinematic approach, and it yields quite reason-
able results (Michalowski and Shi 1995). 

4 FRICTIONAL BOUNDARIES 

Calculations of work along frictional boundaries where sliding 
occurs are hindered due to unknown distribution of stress.  Such 
calculations are possible if sliding occurs with a uniform dis-
continuity vector, but if the velocity discontinuity vector varies, 
the integral dissipation rate on a sliding interface cannot be 
found directly.  This issue was addressed independently by 
Mróz and Drescher (1969) and Collins (1969) by introducing 
the normality sliding rule at frictional interfaces.  Such a sliding 
rule leads to perpendicular stress and velocity jump vectors on 
interfaces.  Consequently, the rate of work during interface slid-
ing becomes zero.  However, the normality rule on the interface 
leads to “interface separation.”  While such an incipient separa-
tion is not realistic, it does not contradict the assumptions used 
to prove the kinematic theorem of limit analysis, and active 
loads calculated are still rigorous upper bounds to true limit 
loads.  This technique of accounting for frictional boundaries 
was implemented by Mróz and Drescher (1969) in the problem 
of hopper flow, and by Collins (1969) in an analysis of a block 
squeezed between dies.  If this method is used in a case where 
the rate of work on the interface can be calculated directly, the 
technique suggested and the direct computations produce iden-
tical results in terms of limit loads.  

5 PORE WATER PRESSURE IN LIMIT ANALYSIS: 
SEEPAGE AND BUOYANCY FORCES 

Including water in the kinematic approach of limit analysis re-
quires that the pore water pressure be considered as an external 
(but distributed) load acting on the soil.  For instance, the work 
of pore water on soil particle B in Fig. 2 on virtual displacement 
δu is exactly equal to the work of the buoyancy force acting on 
particle B and the seepage force.  The work of both must be in-
cluded in limit analysis.  It is demonstrated here that this can be 
done conveniently by considering the work of the pore water 
pressure on the expansion (dilatancy) of the skeleton, much like 
the air pressure acting on the shell of a balloon.  If the balloon 
membrane expands, the air pressure inside the balloon does 
work on this expansion.  In the same manner the pore water 
pressure in the soil will do work on the volumetric strain of the 
skeleton.  Consequently, the work of the pore water pressure 
can be included as an additional term on the right-hand-side in 
theorem (3). 
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Figure 4.  Reinforced soil: (a) Schematic for calculating rate of internal 
work, and (b) application to reinforced slopes. 

the normal stress acting on reinforcement is needed for 
calculations of the pull out force, while this stress can only be 
approximately estimated without taking on numerical elasto-
plastic analysis.   Denoting the tensile strength of reinforcement as 
Tt , the rate of dissipated internal work during failure can be 
calculated as an integral of the work in the reinforcement segment 
within the shear band of thickness t, Fig. 4  

/ sin

0

| | [ ] cos( )
t

t l tD T dx T v
η

ε η φ= = −� �  (9) 

The work that is associated with shear and bending of soil nails 
during incipient failure can be calculated in a similar manner 
(de Buhan and Salençon 1993).  Including the internal work of 
reinforcement in inequality (3) allows one to calculate the nec-
essary strength of the reinforcement to prevent collapse of the 
structure (or the number of layers, the strength being given).  
Consideration of the pull-out failure then leads to estimating the 
necessary length of reinforcement (e.g., Michalowski 1997). 

9 THREE-DIMENSIONAL PROBLEMS 

Calculations of 3D problems using limit analysis are similar to 
those in 2D analysis.  However, as the method is based on 
“guessing” the stress distribution or the most realistic failure 
mechanism, the process becomes cumbersome.  For incom-
pressible materials (such as those conforming to the Tresca 
yield condition and associative flow rule), the solutions require 
somewhat less effort (Shield and Drucker 1953), but for dilative 
materials construction of 3D mechanisms is elaborate (Leca and 
Dormieux 1990, Michalowski 1985, 2001).  These mechanisms 
typically consist of plane-strain sectors (Chen 1975) or axi-
symmetric regions (Drescher 1983).  Because of the constraints 
imposed by the dilatancy on the kinematical admissibility, the 
3D mechanisms considered are usually restrictive, despite their 
complexities, and the limit analysis numerical approach to 3D 
problems (Salgado et al. 2004), or other numerical methods 
(Zhu and Michalowski 2005) are likely to yield more accurate 
results.

10 GENERALIZED STRESS SPACE 

For problems where multi-parameter limit loads are sought, it is 
convenient to introduce a generalized load space, analogous to 
the generalized stress space suggested by Prager (1955, 1959).  
This concept was adopted by Nova and Montrasio (1991) to de-
velop a constitutive law at the “structural” level with the forces 
and moments, and displacements and rotations being analogous 
to Prager’s generalized stresses and generalized strains.  This 
manner of representing both the experimental and limit analysis 
findings was found particularly convenient for footings (Got-
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Figure 5.  Failure criterion for strip footings: (a) schematic in force-
moment space, and (b) cross section (Michalowski and You 1998). 

tardi and Butterfield 1993, Salençon and Pecker 1995, and 
Michalowski and You 1998), Fig. 5. 
 Different segments on the failure surface are associated 
with different modes of failure of the soil under the footing.  
Representation of the failure state in the generalized stress space 
makes it possible to perform realistic soil-structure interaction 
analyses. 

11 NUMERICAL APPROACH 

Geotechnical problems that have been treated by limit analysis 
successfully are those that can be well represented by plane-
strain mechanisms.  Three-dimensional mechanisms, particu-
larly those for dilatant materials, often become complicated in 
their analytical description, leading to untractable solutions.  
The same is true when complicated geometry or nonhomogene-
ous soils are involved.  A numerical approach to limit analysis 
was found more efficient in these applications.  A significant 
advantage that the numerical approach brings is the ability to 
yield both upper and lower-bound solutions, whereas the tradi-
tional (semi-analytical) approach is efficient only in the kine-
matic approach. A steady development of the numerical meth-
od, and its applications, has been noted in the last two decades, 
with the earlier contributions by Sloan (1988, 1989), and, more 
recently, with a team of coworkers (Salgado et al. 2004, Hjiaj et 
al. 2005).
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Figure 4.  Reinforced soil: (a) Schematic for calculating rate of internal 
work, and (b) application to reinforced slopes. 

the normal stress acting on reinforcement is needed for 
calculations of the pull out force, while this stress can only be 
approximately estimated without taking on numerical elasto-
plastic analysis.   Denoting the tensile strength of reinforcement as 
Tt , the rate of dissipated internal work during failure can be 
calculated as an integral of the work in the reinforcement segment 
within the shear band of thickness t, Fig. 4  
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The work that is associated with shear and bending of soil nails 
during incipient failure can be calculated in a similar manner 
(de Buhan and Salençon 1993).  Including the internal work of 
reinforcement in inequality (3) allows one to calculate the nec-
essary strength of the reinforcement to prevent collapse of the 
structure (or the number of layers, the strength being given).  
Consideration of the pull-out failure then leads to estimating the 
necessary length of reinforcement (e.g., Michalowski 1997). 

9 THREE-DIMENSIONAL PROBLEMS 

Calculations of 3D problems using limit analysis are similar to 
those in 2D analysis.  However, as the method is based on 
“guessing” the stress distribution or the most realistic failure 
mechanism, the process becomes cumbersome.  For incom-
pressible materials (such as those conforming to the Tresca 
yield condition and associative flow rule), the solutions require 
somewhat less effort (Shield and Drucker 1953), but for dilative 
materials construction of 3D mechanisms is elaborate (Leca and 
Dormieux 1990, Michalowski 1985, 2001).  These mechanisms 
typically consist of plane-strain sectors (Chen 1975) or axi-
symmetric regions (Drescher 1983).  Because of the constraints 
imposed by the dilatancy on the kinematical admissibility, the 
3D mechanisms considered are usually restrictive, despite their 
complexities, and the limit analysis numerical approach to 3D 
problems (Salgado et al. 2004), or other numerical methods 
(Zhu and Michalowski 2005) are likely to yield more accurate 
results.

10 GENERALIZED STRESS SPACE 

For problems where multi-parameter limit loads are sought, it is 
convenient to introduce a generalized load space, analogous to 
the generalized stress space suggested by Prager (1955, 1959).  
This concept was adopted by Nova and Montrasio (1991) to de-
velop a constitutive law at the “structural” level with the forces 
and moments, and displacements and rotations being analogous 
to Prager’s generalized stresses and generalized strains.  This 
manner of representing both the experimental and limit analysis 
findings was found particularly convenient for footings (Got-
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Figure 5.  Failure criterion for strip footings: (a) schematic in force-
moment space, and (b) cross section (Michalowski and You 1998). 

tardi and Butterfield 1993, Salençon and Pecker 1995, and 
Michalowski and You 1998), Fig. 5. 
 Different segments on the failure surface are associated 
with different modes of failure of the soil under the footing.  
Representation of the failure state in the generalized stress space 
makes it possible to perform realistic soil-structure interaction 
analyses. 

11 NUMERICAL APPROACH 

Geotechnical problems that have been treated by limit analysis 
successfully are those that can be well represented by plane-
strain mechanisms.  Three-dimensional mechanisms, particu-
larly those for dilatant materials, often become complicated in 
their analytical description, leading to untractable solutions.  
The same is true when complicated geometry or nonhomogene-
ous soils are involved.  A numerical approach to limit analysis 
was found more efficient in these applications.  A significant 
advantage that the numerical approach brings is the ability to 
yield both upper and lower-bound solutions, whereas the tradi-
tional (semi-analytical) approach is efficient only in the kine-
matic approach. A steady development of the numerical meth-
od, and its applications, has been noted in the last two decades, 
with the earlier contributions by Sloan (1988, 1989), and, more 
recently, with a team of coworkers (Salgado et al. 2004, Hjiaj et 
al. 2005).
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