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ABSTRACT
In this note we summarize briefly the origins of localization theory and  we provide an overview of  recent contributions in the subject
of shear-banding as applied to Geomechanics. 

1. INTRODUCTION

Localization theory is a natural extension of Mohr’s strength of 
materials theory, which was published in the year 1900. The 
mathematical formulation of bifurcation and post-bifurcation phe-
nomena and related instabilities constitutes the basis of a contem-
porary continuum theory of failure (cf. Vardoulakis & Sulem 
1995).
  Localization of deformation leads to a change of scale of the 
problem, so that phenomena occurring at the scale of the grain 
cannot be ignored anymore in the mechanical modeling process of 
the macroscopic behavior of the material. Thus in order to de-
scribe correctly localization phenomena it appears necessary to re-
sort to the so-called continuum models with micro-structure. 
These observations have prompted the extension of the classical 
continuum mechanics descriptions of solids by resorting to the so-
called Cosserat- or Gradient models. These generalized continua 
usually contain additional kinematical degrees of freedom and/or 
higher deformation gradients, which account somehow for the ma-
terial’s micro-structure. The description of statics and kinematics 
of continuous media with microstructure has been studied system-
atically by many authors in the past. This work was revived in the 
last two decades of the 20th century, in order to address properly 
the problem of localization. 

Figure 1. Dual shear bands in perlite (Sarakina Melos Island, Greece1)

                                                                
1 Vardoulakis I. Behavior of Granular Materials. In: Handbook of Materi-
als Behavior Models (Jean Lemaitre Ed.) Chapter 11.4, Academic Press, 
2001. 

2. STATE-OF-THE-ART  

2.1 Shear banding in Soil Mechanics 

Localization phenomena are central in Soil Mechanics and in 
years past they have been studied extensively by many researchers 
worldwide. Recently several papers were published summarizing 
the state-of-the-art on localization of the deformation (“shear 
banding”) in soils (Saada et al. 1999, Nemat-Nasser & Okada 
2001, Desrues & Chambon 2002, Wood 2002, Lade 2002 & 2003, 
Gudehus & Nuebel 2004, Desrues & Viggiani, 2004). Notably, the 
experimental work of Dr Jacques Desrues and his co-workers at 
the Laboratoire 3S in Grenoble has substantially contributed to our 
understanding of localization phenomena in Soil Mechanics.  
 One basic property of localization phenomena is some degree 
discontinuity of the deformation. Today we know that prior to lo-
calization the governing partial differential equations of the under-
lying quasi-static rate-boundary-value problem are elliptic and ex-
clude discontinuous solutions. At the onset of localization these 
equations are changing type and from elliptic they turn hyperbolic. 
Slip-lines and shear-bands are thus identified with the characteris-
tic lines of the governing hyperbolic partial differential equations.  

From the theoretical point of view the so-called Thomas-Hill-
Mandel shear-band model was introduced in the early ‘60s and it 
was widely publicized by the paper of Rudnicki & Rice (1975). 
This model constitutes even today the starting point for further 
developments either in the direction of the so-called strong discon-
tinuities approach (Larson et al. 1996, Borja 2002) or of the weak 
discontinuities approach (Weir & Young 2003). 

Figure 2. The Thomas-Hill-Mandel shear-band model 
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The THM shear-band model is a material structure bounded by 
two stationary discontinuity surfaces of the velocity gradient
(Fig.2). The THM model yields the Rice bifurcation condition, 
expressed as (Rice, 1973, 1976, Vardoulakis 1976) 

0g )(
kik =Γ α            (1) 

where lj
u
ijklik nnC=Γ  coincides with the so-called acoustic ten-

sor of the upper-bound linear comparison solid2 for the direction 
in . Continuous shear-band bifurcations exist, if for some charac-

teristic direction in  the acoustic tensor of the upper-bound, linear 
comparison-solid is singular; i.e. if there is in  such that 

0)det( ik =Γ            (2) 

 The existence of real solutions of the bifurcation condition, 
Eq. (2), coincides, within a (dynamic) acceleration-waves analy-
sis, with the condition for non-traveling body waves. This is inter-
preted as a manifestation of “deformation trapping”, since at the 
considered state of shear-band bifurcation, the solid has lost also 
its ability to transmit body waves and energy is therefore 
“trapped” inside the material by the formation of these “narrow 
zones of intense shear”. In the contrary, the condition 

0)det( ik >Γ  guaranties the existence of real body waves and en-
ergy radiation. 
 For elasto-plastic solids, the threshold to the bifurcation stress, 
which satisfies the characteristic Eq. (2) is usually expressed in 
terms of tangent hardening modulus tH .  Within a simple setting 
a flow theory of plasticity for frictional, dilatant materials Eq. (2) 
yields to the so-called Mandel solution for the critical dimen-
sionless hardening modulus (Mandel, 1996): 
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Thus continuous shear-band bifurcation in plane-strain deforma-
tions of non-associative frictional-dilatant materials, is predicted 
in the hardening regime of the mobilized friction coefficient.  
 Since tH  is a decreasing function of the plastic hardening pa-
rameter, we seek the orientation (given by the direction of the 
normal to the shear-band boundaries) for which the value of tH  is 
maximum. Thus the critical hardening modulus for shear-band bi-
furcation is computed as the solution of a constrained maximiza-
tion problem (Rudnicki & Rice 1975). Computational results for 
the critical hardening modulus and the corresponding critical ori-
entation angles of shear-bands for various constitutive models for 
non-associative, frictional elasto-plastic materials were computed 
by Molenkamp (1985). Ortiz et. al. (1987) provided numerical 
procedures for evaluating the above constrained maximization 
problem, whereas analytic solutions of it are given by Bardet  
(1991) and Bigoni & Hueckel (1990, 1991). Benallal and Comi 
(1996) presented a very elegant geometric analysis of the localiza-
tion condition utilizing the spectral theory of 4th order tensors.  

One of the major questions raised by the bifurcation analysis 
approach has been the validation or not of the classical solutions 
concerning the shear-band orientation with respect to the principal 

                                                                
2 cf. Raniecki  & Bruhns (1981). 

axes of stress (Tatsuoka et al. 1990). To this end three competing 
theoretical predictions were to be tested against the experiment3:
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 The first solution is the classical Coulomb solution whereas 
the second one is the Roscoe solution. The third solution was first 
proposed by Arthur et al. (1977) on the basis of experimental ob-
servations and was subsequently proven theoretically within the 
frame of shear-band bifurcation analysis and was supported ex-
perimentally by Vardoulakis (1980); Fig.3. 

Figure  3. Comparison of theoretical and experimental results (Saada et al. 
1999) 

2.2 Post-bifurcation deformation localization 

In contemporary Geomechanics we are not only interested in 
states of incipient failure but also in finding ways to trace the de-
formation in the so-called post-failure regime.  
 The THM approach to the shear-band problem involves the 
consideration of a classical constitutive model and the examina-
tion of the existence of discontinuity planes for the velocity gradi-
ent, which in turn are identified with the shear-band boundaries. 
Since the formulation of the problem does not contain a material 
property with the dimension of length, it is not possible to produce 
a statement about the shear-band thickness. Moreover at the state 
of shear-band bifurcation the underlying quasi-static problem is 
changing type, undergoing an elliptic-to-hyperbolic transition. In 
the post-bifurcation regime we deal in general with mathemati-
cally ill-posed problems (Schaeffer 1992, Shearer et al. 2003), 
which need some degree of regularization. 
 There is ample experimental evidence that shear-bands in 
granular materials engage a significant number of grains. Starting 
with Roscoe (1970) experimental observations suggest that the 
width of shear-bands is a small multiple of grain diameter (Scar-
pelli & Wood 1982, Vardoulakis & Graf 1985, Oda &  Kazama 
1998, Alshibli & Sture 1999). In order to be able to predict theo-
retically the dimensions of the shear-band, the grain size must be 

                                                                
3 In these expressions the subscript p denotes “peak” values; i.e. limiting 
values of the friction and dilatancy angles. 
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introduced into the constitutive model. Thus, in order to trace the 
deformation in the post-bifurcation regime one has to account for 
the microstructure of the material by resorting to the so-called 
higher-order continuum theories like the Cosserat Continuum 
Theory. This idea was widely publicized by the paper Mühlhaus & 
Vardoulakis (1987) and has meanwhile matured in a variety of 
large scale numerical simulations, which account for higher con-
tinuum effects (Papanastasiou & Vardoulakis 1992, Oka et al. 
2000, Zervos et al. 2001a & b, Chambon et al., 2001 & 2004, Ma-
tsushima et al. 2002, Pamin et al. 2003, Simone et al. 2004, Khoei 
et al. 2004). 

Figure 4. Robust post-failure shear-banding computations using a 2nd gra-
dient plasticity F.E. model (Zervos et al. 2001 b) 

2.3 Constitutive factors affecting shear-banding 

Shear-banding is a rather complex phenomenon, where a number 
of constitutive factors influence the result. In that direction one 
should mention the recent studies on the effect of incremental 
non-linearity (Kolymbas & Herle 2003, Chambon & Roger 2003), 
and on the combined effect of incremental non-linearity and 
Cosserat micro-structure (Tejchman & Gudehus 2001). Other im-
portant factors which influence shear banding are anisotropy (Ta-
tsuoka 1990, Iizuka et al. 1992) and non-coaxiality (Papamichos 
& Vardoulakis 1994, Hashiguchi & Tsutsumi 2003). Vardoulakis 
& Georgopoulos (2004) considered the range of validity of the 
Gutierrez-Ishihara (2000) modification of Taylor’s “stress-
dilatancy” hypothesis and concluded that the stress-dilatancy rule 
breaks down if in a process an abrupt rotation of principal axes is 
imposed, as this is the case at the onset of localization. During this 
phase the corresponding stress function decreases monotonously, 
whereas the dilatancy oscillates between large negative and large 
positive values. 

2.4  Micromechanical considerations 

Oda & Kazama (1998) remark that: “..that a shear band grows 
through buckling of columns together with rolling at contacts; it 
can be said that the thickness of a shear band is determined by the 
number of particles involved in a single column...”. Indeed from 
the micro-mechanical point of view an important structure that ap-
pears to dominate localized deformation is the formation and col-
lapse (buckling) of grain columns, as this was demonstrated ex-
perimentally by Oda and was explained theoretically by Satake 
(1998).  These load-carrying columns belong to the so-called 
“competent grain fraction” (Dietrich 1976, Vardoulakis 1989, 
Staron et al.2001) and their current length reflects more or less the 
current shear band thickness. 

Figure 5. The Oda-Satake micromechanical model of the shear-band in 
granular material 

 As indicated in Figure 5 columns of grains transmit the inter-
granular forces constituting the “competent fraction” of the grains; 
these columns are supported by the lesser loaded grains, called the 
“frail grain fraction”. The buckling of the granular columns results 
in the observed shear-band contraction (Vardoulakis & Geor-
gopoulos 2004). We notice that softening of the shear-band could 
be partially due to the “roller-bearing” effect of rolling grains at 
shear-band boundaries. 
 The study of the material behavior at the shear-band scale is 
done by resorting micromechanical models and to Discrete Ele-
ment simulations (Calvetti 2003). Characteristically one should re-
fer here to the recent micromechanical studies that pertain to the 
questions of the relevance or not of couple stresses (Bardet & 
Vardoulakis 2001, Ehlers et al. 2003, Kruyt 2003) of the impor-
tance of incremental non-linearity (Kishino, 2002) and of grain 
crushing (Cheng et al. 2004). 

2.5  Cataclastic shear-banding and compaction bands 

At elevated confinement, suppressed dilatancy may lead to grain 
crushing or “cataclasis” inside the shear-band (El Bied et al. 2002; 
Fig. 6), which in turn leads to substantial permeability reduction 
(Papamichos et al. 1993), due to the shifting of the harmonic mean 
of the grain sizes towards the fines end of the sieve curve. 

Figure 6. Cataclastic shear-banding in Fontainebleau sandstone (el Bied et 
al., 2002) 

Vardoulakis & Sulem (1995, sect. 5.8) introduced first the link 
between grain crushing and compaction layering as an additional 
localization instability. Compaction bands in porous rocks have 
been studied extensively both from the experimental and the theo-
retical point of view (Haimson 2001, Rudnicki 2002, Holcomb & 
Olsson 2003). 

The THM shear-band model is a material structure bounded by 
two stationary discontinuity surfaces of the velocity gradient
(Fig.2). The THM model yields the Rice bifurcation condition, 
expressed as (Rice, 1973, 1976, Vardoulakis 1976) 
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3 In these expressions the subscript p denotes “peak” values; i.e. limiting 
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2.6  Undrained shear banding 

Undrained shear banding is a theoretical possibility discussed ex-
tensively in the literature (cf. Runesson et al. 199, Zhang & Schre-
fler 2002). Physically undrained shear-banding is not always pos-
sible, since a prerequisite for this phenomenon is the formation of 
pore-water pressure shocks across the shear band boundaries, 
which in ordinary (slow) processes cannot be sustained (Vardou-
lakis 1996). However in rapid loading conditions, as this is the 
case in load-controlled experiments, internal flow patterns are re-
ported, consisting of a set of shear-bands (Han & Vardoulakis 
1991; Fig.7).  
 Undrained dilatant hardening, as it is observed in kinemati-
cally controlled experiments, should not be considered as a stabi-
lizing factor. It has been shown that undrained dilatant hardening 
becomes unstable at about maximum shear stress (Rice, 1975; 
Vardoulakis, 1986, 1996). This is known in the pertinent literature 
as a ‘flutter’-type instability (Loret et al., 1997; Benallal & Comi, 
2002, 2003). Stability of dilatant hardening and progressive strain 
localization under (globally) undrained conditions is addressed re-
cently by Oka et al. (2002) and Lu et al. (2003, 2004). 

Figure 7. Localization patterning in a load-controlled, globally undrained 
biaxial test (Han & Vardoulakis, 1991) 

2.7  Dynamic shear-band deformation and thermal  
pressurization 

Back-analyses of catastrophic landslides like the Vaiont slide 
(Voight & Faust 1982) and the observations from the active fault 
drilling operations (Otsuki et al. 2003, Cornet 2004, Sulem et al. 
2004 a & b) renewed the interest of the Geomechanics and Geo-
physics communities on the role of temperature and fluids in ac-
tive faulting (Lachenbruch, 1980; Mase and Smith, 1985, Rice 
2003). Rapid shear heating tends to increase pore pressure and to 
decrease the effective compressive stress and the shearing resis-
tance of the fault material (Vardoulakis 2000). On the other hand 
dilatancy tends to decrease pore pressure (Garagash & Rudnicki 
2003).

Fault zones are often characterized by large amounts of clay 
minerals, which form well-defined structures within the fault 
zone. These clay minerals inside the fault gouge are widely be-
lieved to affect significantly the mechanical behavior of faults, 
since as is the case for normally consolidated clays, they tend to 
contract when heated (Campanella, & Michell 1968, Hueckel & 
Pellegrini 1981). Based on these observations Vardoulakis 

(2002a), re-formulated the set of equations that govern the motion 
of a rapidly deforming shear-band, starting from first principles 
and discussed the dynamics of catastrophic landslides or creeping 
faults (Vardoulakis 2002 b) 

2.8  Shear-band patterning 

An interesting question which arises with sets of parallel faults as 
observed in extensional zones is that of fault spacing. This is for 
example observed in delta zones under gravity extension. These 
faults are generally attributed to the failure of the gliding upper 
layer triggered by the existence of a detachment lower layer. In 
this direction notable are the papers by Lesniewska & Mroz, 
(2000), Wolf et al. (2003) and Nuebel & Huang (2004).  

3. STABILITY-INSTABILITY-CONTROLABILITY

Nowadays it is recognized that there is a large variety of bifurca-
tions and instabilities of material and/or of geometric nature, 
which are leading to various modes of failure, strictly inside the 
domain in stress-space, which is bounded by the Mohr-Coulomb 
failure criterion, but also inside the domain defined by Rice’s lo-
calization condition, Eq. (3). The existence of such instabilities 
has been conjectured from the theory of non-associated elasto-
plasticity (Vardoulakis 1986, Han & Vardoulakis 1991) and from 
the “controllability” theory (Imposimato & Nova 1998). Some of 
these modes of collapse can be called “diffuse failure modes” and 
they seem to be the leading mechanisms in certain types of slope 
failures (Laouafa & Darve 2002), debris flows and submarine 
slides in deltaic zones (di Prisco & Imposimato 2002), which can 
be simulated presently successfully by the finite element method 
(cf. Zhang et al. 2002). 
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2.6  Undrained shear banding 

Undrained shear banding is a theoretical possibility discussed ex-
tensively in the literature (cf. Runesson et al. 199, Zhang & Schre-
fler 2002). Physically undrained shear-banding is not always pos-
sible, since a prerequisite for this phenomenon is the formation of 
pore-water pressure shocks across the shear band boundaries, 
which in ordinary (slow) processes cannot be sustained (Vardou-
lakis 1996). However in rapid loading conditions, as this is the 
case in load-controlled experiments, internal flow patterns are re-
ported, consisting of a set of shear-bands (Han & Vardoulakis 
1991; Fig.7).  
 Undrained dilatant hardening, as it is observed in kinemati-
cally controlled experiments, should not be considered as a stabi-
lizing factor. It has been shown that undrained dilatant hardening 
becomes unstable at about maximum shear stress (Rice, 1975; 
Vardoulakis, 1986, 1996). This is known in the pertinent literature 
as a ‘flutter’-type instability (Loret et al., 1997; Benallal & Comi, 
2002, 2003). Stability of dilatant hardening and progressive strain 
localization under (globally) undrained conditions is addressed re-
cently by Oka et al. (2002) and Lu et al. (2003, 2004). 

Figure 7. Localization patterning in a load-controlled, globally undrained 
biaxial test (Han & Vardoulakis, 1991) 

2.7  Dynamic shear-band deformation and thermal  
pressurization 

Back-analyses of catastrophic landslides like the Vaiont slide 
(Voight & Faust 1982) and the observations from the active fault 
drilling operations (Otsuki et al. 2003, Cornet 2004, Sulem et al. 
2004 a & b) renewed the interest of the Geomechanics and Geo-
physics communities on the role of temperature and fluids in ac-
tive faulting (Lachenbruch, 1980; Mase and Smith, 1985, Rice 
2003). Rapid shear heating tends to increase pore pressure and to 
decrease the effective compressive stress and the shearing resis-
tance of the fault material (Vardoulakis 2000). On the other hand 
dilatancy tends to decrease pore pressure (Garagash & Rudnicki 
2003).

Fault zones are often characterized by large amounts of clay 
minerals, which form well-defined structures within the fault 
zone. These clay minerals inside the fault gouge are widely be-
lieved to affect significantly the mechanical behavior of faults, 
since as is the case for normally consolidated clays, they tend to 
contract when heated (Campanella, & Michell 1968, Hueckel & 
Pellegrini 1981). Based on these observations Vardoulakis 

(2002a), re-formulated the set of equations that govern the motion 
of a rapidly deforming shear-band, starting from first principles 
and discussed the dynamics of catastrophic landslides or creeping 
faults (Vardoulakis 2002 b) 

2.8  Shear-band patterning 

An interesting question which arises with sets of parallel faults as 
observed in extensional zones is that of fault spacing. This is for 
example observed in delta zones under gravity extension. These 
faults are generally attributed to the failure of the gliding upper 
layer triggered by the existence of a detachment lower layer. In 
this direction notable are the papers by Lesniewska & Mroz, 
(2000), Wolf et al. (2003) and Nuebel & Huang (2004).  

3. STABILITY-INSTABILITY-CONTROLABILITY

Nowadays it is recognized that there is a large variety of bifurca-
tions and instabilities of material and/or of geometric nature, 
which are leading to various modes of failure, strictly inside the 
domain in stress-space, which is bounded by the Mohr-Coulomb 
failure criterion, but also inside the domain defined by Rice’s lo-
calization condition, Eq. (3). The existence of such instabilities 
has been conjectured from the theory of non-associated elasto-
plasticity (Vardoulakis 1986, Han & Vardoulakis 1991) and from 
the “controllability” theory (Imposimato & Nova 1998). Some of 
these modes of collapse can be called “diffuse failure modes” and 
they seem to be the leading mechanisms in certain types of slope 
failures (Laouafa & Darve 2002), debris flows and submarine 
slides in deltaic zones (di Prisco & Imposimato 2002), which can 
be simulated presently successfully by the finite element method 
(cf. Zhang et al. 2002). 
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