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ABSTRACT
The purpose of the investigation reported in this paper was to study the influence of strain rate on stress-strain and strength relation-
ships of Mexico City lacustrine soils from the Central Park site (Alameda). An isotropic consolidation test to define the yielding
stress, σ’y (= 95kPa), was done by triaxial-cell method. The paper describes results from 16 consolidated-undrained triaxial compres-
sion tests on Mexico City lacustrine soils. Specimens were consolidated to four confinement pressures (σ’c = 40, 80, 160, and 300 
kPa), and for each, σ’c, undrained shear was performed using four axial strain rates (1%, 5%, 100%, and 800%/h). The results show
that the peak shear resistance increased about 336% in passing from the slow to the fast strain rate for the structured domain. For des-
tructured domain, the increase was about 229%.  

RÉSUMÉ
Le but de la recherche signalée dans cet article était d’étudier l’influence de la vitesse de déformation sur le comportement contrainte-
déformation et la résistance des sédiments des sols lacustres de la Alameda Central de la ville de Mexico. Une épreuve de consolida-
tion isotropique pour définir la pression cédante, σ’y (=95 kPa), a été faite par la méthode de cellule-triaxiale. L’article décrit les résul-
tats de 16 essais de compression triaxiale sur les sols lacustres de Mexico. Les spécimens on été consolidés pour quatre pressions laté-
rales σ’c (= 40, 80, 160 et á 300kPa) et pour chacun, σ’c non-drainé a été exécuté en utilisant quatre vitesses de déformation axiale 
(1%, 5%, 100%, et 800%. Les résultats montrent que la résistance de cisaillement a augmenté d’environ 336% en passant d’une vi-
tesse lente de déformation à une vitesse rapide dans le domaine structuré. Pour le domaine déstructuré, l’augmentation a été d’environ
229%.

1 INTRODUCTION 

This paper presents experimental results to characterize the 
strain rate dependent undrained shear behavior of Mexico 
City lacustrine soils. Two aspects of undrained strain rate ef-
fects are reviewed: strain rate effects on undrained strength 
and the effect of consolidation stress history on strain rate 
behavior. 

This phenomenon has been studied extensively since the 
pioneering work of Taylor (1943). Casagrande and Wilson 
(1951) suggested that this rate-effect upon strength might be 
caused by a change in the excess pore pressure generated 
during the shear process. 

Triaxial tests performed by Lo and Morin (1972) on St-
Vallier clay demonstrate a strain rate effect on the strength 
envelope of the overconsolidated soil. Similar results were 
obtained for other eastern Canada clays (Tavenas et al. 1978; 
Vaid et al. 1979; Leroueil and Tavenas 1979). 

Vaid and Campanella (1977) performed a variety of triax-
ial tests on the undisturbed Haney clay. In particular, they 
performed undrained compression tests at different strain 
rates and undrained compression tests in which the strain rate 
changed at a given strain. 

Several studies (Alberro and Santoyo 1973, Tavenas et al. 
1978; Vaid et al 1979; Leroueil and Tavenas 1979; Martínez-
Vásquez 2004) have shown that the undrained strength 
measured in the laboratory during conventional shear tests 
depends on the speed of testing, the increase in strength with 
the speed of testing being more pronounced in clays with a 
higher plasticity index. 

2 MATERIALS PROPERTIES AND EXPERIMENTAL 
METHODS

2.1  Site location 

The site from where the specimens were sampled is located 
in the lacustrine zone of Mexico City. The selected site 
(19.26°N, 99.08°W) is located in the Central Park (Ala-
meda), in the neighborhood of one of the most damaged ar-
eas during the 19 September 1985 Mexico City earthquake 
(Ms magnitude 8.1 and intensity IX in parts of the city). The 
properties of Mexico City lacustrine soils are usually variable 
from place to place and in depth as well (Díaz-Rodríguez et 
al. 1998), some physical properties of the soil samples are 
summarized as follows: 
• Natural water content = 190% 
• Liquid limit = 193% 
• Plastic limit = 60.6% 
• Plasticity index =132.4 
• Void ratio = 4.4 
• Specific gravity = 2.6 
In the following, the term Mexico City lacustrine soils, refers 
only to the soil that was tested in this investigation. 

2.2  Laboratory testing 

The isotropic consolidation to define the yield stress, σ’y , was 
done by triaxial-cell method on 36-mm-diameter and 75-mm-
height specimens (Fig. 1). The yielding stress (Díaz-Rodríguez 
et al. 1992) corresponds to the passage from the structured 
range to the beginning of the destructured range.  
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Table 1 Tests results
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σc ε� (σ1 - σ3)max εf uf p’ q M φ’Test
number kPa %/h kPa % kPa kPa kPa °
CU 1 40 68.80 3.29 32.50 29.50 68.80
CU 2 80 118.43 3.87 61.00 55.30 118.43
CU 3 160 152.77 5.52 120.30 88.50 152.77
CU 4 300

1

230.95 6.05 220.70 149.70 230.95

1.94 47.29

CU 5 40 122.57 3.80 35.80 43.60 122.57
CU 6 80 139.27 3.47 66.40 55.50 139.27
CU 7 160 155.18 4.84 118.90 91.40 155.18
CU 8 300

5

227.05 5.43 196.50 161.50 227.05

2.11 52.88

CU 9 40 142.64 3.56 36.20 49.90 142.64
CU 10 80 154.18 3.15 67.50 59.00 154.18
CU 11 160 182.36 4.78 138.60 80.10 182.36
CU 12 300

100

346.18 5.38 246.60 168.00 346.18

2.45 61.67

CU 13 40 147.25 3.33 37.30 49.80 147.25
CU 14 80 178.40 3.30 76.80 59.90 178.40
CU 15 160 217.16 4.76 153.10 78.40 217.16
CU 16 300

800

314.73 4.66 252.90 147.50 314.73

2.71 72.42

Figure 1. Void ratio with effective confinement pressure
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Figure 2. Stress-strain curves for triaxial compression test at constant strain rate
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onnected to a drainage line. The specimens were encased in 
two membrane separated by a film of silicon oil. Filter paper
strips were used along the length of the specimen to accelerate
drainage. The cell was equipped with a ball-bearing air bushing
to reduce the friction along the piston. All tests were carried out
at a back-pressure about 340 kPa.

The tests were conducted und
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Mexico City soils

tropic consolidation, from very low effective stresses (σ’c = 
40 kPa) to effective stresses in excess of the yield stress, σ’y (=
95 kPa) then the process of destructuration of the intact clay
samples was studied. Drainage was permitted during all phases
of consolidation at each stage.
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failure was assumed at maximum deviator stress. The influ-
ence of variation in the constant rate of strain on the resulting
stress-strain response is shown in Fig. 2. Curves for four con-
finement pressures (σ’c = 40, 80, 160, and 300 kPa), and for 
each, σ’c, four axial strain rates (1%, 5%, 100%, and
800%/h) are shown. The deviator stress, q = ( σ’1 - σ’3), has 
been normalized to the consolidation pressure, σ’c. Fig. 2 
shows that the stress-strain relation for Mexico City soils is 
dependent on the rate of strain. The peak deviator stress at 
the fastest rate (800%/h) was as much as 336% larger than 
the corresponding value at the slowest rate (1%/h) for a con-
solidation pressure, σ’c = 40 kPa (structured domain). It is in-
teresting that the axial strain at peak deviator stress was es-
sential independent of the rate of strain and was 3.5% ± 0.24
SD.
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much as 185% larger than the corresponding value at the
slowest rate (1%/h) for a consolidation pressure, σ’c = 80
kPa, notice that this consolidation pressure is close to the
yielding stress. It is interesting that the axial strain at peak
deviator stress was essential independent of the rate of strain 
and was 3.45% ± 0.31 SD.

For confining pressures in
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ts were as following: 243% and 214% for σ’c = 160 kPa
and 300 kPa respectively. The axial strains at peak deviator
stresses were 5% ± 0.36 SD and 5.38% ± 0.57 SD, respec-
tively.
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triaxial compression tests on Mexico City lacustrine soils.
Specimens were consolidated to four confinement pressures
(σ’c = 40, 80, 160, and 300 kPa), and for each, σ’c , undrained
shear was performed using four axial strain rates (1%, 5%,
100%, and 800%/h).
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The following concrain rate) of Mexico City soils for different confining pres-
sures given in Fig. 1. Undrained shearing resistance increase
linearly with increasing log (strain rate). The change in
shearing resistance with strain rate can be conveniently de-
scribed by the parameter ρ0.1 ( Graham et al. 1983) defined as
the change in shearing resistance caused by a tenfold change
in strain rate, expressed as a percentage of shearing resis-
tance measured at 0.1% per hour. The values of ρ0.1 in Fig. 3 
were as following: 17% and 41 % for σ’c = 300 kPa and 40
kPa respectively. The results suggest that ρ0.1 may increase
with overconsolidation ratio.
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gradient of shear stress-log (strain rate) relationship can
decrease markedly. This threshold strain rate has been re-
ported to be about 0.2% per hour for Haney clay (Vaid and
Campanella 1977) and about 0.05% per hour for Drammen
clay (Berre and Bjerrum 1973). In this study there is no evi-
dence of a threshold strain rate. 
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