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ABSTRACT
 This paper discusses two powerful and yet user-friendly reliability techniques that could be implemented on the PC easily by practi-
tioners.  The techniques are representation of non-Gaussian random variables using Hermite polynomials and subset Markov chain
Monte Carlo simulation.  It is believed that ease of implementation would popularize use of reliability-based design in practice.

RÉSUMÉ
Cet article expose deux méthodes puissantes mais faciles d’emploi d’analyse de fiabilité. Ces méthodes peuvent être facilement im-
plantées sur un ordinateur personnel par des praticiens non expérimentés. Les deux méthodes sont la représentation de variables aléa-
toires non gaussiennes à l’aide de polynôme d’Hermite et la simulation Monte Carlo de sous-ensemble de chaîne de Markov. Les au-
teurs sont d’avis que leur facilité d’implantation puisse favoriser la démocratisation de l’emploi des méthodes de fiabilité dans la
pratique de la géotechnique. 

1 INTRODUCTION 

The advent of the World Trade Organisation (WTO) has added 
impetus to the formation of trading groups that result in multi-
lateral free trade areas or bilateral free trade agreements.  Tradi-
tionally, geotechnical engineering practice has always been 
viewed as a localised activity under the purview of the relevant 
federal and/or state authorities.  However, the move towards 
greater economic cooperation and integration will require the 
elimination of some technical obstacles that exist as a conse-
quence of differences in national codes and standards, and har-
monization of technical specifications. 

One on-going example of this code harmonisation phenome-
non is the development of the Eurocodes within the European 
Union.  The Eurocodes were initiated by the Commission of the 
European Communities (CEC) as a development of the Con-
struction Products Directive that requires a series of harmonised 
European Standards to provide certain "Essential Requirements" 
of safety, economy, and fitness for use but which do not hinder 
trade within the European Community (Simpson and Driscoll, 
1998).  It is quite clear that the focus of harmonisation is to fa-
cilitate trade and perhaps more importantly, to ensure fair com-
petition in the construction industry between member nations.  
Similar harmonisation efforts currently are underway in Canada 
(Green and Becker, 2001) and Japan (Honjo and Kusakabe, 
2002).

The system of Structural Eurocodes consists of 10 standards.  
The basis for design is laid out in the head Eurocode 
EN1990:2002 that describes the principles and requirements for 
safety, serviceability and durability of structures, the basis for 
their design and verification, and gives guidelines for related 
aspects of structural reliability.  It suffices to note here that reli-
ability analysis is the only available theoretical tool capable of 
ensuring consistent safety between different materials.  Al-
though Eurocode 7 (Geotechnical design) adheres to the limit 
state design concept, it is not as well integrated as the other ma-
terial codes because its partial factors are essentially empirical 
and precedence-based, rather than reliability-based.  The impor-
tant point here is that code harmonization also entails harmoni-
zation between structural and geotechnical design.  Because 
geotechnical design is only one component of the Structural 

Eurocodes, it is anticipated that structural reliability methods 
will eventually prevail in Eurocode 7. 

There is an urgent need for geotechnical engineers to play a 
more active role in the development of reliability-based design 
(RBD) methodology.  Currently, most of the impetus in the de-
velopment of RBD codes arises from within the structural engi-
neering community.  However, research in geotechnical reliabil-
ity that addresses issues relevant to the geo-profession is 
progressing quite rapidly in recent years.  Three specialty work-
shops have been organized over the past 3 years.  They are the 
International Workshop on Foundation Design Codes and Soil 
Investigation in view of International Harmonization and Per-
formance Based Design (Honjo et al., 2002), International 
Workshop on Limit State design in Geotechnical Engineering 
Practice (Phoon et al., 2003) and International Workshop 
on  Risk Assessment in Site Characterization and Geotechnical 
Design (Sivakumar Babu and Phoon, 2004).  A more complete 
list of past activities from 1971 is given at 
www.geoengineer.org/reliability. 
 Despite emerging indications that regulatory pressure will 
eventually bring geotechnical design within a reliability frame-
work and the growing interest in the research community, it is 
accurate to say that the average practitioner is largely unfamiliar 
with RBD and its potential benefits.  One reason is that most re-
search papers do not provide computational steps with sufficient 
details for the lay person to implement reliability analysis using 
common desktop softwares.  In short, there is a lack of user-
friendly tools.  Low and Tang (2004) demonstrated that simple 
geotechnical reliability problems could be analyzed easily using 
EXCEL, but their emphasis on pedagogy is rare within a re-
search culture that values originality.  The objective of this pa-
per is to provide a glimpse of two powerful reliability tech-
niques that could be readily implemented on a modest PC.  
Section 2 discusses how non-Gaussian random variables can be 
represented using Hermite polynomials in a completely general 
way, even if the data do not fit any known classical probability 
distributions.  Extension to correlated random vectors is quite 
straightforward but covered elsewhere (Phoon and Nadim, 
2004).  Section 3 discusses how small probabilities of failure 
can be computed efficiently using the Markov chain Monte 
Carlo simulation method, which is more powerful and general 
than the popular First-Order Reliability Method (FORM).  
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2 FORM USING HERMITE POLYNOMIALS 

2.1 Hermite polynomials 

Hermite polynomials are given by: 
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where U is a standard Gaussian random variable.  The last row 
of Eq. (1) shows that Hermite polynomials of any degree (k) can 
be computed efficiently using a simple recurrence relation that 
depends only on two preceding Hermite polynomials.  This re-
currence relation can be implemented directly using EXCEL.  It 
can be proven rigorously (Phoon, 2003) that any random vari-
able X (with finite variance) can be expanded as follows: 
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The numerical values of the coefficients, ak, depend on the dis-
tribution of X.  They can also be computed readily using EX-
CEL even if the empirical distribution of X cannot be fitted to 
any classical probability distribution functions as follows 
(Berveiller et al., 2004): 
1. Let x be a n � 1 vector containing measured data or simu-

lated data from a known cumulative distribution function, 
Q(x). 

2. Let u = �-1Q(x) be a n � 1 vector containing n realizations 
of a standard Gaussian random variable.  The function �-1

can be invoked using NORMSINV in EXCEL. 
3. Let h0 be a n � 1 vector containing ones, h1 = u, h2 = u	
*u

– 1, … hp-1 = u
*hp-2 – (p-2)hp-3, and H be a n � p matrix 
containing h0, h1, h2, … hp-1 in the columns.  The operator 
“
*” means element-wise matrix multiplication (MATLAB 
convention), i.e., for matrix A = B
*C, (i, j) element in A, 
aij = bij � cij.

4. Let a be a p � 1 vector containing the unknown Hermite 
coefficients {a0, a1, a2, … ap-1}T.  This vector is computed 
by solving the following system of linear equations: 

(HTH)a = HTx (3) 

Eq. (3) can be solved easily using array formulae and ma-
trix functions in EXCEL (TRANSPOSE, MMULT, MIN-
VERSE). 

2.2 Convergence in probability tails 

The gamma probability density function is given by: 
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where b is the scale parameter and c is the shape parameter.  Fig. 
1 shows two gamma distributions with b = 1, c = 0.5 (top) and b
= 1, c = 2 (bottom).  The former distribution is related to a chi-
square distribution with one degree of freedom.  Although it is 
highly skewed, a 6-term Hermite expansion is sufficient to 
match probabilities as low as 10-4.  It is possible to match even 
smaller probabilities by increasing the simulation sample size 
beyond 50000, but 10-4 is sufficient for most reliability prob-
lems.  The second gamma distribution looks “Gausian” and it is 
not surprising that an even shorter 4-term Hermite expansion is 
enough for this case. 
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Figure. 1  Cumulative distribution function of Hermite expansion for 
two gamma distributions (simulation sample size = 50000). 

Figure 2.  Simplified Broms approach for laterally-loaded free-head 
rigid pile in sand. 

2.3 Application in FORM 

This section demonstrates that FORM used in conjunction with 
Hermite polynomials is computationally more robust than the 
commonly used equivalent Gaussian technique.  The reason is 
that FORM iterations can take place fully in standard Gaussian 
space, where all variables are scaled to unit variance.  The ex-
ample considered is a laterally-loaded free-head rigid pile in 
sand (Fig. 2).  The performance function (G) is given by: 
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where M is the random factor describing the model uncertainty, 
B and D are respectively the diameter and length of the pile, e
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is the eccentricity, � is the unit weight of sand, ��  is the effec-
tive friction angle, and F is the applied load.  In this example, M
is modeled as a Gamma random variable with mean = 1.3 and 
standard deviation = 0.5.  Hence, the scale and shape parameters 
are bM = 0.192 and cM = 6.760.  The applied load F is also as-
sumed to be Gamma distributed with mean = 1000 kN and stan-
dard deviation = 250 kN (or bF = 62.5 and cF = 16.0).  The rest 
of the parameters were assumed to be deterministic and were 
given by: D = 10 m, B = 1 m, e = 1 m, �  = 18 kN/m3 and �� = 
40o.  The mean factor of safety is 4.9. 

The First-Order Reliability Method (FORM) computes � as 
follows: 

2
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Using the equivalent Gaussian technique, the standard Gaussian 
variates (u1 and u2) can be evaluated as follows: 
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where m and f are the respective trial values of the Gamma vari-
ables M and F.  By substituting Eqs. (7) and (8) into Eq. (6), it 
can be seen that � is computed by nonlinear optimization in the 
original space.  In practice, this can be easily done using the 
Solver function in EXCEL.  Direct application of Solver to this 
example produces an incorrect answer of � = 3.133.  The reason 
is that variables in original space are not properly scaled.  The 
values of f are about three orders of magnitude larger than the 
values of m.  The correct answer � = 2.933 can only be obtained 
if one applies “Use Automatic Scaling” under Solver Options.  
However, if one initiates FORM iterations at m = 1.3 and f =
800, Solver would produce an error (even with automatic scal-
ing).  The solution in the original space is clearly not robust. 

In the Hermite polynomial method, FORM iterations can 
take place fully in standard Gaussian space.  The standard 
Gaussian variates (u1 and u2) at each iteration are converted to 
m and f using Eqs. (2) and (3).  Results for various Hermite ex-
pansions are summarized in Table 1 (simulation sample size for 
Hermite coefficients n = 100).  A two-term and four-term Her-
mite expansion for F and M are sufficient in this example.  The 
longer expansion is needed for M because the coefficient of 
variation is larger.  This example demonstrates that representing 
non-Gaussian random variables using Hermite expansions in 
FORM is very robust from a computational viewpoint.  It is not 
necessary to “Use Automatic Scaling” in Solver and the same 
solution is obtained regardless of the initial starting values for 
u1 and u2.

3 SUBSET MCMC SIMULATION 

3.1 Background

One of the user-friendly methods to carry out geotechnical reli-
ability analysis is the Monte Carlo simulation (MCS) technique.  
Due to the rapid increase in desktop computational power, this 
method is becoming very attractive.  Compared to FORM, this 
method is much easier to implement in computer programs, es-
pecially for cases where the performance functions are complex 
non-linear functions of basic variables.  It is also more intuitive 
to the lay person. 

Numerous methods have been developed to improve the cal-
culation efficiency of the MCS technique.  These include impor-
tance sampling, stratified sampling, Latin hypercube sampling 
etc. (e.g. Schüeller et al., 1989).  These methods, however, are 
generally rather problem dependent and accurate solutions are 

difficult to obtain without knowing the detailed features of each 
technique employed. 

There are new findings and applications in MCS technique 
recently from the areas of computational statistics and financial 
engineering including Markov chain Monte Carlo (MCMC) 
technique (Gilks et al., 1998) and low discrepancy sequences.  
The application of MCMC to reliability analysis was proposed 
by Au and Beck (2003), which is briefly summarized below. 

3.2 Subset method and MCMC 

Subsets: Let the failure region be F and the failure probability 
be PF.  The whole region is denoted by F0 and its subsets are 
denoted by Fi where Fm = F is assumed.  Thus, the following re-
lationship holds (Fig. 3): 

FFFFF m ����� �210  (9) 

The failure probability can be calculated based on these subsets 
as follows: 

)()()()( 01211 FFPFFPFFPFPP mmmmmF ������  (10) 

MCMC (Markov Chain Monte Carlo) method: In order to use 
the subsets defined above effectively, one need to generate 
samples for any PDF defined on subset Fi.  This can be done by 
using MCMC.  One MCMC algorithm known as the Metropo-
lis-Hastings (M-H) algorithm is described below.   

M-H algorithm generate Markov chain samples x(t) to x(t+1)

that follows a target PDF �(x). x(t+1) is generated based on x(t)

by the procedure below: 
(1) Select a proposal density function ).( )(txxq �
(2) Calculate an acceptance probability �t as: 
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(3) x(t+1) is generated based on �t as: 
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We set x(t+1) = x� with probability �t	�  Otherwise, it is set to x(t).
It is not difficult to prove that x(t) follows PDF �(x) under some 
mild regularity conditions (Gilks et al., 1998).  The essence here, 
however, is that by using MCMC, one can generate samples 
based on any PDF like the conditional PDF defined in a subset. 

3.3 Failure probability calculation by subset MCMC 

Based on the subsets defined in Eq. (9) and MCMC, the failure 
probability can be calculated using the following procedure: 

(1) Generate Nt samples from a given PDF. 

Table 1:  FORM solutions using Hermite expansions of various lengths 
for Gamma distributed F and M.

No. of 
terms F 

No. of 
terms M 

Reliability 
 index 

Probability of 
failure 

2 2.084 1.86 � 10-2

4 2.942 1.63 � 10-32
6 2.933 1.67 � 10-3

2 2.094 1.81 � 10-2

4 2.940 1.64 � 10-34
6 2.933 1.68 � 10-3

Equivalent Gaussian 2.933 1.68 � 10-3
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Figure 3.  Concept of the subset MCMC method. 

Figure 4. Results of a subset MCMC example. 

(2) Define subset Fk+1 by using Ns (< Nt) samples that are 
closer to the limit state Z=0, where Fk+1 is defined as: 

��

�
�
�

��

�
�
� �

�� �
� 2

)(  1
1

ss NN
k

ZZ
xZxF  (13) 

In subset Fk, the probability that samples in Fk+1 are gen-
erated is Ns/Nt.  Note that Zi are ordered generated sam-
ples from smaller to larger Z.

(3) By using MCMC, it is possible to generate Nt samples 
within Fk+1.

(4) When sufficient number of failure cases is generated at 
step m, the simulation is stopped; otherwise go back to 
step (2) to continue the calculation.  If the simulation is 
stopped, PF is given by the following equation: 
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where Nf is number of samples Z<0 (failure). 

3.4 An example calclulation 

An example calculation is presented to illustrate the methodolo-
gy.  A simple performance function consisting of two unit vari-
ance normal random variables R and S with respective means 
7.0 and 3.0 is defined as follows: 

Z = R – S (15) 

The exact failure probability, PF, for this case is equal to 
0.002339.  The total number of generated sample for each sub-
set, Nt, is set to 100, and the number of samples chosen to be 

used in the next step, Ns, is set to 10 in this case.  Some experi-
ence is necessary to choose these Nt and Ns for each problem.   

The result of this simulation is presented in Fig. 4 where 
1000 trials have been carried out.  The coefficient of variation 
of the estimated log(PF) for this case is 0.145, which implies 
that estimated PF is a sufficiently accurate for practical reliabil-
ity analyses. 

The practical advantages of the subset MCMC are its effi-
ciency as well as its relatively automated calculation procedure 
where very little judgment is involved. 

4 CONCLUSION 

The necessity of introducing RBD in geotechnical engineering 
is emphasized but there is a lack of user-friendly and powerful 
computational tools to popularize reliability analysis in practice.  
The average practitioner does not have the time or the inclina-
tion to compute reliability indices by learning complex theories 
from scratch.  Two recent developments in this area are briefly 
introduced, namely representation of non-Gaussian random 
variables using Hermite polynomials and subset MCMC tech-
nique.  The authors believe that it is crucial to explain the poten-
tial of these developments in a simple and algorithmic manner 
so that reliability analyses of complex real-world problems are 
within reach of the average practitioners.  This is an important 
step towards establishing geotechnical design methods that 
could achieve more appropriate and consistent safety levels.  
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