Proceedings of the 16th International Conference on Soil Mechanics and Geotechnical Engineering
© 2005-2006 Millpress Science Publishers/IOS Press.

Published with Open Access under the Creative Commons BY-NC Licence by 10S Press.
doi:10.3233/978-1-61499-656-9-2825

Probabilistic design of anchored sheet pile wall
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ABSTRACT

Several geotechnical design approaches have gained importance in recent years, including the Limit State Design approach of Euro-
code 7, and the Load and Resistance Factor Design (LRFD) approach in North America. Researchers have also tried to link the first
order reliability method (FORM) with Eurocode 7 and LRFD, via partial factors based on calibration studies of FORM. However, a
more flexible approach is to perform the design directly based on FORM, without the intermediary stage of calibrating partial factors.
This paper describes a practical and relatively transparent reliability-based design procedure using anchored sheet pile wall as exam-
ple. The procedure obtains the same solutions as the Hasofer-Lind method and FORM, but in a much simpler and direct manner. Spe-
cifically, the embedment depth of an anchored sheet pile wall will be determined. The uncertainties of the soil properties and dredge
level will be modelled. The reliability-based design approach can reflect parametric sensitivities from case to case ; its advantages
over design based on specified partial factors will be discussed.

RESUME

Recemment, des plusieurs methodes de calcul geotechnical ont gagné importance, y compris l'approche de calcul a 1'état limite d'Eu-
rocode 7 et celle de calcul a facteur de charge et de résistance (LRFD) des Amériques du Nord. Les chercheurs ont aussi essay¢ de
lier la méthode de fiabilité de premiere ordre (FORME) avec I’Eurocode 7 et le LRFD, par des facteurs partiels basés sur des études
de calibrage de FORME. Cependant, une approche plus flexible est d’exécuter le calcul basé directement sur la methode FORME,
sans I'étape intermédiaire de calibrage des facteurs partiels. Cet artcile décrit une procédure pratique et relativement transparente de
calcul a base de fiabilité utilisant le rideau de palplanches ancré comme exemple. La procédure obtient les mémes solutions comme la
méthode Hasofer-Lind et celle de FORME, mais d’une maniére beaucoup plus simple et directe. Spécifiquement, la profondeur de
I'embedment d'un rideau de palplanches ancré sera déterminée. Les incertitudes des propriétés du sol et du niveau de drague seront
modeler. La methode de calculs a base de fiabilité peut refléter des sensibilités paramétriques d’un cas a un cas. Ses avantages vis-a-
vis les calculs basé sur les facteurs partiels spécifiés seront discutés.

1 INTRODUCTION

The lumped factor of safety approach has long been used by the
geotechnical profession. More recently, code-specified partial
factors have been used. Yet another possible approach is design
based on a target reliability index which reflects the uncertain-
ties of the parameters and their correlation structure. Among the
various versions of reliability indices, the Hasofer-Lind index
and FORM (first order reliability method) are more consistent,
though widely perceived to be complicated. This paper illus-
trates reliability-based design by the efficient approach of Low
& Tang (1997a, 2004) that achieves the same result as the
Hasofer-Lind method and FORM.

The merits of reliability-based design are its ability to explic-
itly reflect correlation, uncertainties and sensitivities, and to
automatically seek the most probable failure combination of pa-
rametric values case by case without using fixed partial factors.

The analytical formulations in a deterministic design are the
basis of the performance function in a probabilistic-based
design. Hence it is appropriate to briefly describe the
deterministic approach in the next section, prior to extending it
to a probabilistic-based design.

2 DETERMINISTIC ANCHORED WALL DESIGN BASED
ON LUMPED FACTOR AND PARTIAL FACTORS

The deterministic geotechnical design of anchored walls based
on the free earth support analytical model was lucidly presented

in Craig (1997). An example is the case in Fig. 1, where the
relevant soil properties are the effective angle of shearing resis-
tance ¢’, and the interface friction angle 5 between the retained
soil and the wall. The characteristic values are ¢’= 0, ¢’= 36°
and 5= Y2¢’. The water table is the same on both sides of the
wall. The bulk unit weight of the soil is 17 kN/m® above the wa-
ter table and 20 kN/m® below the water table. A surcharge pres-
sure g, = 10 kN/m? acts at the top of the retained soil. The tie
rods act horizontally at a depth 1.5 m below the top of the wall.

In Fig. 1, the active earth pressure coefficient K, is based on
the Coulomb-wedge closed-form equation, which is practically
the same as the Kerisel-Absi (1990) active earth pressure coef-
ficient. The passive earth pressure coefficient K, is based on
polynomial equations fitted to the values of Kerisel-Absi
(1990), for a vertical wall and a horizontal retained soil surface.

The required embedment depth d of 3.29 m in Fig. 1—for a
lumped factor of safety of 2.0 against rotational failure around
anchor point A—agrees with Craig (1997, Example 6.9).

Using the alternative limit state design approach, with a par-
tial factor of 1.2 for the characteristic shear strength, one enters
tan” (tang’/ 1.2) = 31° in the cell of ¢, and changes the embed-
ment depth d until the summation of moments is zero. A re-
quired embedment depth d of 2.83 m is obtained, again in
agreement with Craig (1997).

The partial factors in limit state design are applied to the
characteristic values, which are themselves conservative esti-
mates and not the most probable or average values. Hence there
is a two-tier nested safety: first during the conservative estimate
of the characteristic values, and then when the partial factors are
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Figure 1. Deterministic design of embedment depth d based on a
lumped factor of safety of 2.0

applied to the characteristic values. This is evident in Eurocode
7 where Section 2.4.3 clause (5) states that the characteristic
value of a soil or rock parameter shall be selected as a cautious
estimate of the value affecting the occurrence of the limit state.
Clause (7) further states that characteristic values may be lower
values, which are less than the most probable values, or upper
values, which are greater, and that for each calculation, the most
unfavorable combination of lower and upper values for inde-
pendent parameters shall be used.

The above Eurocode 7 recommendations imply that the
characteristic value of ¢”(36°) in Fig. 1 is lower than the mean
value of ¢” Hence in the reliability-based design of the next sec-
tion, the mean value of ¢”adopted is higher than the characteris-
tic value (36°) of Fig. 1.

It should be borne in mind that while characteristic values
and partial factors are used in limit state design, mean values
(not characteristic values) are used with standard deviations and
correlation matrix in a reliability-based design.

3 FROM DETERMINISTIC TO RELIABILITY-BASED
ANCHORED WALL DESIGN

There are conceptual and computational barriers in reliability
analysis by the Hasofer-Lind method and FORM. This is be-
cause the classical approaches of these methods—well-
documented in Ditlevsen 1981, Ang & Tang 1984, and Baecher
& Christian 2003—require frame-of-reference rotation and co-
ordinate transformation, and iterative numerical derivatives us-
ing less ubiquitous special-purpose programs. This paper ap-
plies the intuitive expanding dispersion ellipsoid perspective of
Low & Tang (1997a, 2004), in the context of reliability-based
anchored wall design. The ellipsoidal perspective in the original
coordinate space of the random variables leads to an efficient
automatic constrained optimization reliability approach in the
ubiquitous spreadsheet platform. The approach obtains the same
result as the Hasofer-Lind method and FORM, but is operation-
ally more direct and transparent.

The anchored sheet pile wall will be designed based on reli-
ability analysis (Fig. 2). As mentioned earlier, the mean value of
¢’ 1in Fig. 2 is larger than the characteristic value of Fig. 1. In
total there are six random variables, with mean and standard de-
viations as shown. These random variables are assumed to be
normally distributed. Some correlations among parameters are
assumed, as shown in the correlation matrix (crmatrix). For ex-
ample, it is judged logical that the unit weights y and 7y, should
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be positively correlated, and that each is also positively corre-
lated to the angle of friction ¢, since ' = Y- Y-

The analytical formulations based on force and moment
equilibrium in the deterministic analysis of Fig. 1 are also re-
quired in a reliability analysis, but are expressed as limit state
functions or performance functions: “= Sum (Moments,_,s)”.

The matrix formulation (Ditlevsen 1981) of the Hasofer-
Lind index  is:

ﬂ:gnw/ix—ﬁfg‘ix—ﬁi (1a)

where x is a vector representing the set of random variables x;,
the vector of mean values g, C the covariance matrix, and F the
failure domain.

A more convenient equivalent formulation of Eq. (1a) is:

£ =min {x,. O_v'u'} B]]{XI O__M} (1b)

xeF

¢ =[o]'[R]'le]" (1o)

in which R is the correlation matrix, o; the standard deviations,
[o] the diagonal standard deviation matrix. Low & Tang (1997b
and later) used Eq. (1b) in preference to Eq. (1a) because the
correlation matrix R is easier to set up, and conveys the correla-
tion structure more explicitly than the covariance matrix C.

The array formula for Eq. (1b) in cell S of Fig. 2 is:

by virtue of

=sqrt(mmult(transpose(nx),mmult(minverse(crmat),nx)))  (2)

followed by “Enter” while holding down the “Ctrl” and “Shift”
keys. In the above formula, mmult, transpose and minverse are
Microsoft Excel’s built-in functions, each being a container of
program codes for matrix operations.

Given the uncertainties and correlation structure in Fig. 2,
we wish to find the required total wall height H so as to achieve
a reliability index of 3.0 against rotational failure about point
“A”. Initially the column x* was given the mean values. Micro-
soft Excel’s built-in constrained optimization tool Solver was
then used to minimize £ by changing (automatically) the x*
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Figure 2. Design total wall height for a reliability index of 3.0 against
rotational failure. Dredge level and hence z and d are random variables.



column, subject to the constraint that the cell PerFn be equal to
zero. The solution (Fig. 2) indicates that a total height of 12.15
m would give a reliability index of 3.0 against rotational failure.
With this wall height, the mean-value point is safe against rota-
tional failure, but rotational failure occurs when the mean values
descend\ascend to the values indicated under the x* column.
These x* values denote the design point on the limit state sur-
face, and represent the most likely combination of parametric
values that will cause failure. The distance between the mean-
value point and the design point, in units of directional standard
deviations, is the Hasofer-Lind reliability index.

The expected embedment depth is d = 12.15 — 6.4 — p, =
3.35 m. At the failure combination of parametric values the de-
sign value of z is z* = 2.9632, and d* = 12.15 - 6.4 —z*=2.79
m. This corresponds to an ‘overdig’ allowance of 0.56 m.
Unlike Eurocode 7, this ‘overdig’ is determined automatically,
and reflects uncertainties and sensitivities from case to case in a
way that specified ‘overdig’ cannot.

The nx column indicates that, for the given mean values and
uncertainties, rotational stability is, not surprisingly, most sensi-
tive to ¢”and the dredge level (which affects z and d and hence
the passive resistance). It is least sensitive to uncertainties in the
surcharge g,, because the average value of surcharge (10 kN/m?)
is relatively small when compared with the over 10 m thick re-
tained fill. Under a different scenario where the surcharge is a
significant player, its sensitivity scale could conceivably be dif-
ferent. It is also interesting to note that at the design point where
the six-dimensional dispersion ellipsoid (explained in next sec-
tion) touches the limit state surface, both unit weights y and y,,
(16.20 and 18.44) are lower than their corresponding mean val-
ues, contrary to the expectation that higher unit weights will in-
crease active pressure and hence greater instability. This appar-
ent paradox is resolved if one notes that smaller y,,, will (via
smaller »’) reduce passive resistance, smaller ¢’ will cause
greater active pressure and smaller passive pressure, and that y,
%ar» and @”are logically positively correlated.

In a reliability-based design (such as the case in Fig. 2) one
does not prescribe the ratios mean/x*—such ratios, or ratios of
(characteristic values)/x*, are prescribed in limit state design—
but leave it to the expanding dispersion ellipsoid to seek the
most probable failure point on the limit state surface, a process
which automatically reflects the sensitivities of the parameters.
Besides, one can associate a probability of failure for each tar-
get reliability index value. The ability to seek the most-probable
design point without presuming any partial factors and to auto-
matically reflect sensitivities from case to case is a desirable
feature of the reliability-based design approach.

The spreadsheet-based reliability-based design approach il-
lustrated in Fig. 2 is a more practical and relatively transparent
intuitive approach that obtains the same solution as the classical
Hasofer-Lind method for correlated normals and FORM for cor-
related nonnormals (section 6). Unlike the classical computa-
tional approaches, the present approach does not need to rotate
the frame of reference or to transform the coordinate space.

4 INTUTIVE PERSPECTIVES OF RELIABILITY INDEX

As a multivariate normal dispersion ellipsoid expands, its ex-
panding surfaces are contours of decreasing probability values,
according to the established probability density function of the
multivariate normal distribution:

. exp[—%Q—ETC"&—ﬁ)}

1
f(z)—m

1 |
- el 3
(2xf|c” eXp[ 2ﬂ} ®

where £ is defined by equation (1a) or (1b), without the “min”.
Hence, to minimize £ (or £ in the above multivariate normal
distribution) is to maximize the value of the multivariate normal
probability density function, and to find the smallest ellipsoid
tangent to the limit state surface is equivalent to finding the
most probable failure point (the design point). This intuitive and
visual understanding of the design point is consistent with the
more mathematical approach in Shinozuka (1983, equations 4,
41, and Fig. 2), in which all variables were transformed into
their standardized forms and the limit state equation was written
in terms of the standardized variables. The expanding ellipsoi-
dal perspective in the original space of the random variables is
discussed further in Low & Tang (2004) and Low (2005).

5 POSITIVE RELIABILITY INDEX ONLY IF MEAN-
VALUE POINT IS IN SAFE DOMAIN

In Fig. 2, if a trial H value of 10 m is used, and the entire “x*”
column given the values equal to the “mean” column values, the
performance function PerFn exhibits a value —448.5, meaning
that the mean value point is already inside the unsafe domain.
Upon Solver optimization with constraint PerFn = 0, a £ index
of 1.34 is obtained, which should be regarded as a negative in-
dex, i.e., —1.34, meaning that the unsafe mean value point is at
some distance from the nearest safe point on the limit state sur-
face that separates the safe and unsafe domains. In other words,
the computed S index can be regarded as positive only if the
PerFn value is positive at the mean value point. For the case in
Fig. 2, the mean value point (prior to Solver optimization)
yields a positive PerFn for H> 10.6 m. The computed f index
increases from 0 (equivalent to a lumped factor of safety equal
to 1.0, i.e. on the verge of failure) when H is 10.6 m to 3.0 when
His 12.15 m, as shown in Fig. 3.

¥
(=]

-2 1 Total wall height H

Reliability index

Figure 3. Reliability index is 3.00 when H = 12.15 m. For H
smaller than 10.6 m, the mean-value point is in the unsafe do-
main, for which the reliability indices are negative.

6 RELIABILITY-BASED DESIGN INVOLVING
CORRELATED NONNORMALS

The two-parameter normal distribution is symmetrical and,
theoretically, has a range from —oo to +oo. For a parameter that
admits only positive values, the probability of encroaching into
the negative realm is extremely remote if the coefficient of
variation (Standard deviation/Mean) of the parameter is 0.20 or
smaller, as for the case in hand. Alternatively, the lognormal
distribution has often been suggested in lieu of the normal dis-
tribution, since it excludes negative values and affords some
convenience in mathematical derivations. Figure 4 shows an ef-
ficient reliability-based design when the random variables are
correlated and follow lognormal distributions. The required
Rackwitz-Fiessler (1978) equivalent normal evaluations (for m"
and &) are conveniently relegated to a function created in the
VBA programming environment of Microsoft Excel. More
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Figure 4. Reliability-based design involving correlated lognormal
random variables

nonnormal options and the computational approach encapsu-
lated in Fig. 4 are described in Low and Tang (2004).

For the case in hand, the required total wall height H is prac-
tically the same whether the random variables are normally dis-
tributed (Fig. 2) or lognorrmally distributed (Fig. 4). Such in-
sensitivity of the design to the underlying probability
distributions may not always be expected, particularly when the
coefficient of variation (standard deviation/mean) or the skew-
ness of the probability distribution is large.

7 FINITE ELEMENT RELIABILITY ANALYSIS VIA
RESPONSE SURFACE METHODOLOGY

Programs can be written in spreadsheet to handle implicit limit
state functions (e.g., Low et al. 1998, Low 2003, and Low &
Tang 2004 p.87). However, there are situations where service-
ability limit states can only be evaluated using stand-alone finite
element or finite difference programs. In these circumstances,
reliability analysis and reliability-based design by the present
approach can still be performed, provided one first obtains a re-
sponse surface function (via the established response surface
methodology) which closely approximates the outcome of the
stand-alone finite element or finite difference programs. Once
the closed-form response functions have been obtained, per-
forming reliability-based design for a target reliability index is
straightforward and fast. Examples of coupled response surface
method and spreadsheet-based reliability analysis were illus-
trated in Li (2000) and Vipman et al. (2000).

8 SUMMARY AND CONCLUSIONS

An efficient reliability-based design approach was illustrated for
an anchored wall. The correlation structure of the six variables
was defined in a correlation matrix. Normal distributions and
lognormal distributions were considered in turn (Figs. 2 & 4), to
investigate the implication of different probability distributions.
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The procedure is able to incorporate and reflect the uncertainty
of the passive soil surface elevation.

Reliability index is the shortest distance between the mean-
value point and the limit state surface—the boundary separating
safe and unsafe combinations of parameters—measured in units
of directional standard deviations. It is important to check
whether the mean-value point is in the safe domain or unsafe
domain before performing reliability analysis. This is done by
noting the sign of the performance function (PerFn) in Figs. 2
and 4 when the x* columns were initially assigned the mean
values. If the mean value point is safe, the computed reliability
index is positive; if the mean-value point is already in the un-
safe domain, the computed reliability index should be consid-
ered a negative entity, as illustrated in Fig. 3.

The differences between reliability-based design and design
based on specified partial factors were discussed. The merits of
reliability-based design are thought to lie in its ability to explic-
itly reflect correlation structure, standard deviations, probability
distributions and sensitivities, and to automatically seek the
most probable failure combination of parametric values case by
case without relying on fixed partial factors. Corresponding to
each desired value of reliability index there is also a reasonably
accurate simple estimate of the probability of failure.

The spreadsheet-based constrained-optimization reliability
approach can be coupled with stand-alone finite element or
other numerical packages, via the established response surface
methodology.
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