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ABSTRACT
Numerical limit analysis is used to determine rigorous lower and upper bounds to the horizontal critical pseudo-static seismic coeffi-
cient kc required to cause collapse of two-dimensional slopes. Optimal bounding values of kc are calculated by applying linear pro-
gramming techniques. Additionally, conventional displacement finite element analyses were performed for selected cases using the
program ABAQUS. The values of kc and the slip surfaces obtained from the displacement finite element analyses and numerical limit 
analysis are in good agreement with those from both limit equilibrium methods and log-spiral upper bound method. A small number
of finite element analyses using a non-associated flow rule showed that soil dilatancy influences the value of kc, and that limit analysis 
and limit equilibrium solutions may be slightly unconservative. 

RÉSUMÉ
L'analyse de limite numérique est employée pour déterminer les limites inférieures et supérieures rigoureuses au coefficient sismique
pseudo-statique critique horizontal kc nécessaries pour causer l' effondrement des talus bidimensionnelles. Nous avons calculé des li-
mites optimales du kc en appliquant des techniques de programmation linéaire. De plus, nous avons fait des analyses d’élément fini 
dans certains cas choisis en utilisant le programme ABAQUS. Les valeurs du kc et les surfaces de glissement provenant des analyses 
d'élément fini de déplacement et des analyses de limite supérieure numérique correspondent bien à ceux obtenues avec les méthodes 
d'équilibre limite et le méthode de limite supérieure logspiral. Un nombre restreint de analyses d’élément fini en utilisant une règle
d'écoulement non-associée a prouvé que la dilatance de sol influence la valeur du kc, et que l'analyse limite et les solutions d'équilibre 
limite peuvent être légèrement non conservatives. 

1 INTRODUCTION 

The pseudostatic approach is commonly used in engineering 
practice for the design of slopes in seismic areas. The seismic 
safety of a slope can be expressed by a single parameter, the 
critical seismic coefficient kc, as an alternative to the safety fac-
tor (Sarma, 1973). The critical seismic coefficient kc is defined 
as the ratio of the seismic acceleration ac to the acceleration of 
gravity g (= 9.81 m/s2) that yields a factor of safety equal to 
unity. Moreover, the critical seismic coefficient kc is one of the 
most important parameters entering the calculations for the slid-
ing block method proposed by Newmark (1965), widely used in 
the estimation of earthquake-induced, permanent displacements 
in earth structures.  

Although more elaborate analyses are nowadays available, 
such as non-linear FEM, the limit equilibrium (LE) method is 
still extensively employed to perform pseudostatic slope stabil-
ity calculations. A number of different LE schemes have been 
formulated for the direct determination of the critical seismic 
coefficient kc, without the need for iterations or for the calcula-
tion of the factor of safety (Sarma, 1973; Spencer, 1978; Sarma, 
1979; Kim & Sitar, 2004). However, LE method solutions sat-
isfy only the global equilibrium of the failing soil mass. Equilib-
rium inside the failing mass and strain compatibility are not 
checked. Thus, results yielded by the limit equilibrium method 
are only approximations to the true collapse load. Limit analysis 
is a powerful mathematical tool that provides rigorous lower 
and upper bounds to the exact collapse load, as long as it is as-
sumed that the soil follows an associated flow rule. Thus, limit 
analysis can be used to check the validity of limit equilibrium 
solutions.

 Past research efforts have shown that results from limit 
equilibrium methods are in good agreement with limit analysis 
bounds for the static slope stability problem (Yu et al., 1998; 

Kim et al., 2002). In this paper, numerical limit analysis is ap-
plied to the problem of two-dimensional pseudostatic slope sta-
bility. Results in terms of kc and critical slip surface are com-
pared with those obtained from limit equilibrium methods. 
Finite element simulations were also carried out for some of the 
investigated cases. Throughout the present study, the soil was 
assumed to follow the Mohr-Coulomb failure criterion. Since an 
associated flow rule is not an accurate representation of the real 
soil behavior, a limited number of finite element analyses were 
used to assess the impact of non-associativity on the pseu-
dostatic slope stability problem. 

2 METHODS OF ANALYSIS 

2.1 Numerical limit analysis 

Linear programming techniques combined with finite element 
discretiazation were used to obtain optimal statically admissible 
stress fields and kinematically admissible velocity (or strain 
rate) fields, from which the lower and upper bounds are derived, 
respectively. The lower and upper bound formulations of Sloan 
(1988) and Sloan and Kleeman (1995), later modified by Kim et 
al. (2002) to account for porewater pressures and complex soil 
profiles, were extended to compute the critical seismic coeffi-
cient (Loukidis et al., 2003). Bounds calculated using this limit 
analysis approach are referred herein as numerical lower and 
upper bounds. Although the current formulation is capable of 
calculating either the vertical or the horizontal critical seismic 
coefficients, computations performed herein consider only a 
horizontal kc.
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For the lower bound analysis, we seek a statically admissi-
ble and safe stress field that yields the highest possible value of 
kc, with the soil mass being discretized into three-noded triangu-
lar elements in which the stresses vary linearly. For the upper 
bound analysis, we seek a kinematically admissible velocity 
field at the state of collapse that yields the lowest highest possi-
ble value of kc, with the soil being divided into three-noded tri-
angular elements in which the velocities vary linearly (constant 
strains). Differently from traditional displacement-based finite 
elements, each node of the finite element mesh in numerical 
limit analysis is unique to a given element. This mesh character-
istic allows for statically admissible stress discontinuities and 
kinematically admissible velocity discontinuities of zero thick-
ness. Extension elements are incorporated into the lower bound 
mesh to extend the stress field to the infinite half space (Sloan 
1988). The total unit weight �, the internal friction angle �, and 
the cohesion c of the soil are assumed to be constant within an 
element. For complete description of the formulation of the 
lower and upper bound problems using linear programming, the 
reader is referred to Sloan (1988), Sloan and Kleeman (1995), 
Loukidis et al. (2003) and Bandini (2003). Fig. 1 shows the sign 
and notation adopted in this study. At the collapse state, kh = kc.

Figure 1. Schematic of problem configuration for simple homogeneous 
slopes.

2.2 Displacement finite element analysis 

The finite element method has traditionally been used in geo-
technical engineering to obtain good approximations of collapse 
loads. However, a careful discretization in the vicinity of the an-
ticipated shear band is required for an accurate FE. Unstructured 
meshes composed of six-noded, plane-strain triangular elements 
were used to discretize the soil mass in this study. Boundary 
conditions are shown in Fig. 1. The finite element mesh was ex-
tended laterally to the point at which the left and right bounda-
ries did not have any effect on the collapse mechanism. A soil 
constitutive model following the Mohr-Coulomb failure crite-
rion was assigned to the soil for direct correspondence with 
limit analysis. The value of kc is obtained once the analysis 
reaches the collapse state. At the collapse state, the shear band, 
defined herein based on plastic shear strains, extends across the 
entire height of the slope, and the inclination of the crest dis-
placement vs. applied body load curve tends to infinity.    

2.3 Log-spiral upper bound and Limit equilibrium 

The upper bound method by Chang et al. (1984) provides a rig-
orous upper bound to the critical seismic coefficient kc for a 
homogeneous slope by establishing a kinematically admissible 
failure mechanism along a log-spiral slip surface. In this study, 
the log-spiral is assumed to pass through the toe of the slope.  
For more general cases, porewater pressures can be also incor-
porated into the formulation (Loukidis et al., 2003).  
 Three limit equilibrium methods were employed to esti-
mate the critical seismic coefficient kc: Bishop’s simplified 

(Bishop, 1955), Sarma’s method (Sarma, 1973) and Spencer’s 
method (Spencer, 1978). These differ from each other mainly 
on the assumptions made regarding the interslice forces. For the 
purpose of this study, the program PCSTABL (PCSTABL6, 
Purdue University) was modified to yield directly the minimum 
kc instead of the static factor of safety using the above methods. 
For Spencer’s method, it was assumed that the inclination angle 
of the interslice forces with respect to the horizontal is constant 
throughout the slope.  

3 RESULTS 

Results from numerical limit analysis for homogeneous slopes 
with inclination � = 20o, 30o, and 45o are presented in Fig. 2. 
The ratio D of the vertical distance between the crest and the 
hard layer to the height of the slope H (Fig. 1) was set equal to 
1.5. An effective way to produce normalized plots is to use the 
parameter ����Leshchinsky and San, 1994; Michalowski, 2002)��
�

                                    =
tan
c

H
�

� �	 	
(1)

where ���= soil unit weight; and H = slope height. The friction 
angle � of the soil was varied from 10o to 40o, and no vertical 
seismic loading was considered. Although calculations were ac-
tually performed using ��= 20kN/m3 and H = 20m, this is not 
relevant as the charts in Fig. 2 are normalized by these two pa-
rameters. The number of elements in meshes used in numerical 
limit analysis ranged from 1670 to 1813 for the lower bound 
and 2303 and 2550 for the upper bound. 

 In addition, log-spiral upper bounds and results from Spen-
cer’s limit equilibrium method are plotted in Fig. 2. The differ-
ence between the numerical lower and upper bounds increases 
with both the friction angle and the slope angle, and show an 
average difference of ±4, 6, and 10% for � = 20o, 30o, and 45o,
respectively, with respect to their mean values.  

 The log-spiral upper bound values are considerably lower 
(better) than those from the numerical upper bound analysis. 
This is because, for the case of homogeneous slopes, the log-
spiral mechanism is indeed very close to the exact collapse 
mechanism. Moreover, in the log-spiral upper bound approach, 
all the plastic dissipation takes place on an infinitely thin dis-
continuity. Although refining the mesh in the high plasticity re-
gion in the numerical limit analysis improves the value of the 
upper bound, the plastic strain rates are still localized in a region 
of finite width. Considering the log-spiral upper bound instead 
of the numerical upper bound reduces the difference between 
the bounds with respect to their mean to ± 2, 3, and 3% for � = 
20o, 30o, and 45o, respectively, for the considered range of �.
Thus, the true kc value for simple homogeneous slopes is de-
fined almost exactly by the log-spiral upper bound and the nu-
merical lower bound, from a practical point of view.  

The kc values obtained from Spencer’s method using the ir-
regular random surface generator nearly coincide with the log-
spiral upper bound for most cases, as shown in Fig. 2. Results 
from Bishop’s simplified method lie between the numerical 
lower and upper bounds for almost all the cases studied.  
Bishop’s simplified method shows a tendency to produce results 
marginally more conservative than those of Spencer’s method 
for the higher � values. For ��� 25o, this tendency reverses.  

As � increases and ��decreases, the failure mechanism 
penetrates deeper into the soil profile. For large � values, the 
failure mechanism tends to develop tangent to the hard layer 
and extend laterally to extremely large distances from the slope. 
For these cases, Spencer’s method computations were per-
formed using the block option available in PCSTABL rather 
than the irregular surface generator, in order to reproduce slip 
surfaces that were mostly tangent to the hard layer. These cases, 
referred herein as singularity cases, are denoted in Fig. 2 by  
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horizontal arrows. For more discussion on these special cases, 
the reader is referred to Loukidis et al. (2003).  

Fig. 3 shows a comparison of the critical slip surfaces pre-
dicted by the limit equilibrium methods and the log-spiral upper 
bound, the shear band obtained from the finite element analysis, 
and the plasticity zone from the numerical upper bound analy-
sis, for the case of �  = 30o, c = 20kPa, and �  = 30o. It can be 
seen that the failure mechanisms predicted by all the methods 
employed are in excellent agreement. 

Resulting values of kc for selected cases with � = 30o are 
presented in Table 1. Displacement finite element analysis and 
the Sarma (1973) limit equilibrium method computations were 
also performed for these cases. The commercial program 
ABAQUS (Hibbit et al., 2001) was used for the FEM analyses. 
The dilatancy angle in FEM analyses was set equal to the fric-
tion angle to allow direct comparisons with the results from 
limit analysis. Generally, the finite element predictions fall be-
low the log-spiral upper bound, but in some cases, finite ele-
ment analysis does not yield values of kc within the narrow 
range defined by the numerical lower and the log-spiral upper 
bounds. This is most likely due to insufficient mesh refinement, 
although the element size in the vicinity of the shear band was 
set to be only 2% of the slope height.  

Table 1. Comparison of the horizontal critical seismic coefficient kc  for  
� = 30o

���(deg) 20 20 20 30 30 30 30 30

���� 0.137 0.275 0.412 0.022 0.043 0.087 0.173 0.260

Numerical 
lower
bound 

0.107 0.271 0.399 0.111 0.181 0.291 0.464 0.593

Numerical 
upper 
bound 

0.133 0.304 0.431 0.145 0.220 0.331 0.504 0.631

Log-spiral 
upper 
bound 

0.114 0.287 0.420 0.118 0.189 0.302 0.477 0.615

Finite ele-
ments 0.114 0.285 0.415 0.118 0.190 0.304 0.478 0.613

Spencer’s
method 0.113 0.286 0.420 0.117 0.188 0.302 0.477 0.615

Bishop’s 
simplified 0.114 0.284 0.416 0.118 0.188 0.298 0.469 0.603

Sarma’s 
method 0.109 0.279 0.414 0.116 0.185 0.295 0.469 0.607

Figure 2. Horizontal critical seismic coefficient kc as function of � and friction angle �.

Figure 3. Comparison  of  critical slip surfaces obtained from limit equilibrium methods and plasticity zones determined from numerical upper 
bound analysis and the finite element method. 
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4 EFFECT OF NON-ASSOCIATED FLOW RULE 

Numerical simulations of static slope stability by Zienkiewicz et 
al., (1975) and Manzari and Nour, (2000) suggest that non-
associated flow rule leads to smaller values of collapse loads. In 
the case of a non-associated flow rule, the lower and upper 
bound theorems no longer hold. Drescher and Detournay (1993) 
formulated an upper bound analysis that accounts for non-
associativity, in which the true strength parameters are substi-
tuted by a set of modified strength parameters proposed by 
Davis (1968). However, it is well known that upper bounds 
yielded by this approach are still non-rigorous. To date, finite 
element analysis is the only way to obtain reliable estimates of 
collapse loads in the case of a non-associated flow rule. Finite 
element analysis using ABAQUS were performed for the cases 
of ��= 30o, � = 0.087 and ��= 30o and ��= 45o, � = 0.06 and ��=
40o. From Fig. 4 it can be seen that the difference between the 
collapse load for the associative case (���= �) and those corre-
sponding to ��–��= 25o is around 15%. The difference in the kc
value appears to become greater with ��

It is interesting to note that although limit equilibrium meth-
ods do not make any consideration regarding the dilatancy angle 
of the soil, their results are always consistent with the solution 
of the problem with ���= ���Since for real soil it is true that ��–
��> 25o, the FE analyses presented herein suggest that the kc
yielded by the limit equilibrium methods routinely used in prac-
tice may be slightly unconservative.  

Figure 4. Effect of the dilatancy angle � on the value of kc.

5 SUMMARY AND CONCLUSIONS 

The problem of seismically loaded soil slopes was studied using 
numerical limit analysis and displacement-based finite element 
analysis. Results were compared with those generated by limit 
equilibrium and the log-spiral upper bound method. The follow-
ing conclusions are drawn: 
1)  For homogeneous slopes, the numerical lower bound and 

the log-spiral upper bound form a very narrow band, thus, 
defining the true value of kc.    

2)  The results of the critical seismic coefficient from all three 
limit equilibrium methods used in this study are in good 
agreement with the rigorous bounds calculated with limit 
analysis. Moreover, limit equilibrium methods are capable 
of closely predicting the shape and location of the failure 
surface.  

3)  Displacement finite element analyses using a non-associated 
flow rule indicate that soil dilatancy influences the value of 
kc to a certain extent. Thus, limit equilibrium solutions used 
in practice may be slightly unconservative.  
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