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ABSTRACT
A model able to describe the macroscopic transport of an electrolyte solution through a semi-permeable clay membrane is proposed.
Such a mechanical model may be derived imposing a dynamical equilibrium on the forces acting on the components of the solution.
The partition of ions within the pores of the membrane is attributed to the presence of a fixed charge on the solid phase and is mod-
elled as a Donnan partition mechanism. Such a model is able to explain the dependency, observed in laboratory experiments, of the
chemico-osmotic efficiency coefficient, ω, on the solute concentration, Cs, and to explain the dependency of the other experimental
parameters on ω.

RÉSUMÉ
Un modèle capable décrire le transport macroscopique d'une solution des électrolytes par une membrane semi-perméable d'argile est
proposé. Le modèle mécanique peut être dérivé imposant un équilibre dynamique aux forces agissant sur les composants de la solu-
tion. La distribution des ions dans les pores de la membrane est attribuée à la présence d'une charge fixe sur la phase solide et est mo-
delée comme un mécanisme de exclusion de Donnan. Ce modèle peut expliquer la dépendance expérimentale du coefficient d'effica-
cité chemico-osmotique, ω, de la concentration de l'électrolyte, Cs, et expliquer la dépendance des autres paramètres expérimentaux de 
ω.
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Clay soils are able to act as semipermeable membranes that re-
strict the passage of solutes. Restricted transport of charged sol-
utes (anions and cations) through the pores of clay soils is due 
to electrostatic repulsion of the ions by the electric field gener-
ated by the surface charge of clay particles. The existence of
membrane behavior also results in chemico-osmosis, or the 
movement of the solution in response to a solute concentration
gradient. The existence of membrane behavior can affect sig-
nificantly the transport of contaminants through clay barriers for
subsoil pollutant control. xLh0xLh0

Semipermeable porous media are materials having an inter-
connected system of pores and a charged solid skeleton. Due to
the charge of the solid phase (for clays, the charge is, generally,
negative), the ionic species may be excluded or adsorbed, de-
pending on the sign of their charge. As a result, the solution
within the pores is not electrically neutral. In order to restore the
electro-neutrality, the concentration of a fixed charge (moving
with the solid skeleton), CX, has to be introduced. As a conse-
quence of the presence of the charge of the solid skeleton, the
concentrations of the ions are discontinuous respect to the ex-
ternal bulk solutions in contact with the medium at the bounda-
ries. The concentration of the counter-ions (charge opposite to
that of the solid skeleton) is higher than that of the bulk solu-
tion, whereas the concentration of the co-ions is smaller. The
discontinuity of the ion concentrations at the boundaries gives
rise to a discontinuity also in the total pressure of the fluid
phase. The pressure of the solution within the pores is different 
from that of the external bulk solution at the boundaries because 
the partial pressures of the ions, that are related to the concen-
trations, are discontinuous. Due to the fact that the accumulation
of counter-ions is generally larger than the exclusion of co-ions, 
the total pressure of the solution within the pores is higher than 
that of the external solution (see Fig. 1). 

Figure 1. Pressure (a) and concentration (b) profiles within a charged
porous medium, having length Lh, in contact with two external bulk so-
lutions. P is the total pressure of the external bulk solutions and tP  is
the total pressure of the solution within the porous medium.  Cs is the
concentration of a (1:1) electrolyte in the external bulk solutions; 

21 C,C  are the concentration of the counter-ion and of the co-ion, re-
spectively, within the porous medium.

2 MECHANICAL MODEL 

The ionic molar fluxes, Ji, may be obtained from the momentum 
balance equations, neglecting inertial effects and assuming the 
solution “ideal” (i.e. very dilute):
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where q = volumetric flux (or Darcy’s velocity);
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iC  = ion concentration of the i-th ion;
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conductivity of the solution within the membrane. 

n = porosity;
0,im

*
i DD τ=  = effective diffusion coefficient, being

τm the tortuosity factor that accounts for the tortuous
nature of the actual diffusive pathways and Di,0 the 
free solution diffusion coefficient; The volumetric flux, in the absence of electric current, is

given by: zi = electro-chemical valence;
F = Faraday constant;
R = universal gas constant; 
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. (4)T = absolute temperature;
Φ = electric potential within the clay.

Eq. (1) is the well-known Nernst-Planck that accounts for the 
presence of the electrochemical forces, analogous to that used
for uncharged porous media (Malusis and Shackelford, 2002b). 
The momentum balance equation of the solvent (generally, wa-
ter) provides for the volumetric flux of the solution (if the sim-
plifying assumption that the flux of the solution is almost equal 
to that of the solvent is made):

Eqs. (3) and (4) are the appropriate equations for the con-
taminant migration analyses as only the pressure and the ion
concentration gradients compare in them, whereas the electric
potential gradient is eliminated by means of the condition of ab-
sence of electric current. In Eq. (4) the hydraulic conductivity at
zero electric current, kh, results to depend on the concentrations
of the fixed charge and of the ions in solution. However, for 
physically plausible values of the parameters normally found in
semipermeable porous media, such dependency results to be 
negligible and, as a first approximation, it may be assumed

whh ndk γ≅ , where γw is the unit weight of the solvent.
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In order to solve Eqs. (3) and (4) (or, alternatively, Eqs. (1) 
and (2)), the following boundaries conditions have to be im-
posed:

where dh = mechanical permeability at zero electric poten-
tial gradient;

tP  = total pressure of the solution within the pores; 
ϖ
ϖ

 = sign of the fixed charge (for clays, generally,
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Eq. (2) accounts for the linear composition of two driving 
force (per unit volume): (i) the pressure force, that corresponds
to the internal force associated to the thermal motion of the
molecules composing the solution, and (ii) the electro-chemical
force, representing the net drag exerted by the ions during their 
migration under the electric gradient. In the absence of a fixed
charge (i.e. ), Eq. (2) reduces to the Darcy’s equation,
commonly used in soil mechanics (Bear, 1972). In fact, in the 
absence of a fixed charge, the ion concentrations are not discon-
tinuous and, at the boundaries, the total pressure of the solution
within the pores is equal to the external one.
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where ψm' is the macroscopic electric potential of the charged
porous medium, or Donnan’s potential, and P' is the external
hydraulic pressure. In Eqs. (5), all the variables (pressures and
concentrations) are referred to the generic boundary ('). The 
Donnan’s potential is given by the difference between the elec-
tric potential within the pores, Φ , and the electric potential in
the external bulk solution, , i.e.

'
'ϕ '''m ϕ−Φ=ψ . The Donnan’s 

potential may be evaluated with the help of the electro-
neutrality conditions in the external bulk solution and within the
pores of the medium:

Eq. (1) and Eq. (2) may be considered as the generalization
of the transport equations commonly used in environmental 
geotechnics practice (Bear, 1972; Shackelford and Daniel, 
1991; Malusis and Shackelford, 2002b) to the case of soils hav-
ing a charged solid skeleton. However, if the equations (1) and 
(2) are applied to the analysis of a contaminant propagation 
through a clay barrier, it is convenient to impose preliminarily 
the condition of absence of electric current (i.e.

, where I0JzFI
N
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e is the electric current density). The

ionic molar fluxes are given by:
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In a clay, the fixed charge concentration, CX, may be as-
sumed proportional to the Cation Exchange Capacity, CEC, and
inversely proportional to the void ratio, e: 
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where φX is the fixed charge coefficient and  is the true den-
sity of the solid phase. The fixed charge coefficient is generally
smaller than one and accounts for a number of microscopic ef-
fects, as specific ion adsorption, and macroscopic effects, as
non-homogeneity of charge distribution, that may reduce the

T
sρ
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theoretical value of the fixed charge concentration, as estimated
by the CEC.
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  (4bis)Although the Eq. (1) and (2) represent a simple and physi-
cally consistent model, in many cases of practical interest they
are transformed applying a change of variables. The motivation
for such a change of variables is that a further simplification of 
the problem may be achieved, eliminating the discontinuities at 
the boundaries. If we look at the boundary conditions (5), it’s 
evident that may be convenient to introduce a "virtual" solution,
that, at any point x within the porous medium, is in thermody-
namic equilibrium with the real solution, in analogy with the ex-
ternal bulk solutions. So we can pass from the real variables, tP

and iC , to the virtual variables, P and Ci, that are the pressure
and the ion concentrations of a fictive bulk solution that, at the
generic distance x within the porous medium, is in thermody-
namic equilibrium with the medium. In correspondence of the
boundaries (x = 0 and x = Lh), the virtual solution coincides
with the real external solution in contact with the porous me-
dium. As a result, at the boundaries, the pressure of the virtual 
solution coincides with the pressure of the external bulk solu-
tion and, similarly, the ion concentrations of the virtual solution
coincide with the ion concentrations of the external bulk solu-
tion. The relations that allow for the change of variables are
similar to the boundary conditions (5), with the important dif-
ference that are valid not only at the boundaries, but at any point
x within the porous medium:
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�
�

�
�
� ψ−=Γ mii RT

Fzexp  = ion partition coefficient of the

i-th ion; 
= virtual electric potential.mψ−Φ=ϕ

It should be stressed that the equations written in terms of 
virtual variables are the only ones appropriated for the physical
identification of the parameters of the phenomenological equa-
tions derived applying the formalism of the Classic Thermody-
namics of Irreversible Processes by Staverman (1952), for dis-
continuous systems, and by Spiegler and Kedem (1966) and
Yaroshchuk (1995), for continuous systems. As pointed out by
Yaroshchuk (1995), adopting virtual variables is the only cor-
rect way of proceeding within the scope of the thermodynamic
approach because, in this context, specifying any physical prop-
erty of the membrane is not allowed, since the description of the
transport is purely phenomenological. The evaluation of the ion
concentrations, the electrostatic potential and the pressure in the
porous medium requires the assumption of a physical model
and, then, a restriction of the generality of the treatment. As a
result, the phenomenological parameters are overall coefficients
accounting for transport and partition mechanisms that have to
be determined by means of macroscopic experiments. The phe-
nomenological parameters that are measured experimentally
may be specified in terms of material parameters using a
mechanicistic approach (i.e. an approach where the transport
and partition mechanisms are accounted for explicitly and sepa-
rately).
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A case of relevant interest for practical applications is that of 
a single electrolyte, completely dissociated, in solution.
Dominijanni and Manassero (2005), based on the theoretical
framework of Spiegler and Kedem (1966) and the experimental
set of parameters measured by Malusis et al. (2001) and by
Malusis and Shackelford (2002a,c) by means of a new testing
apparatus, proposed the following phenomenological equations:

The ion concentrations of the virtual solution satisfy the 
electro-neutrality condition: 
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where Js = J1/ν1 = J2/ν2 = molar salt flux, being J1 the molar

flux of the counter-ion (cation) and J2 the molar flux
of the co-ion (anion);Using virtual variables, Eqs (3) and (4) are given by:
νi = stoichiometric coefficient of the  i-th ion;

s21 RTC)( ν+ν=Π  = osmotic pressure;
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 (3bis)

Cs = C1/ν1 = C2/ν2= salt concentration;
kh = hydraulic conductivity at zero electric current;
ω = chemico-osmotic efficiency coefficient;
D*

ω = osmotic effective diffusion coefficient.

The phenomenological parameters ω and D*
ω are depending

on the porosity of the clay (i.e. on the stress-level) and on the
salt concentration. For a fixed porosity, n, the following global
parameters may be measured:
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The testing apparatus developed by Malusis et al. (2001) al-
lows for the determination of the parameters ωm and D*

ω,m on 
clay samples.

A physical identification of the phenomenological parame-
ters may be obtained by comparing Eqs. (11) and (12) with the 
Eqs. (3bis) and (4bis) for the case of N = 2. The resulting rela-
tions between phenomenological and materials parameters are: Figure 2. Interpretation of the experimental data of Malusis and

Shackelford (2002a) with the mechanical model.
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An interesting result in closed-form may be obtained for the

chemico-osmotic efficiency coefficient when there is a (1:1) 
electrolyte in solution:
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Figure 3. Linear regression of measured osmotic effective salt diffusion
coefficients versus (1-ωm) for a geosynthetic clay liner (data from Malu-
sis and Shackelford, 2002c).where t1 = D0,1/(D0,1+D0,2) = transport number of the cation

in the virtual solution;
ξ = CX/Cs = relative fixed charge concentration. 3 SUMMARY AND CONCLUSIONS

Using Eq. (17), the measured (or global) chemico-osmotic
efficiency coefficient, ωm, defined by Eq. (13), is given by:
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The dependency of the phenomenological coefficients on the
porosity and the salt concentration may be investigated by
means of a series of tests and modeled using a mechanical
model, derived on the basis of the physical identification of the
friction and partition mechanisms that governs the transport of
the solution through the clay membrane. Although such a model
implies some simplifying assumptions, it appears to be a useful
tool for predicting plausible values of the phenomenological pa-
rameters when a direct experimental determination is not possi-
ble.Eq. (18) has been applied for interpreting the experimental

data of Malusis and Shackelford (2002a), finding a good corre-
spondence between the theoretical model and the test results 
(see Fig.2). REFERENCES
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