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ABSTRACT
A significant part of the consolidation of soft clay fitted with vertical drains (or stone columns) occurs during a step by step embank-
ment loading. In order to schedule the loading program, it is necessary to predict the settlement evolution during the construction
process. A unit cell model, made up with one column surrounded by saturated soft clay overlaid by drained layer, is considered with
oedometric conditions. An analytical poroelastic solution is derived that provides, in addition to the degree of radial consolidation and
excess pore water pressure dissipation, the evolution with time of the reinforced soil settlement. The latter is predicted by introducing
the concept of “equivalent membrane” assuming a uniform excess pore water pressure in the soft clay. The Barron’s factor time of ra-
dial consolidation is also adopted that provides the determination of the permeability of this “equivalent membrane”. The results of
the proposed method are illustrated as a function of the substitution factor.

RÉSUMÉ
En ayant recours à un modèle de comportement poro-élastique linéaire, on résout le problème de consolidation radiale d’une argile
molle renforcée par colonnes et soumise à une histoire de chargement donnée. Cette résolution est faite en utilisant l’hypothèse de la
membrane équivalente. Outre le calcul des surpressions interstitielles, cette résolution, conduite analytiquement, permet le calcul du 
tassement durant la consolidation de l’argile molle. Ce dernier point constitue un apport original par rapport à la résolution faite par la
théorie de Barron. La validité du modèle poro-élastique proposé a été confirmée suite à l’analyse d’un cas pratique.

1 INTRODUCTION

In this paper the settlement evolution of rigid foundations rest-
ing on reinforced soft clay by a group of columns is studied. 
Assuming a linear elastic behaviour for the reinforced
soil constituents allows to predict the settlement of the
reinforced soil by using either the unit cell model (Balaam et
al, 1981), or the group of columns model (Bouassida et al, 
2003), but provides no information regarding the settlement 
evolution due to the drainage, and subsequent consolidation, of
the saturated soft clay by the reinforcing columns. In such a 
situation the consolidation time of reinforced soil is highly re-
duced because of little radial drainage distance between col-
umns and high permeability of their constitutive material such 
as gravel, ballast, etc. Nevertheless, the consolidation process
taking place in soft clay depends strongly on the history of load-
ing exerted on the reinforced soil. Based on the unit cell model, 
Barron’s contribution (1947) was first proposed to predict the
consolidation evolution with time resulting from the presence of
a vertical drain within the soft soil cylindrical mass. Using the
unit cell model, other analytical contributions were carried out 
by Yoshunki and Nakanodo (1975), Hansbo (1981), etc. Since 
then two-dimensional analyses by finite element method have
been investigated to simulate the consolidation due to vertical
drain in soft soil (Hird et al., 1992). In all these previous studies 
the excess pore pressure evolution due to instantaneous loading
was only aimed to predict the soft soil improvement caused by
vertical drain. However, practitioners often face both settlement
reduction and settlement evolution taking place in soils im-
proved by vertical drains. Such a situation frequently occurs
during a step by step embankment construction on soft clays re-
inforced by stone columns. In the present contribution, where
the unit cell model is used, an analytical procedure is performed
in order to predict both settlement and excess pore pressure evo-
lution occurring in soft clay improved by vertical drains due to a 
given history of loading. For this purpose a poroelastic model-

ling is considered for soft clay assumed to be fully saturated, 
while the column material is perfectly drained.

2 FROM THE INITIAL TO THE AUXILIARY PROBLEM

End bearing columns, all located under the rigid foundation, are
resting on an impervious substratum. The reinforced soil mass 
is overlaid by a thin perfectly pervious sand layer. Assuming 
that the foundation’s horizontal extension L is large enough
with respect to the spacing s between two adjacent columns, the
unit cell model can be adopted with oedometric conditions.

Figure 1. Foundation supported by reinforced soil 

Assuming for instance that the columns are distributed
throughout the soil following a square pattern, the unit cell is a
parallepipedic volume comprising one column of radius a as
sketched in fig. 2a. For the sake of simplicity, the domain of in-
fluence is assumed to have a circular shape of external radius b
(fig.2b), so that the global improved area ratio (ratio between
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the sum of the total columns section and the rigid area founda-
tion area) is identified with the substitution factor resulting from
the unit cell model, then:

where �’ and µ’ are the drained coefficients of Lamé of the soil
skeleton. I  denotes the identity tensor.

3.3 Darcy’s law:
η  = 2
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According to Darcy’s law a linear relationship is established be-
tween the vector of fluid mass transfer w  and the gradient of

the excess pore water pressure u:An initial increase of excess pore pressure in the soft clay is
instantaneously generated by the application of the loading. Due 
to the high permeability of the column material, radial drainage
takes place in the soft clay horizontally towards the column,
then the flow continues vertically in the column towards the
horizontal drainage layer.

�
�
�

�
�
�−= g

ugradkw
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in which the excess pore-water pressure is defined by :
, where p is  the pore-water pressure and p0ppu −= 0 is the hy-

drostatic pore pressure. g is the gravity and k is the coefficient
of permeability of the soil. 

3.4 Water mass balance equation

It expresses the connection between the rate of the unit supply 
of water and the vector of fluid mass transfer w , in the form:

0=+ wdivm�  (5)

3.5 Diffusion equation:Figure 2. (a) Reinforced unit cell, (b) Auxiliary problem.

Substituting Eqs (2) and (4) into Eq (5), it comes:

( ) ukgtrw ∆=ερ � (6)
3 EQUATIONS OF LINEAR POROELASTICITY 

A brief recall of equations governing the linear poroelastic be-
haviour of saturated soils whose constituents (grain matrix and
water) are assumed incompressible, is first made (Coussy, 1999;
Dormieux & Bourgeois, 2002).

atrix and
water) are assumed incompressible, is first made (Coussy, 1999;
Dormieux & Bourgeois, 2002).

where ∆ denotes Laplace operator.

  4 STATEMENT OF THE AUXILIARY PROBLEM
3.1 The first state equation3.1 The first state equation

  Due to the geometry of column, cylindrical coordinates (r, �, z)
are considered, in order to state mechanical and hydraulic
boundary conditions of the composite cell (figure 3).

This state equation expresses that the volume variation of the
saturated soil 
This state equation expresses that the volume variation of the
saturated soil ( )εtr  is only due to the water exchange between
the soil itself and the outside, then: Mechanical boundary conditions write as follows.

The bottom cross section (z = 0) is in smooth contact with a
rigid and fixed plate:( )

w
mtr ρε =  (2)

00 === zr TT ξθ (7)
where m is the supply of water per unit volume of soil, and wρ
is the specific mass of water. The top cross section (z = H) is in smooth contact with a ri-

gid plate subject to a downward uniform vertical displacement d
as function of time t:3.2 The isotropic linear porous elastic behavior:

( )tdTT zr −=== ξθ 0 (8)In the case of isotropic linear behavior, the initial state being
natural (σ = 0, ), the soil strains00 =p ε are governed by the

classical Terzaghi effective stress 'σ , such that:

The lateral surface (r = b) is in smooth contact with fixed
border.

00 === rz TT ξθ (9)
( ) εµελσ '2'' += Itr (3) Hydraulic conditions take into account the high permeabil-

ity of column material and sand layer with respect to  that of the
surrounding soft clay:
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where the expressions Du(a) and Dd(a) are detailed in Guetif
(2004).

Figure 3. Boundary conditions of the auxiliary problem

( 00,0 =<≤≤≤ Hzaru )

)

(10a)

The excess pore-water pressure at the top horizontal bound-
ary of the soft clay (z=H) is zero: Figure 4. Equivalent membrane at the column-clay interface.

( 0,0 ==≤≤ Hzaru (10b)
From the differential equation (15) and for a given function

d(t), the evolution of excess pore water pressure within the soft
clay can be calculated. For the particular case when the top of
the composite cell is subjected to a uniform settlement of the
form H(t), where H(t) is the Heaviside function, the ex-
cess pore pressure writes:

( ) 0dtd =

The top and bottom horizontal boundaries of the soft clay 
(z=0, H), as well as the lateral surface (r=b) are impervious:

( ) 0., ==≤≤ zeHzbraw (11a)

( ) 0.0,0 ==≤≤ zezbrw (11d)

( ) ( ) [ ]
c

ss T
tEH

d
X
Ztu −= exp0 H(t)  (16)( ) 0. == rebrw (11c)

where the characteristic time of consolidation is expressed by:
5 SOLUTION OF POROELASTIC PROBLEM

( )
s
uw

c KE
abDT γ−=  (17)It is carried out under the following assumptions:

The water flow occurs in radial direction:

( ) retrww ,=  (12) sE denotes the soft clay Young’s modulus, while the expres-
sions of Z and X are given in Guetif (2004).

For the sake of simplicity, an assumption called “equivalent
membrane” hypothesis is done, according to which the soft clay
permeability is infinite, such that the excess pore water pressure
remains homogenous (figure 4): 

6 IDENTIFICATION OF THE PERMEABILITY OF
EQUIVALENT MEMBRANE

The coefficient of permeability K of the equivalent membrane is

introduced as:
kL

kK = , where Lk is a characteristic length which

is determined from the solution of the radial consolidation prob-
lem of a composite cell. For such problem (figure 3), the char-
acteristic length will be deduced by identifying the characteris-
tic time predicted from Eq (17) to that proposed by Barron’s
theory (1947), it comes :

( ) ( )tutrubra s=≤< ,,  (13)

As a result of this simplifying assumption, the radial water
flow towards the column will be controlled through this equiva-
lent membrane, whose global permeability is denoted by K, its
dimension being the inverse of time (s-1). Then the water flow is
expressed by:

( ) ( )
w

s
w

tuKtaw
γρ −=,  (14)
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( )
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η
η

γ wur
sk aDc

kbEL  (18)
The solution of the poroelastic problem, taking into account

the above conditions, reduces to that of an elastic problem rela-
tive to the composite cell subjected to a uniform displacement
d(t) at the top surface and an isotropic state of stress within the
soft clay, corresponding to the excess pore pressure in the clay.
This leads to the following differential equation:

7 SETTLEMENT PREDICTION FOR A GIVEN LOADING
HISTORY

In practice, the main problem to be faced is the prediction of the
settlement evolution generated by a given loading history. The
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load Q(t), exerted by the rigid raft foundation on the reinforced
soil is:

( ) ( ) ( )dstHtQ z
HzS

,σ� =
−= (19)

where σz is the vertical stress distribution at the top of the unit
cell model. Calculations of this vertical load are detailed in
(Guetif, 2004). One obtains:
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Figure 7. Radial consolidation degree variation as a function of time, of 
reinforced soil submitted to instantaneous loading (Es=1000kPa,
Ec=10000kPa, Q=1000kN, k=10-8ms-1, b=1,7m, H=15m).

Combining Eqs. (16) and (20) finally it comes: 

∆+∆=+ ψωχθ �� QQ  (21) 8 CONCLUSION

where � denotes  the normalized settlement d/H, while the ex-
pressions of coefficients �, χ, � and ψ are given in Guetif
(2004). Given the loading history Q(t), this equation can be 
solved by using Laplace-Carson’s transform in exactly the same
way as for solving viscoelastic problems (Salençon, 1983).

It is important to emphasize that the poroelastic model pre-
sented here provides both the evolutions of the degree of radial
consolidation and settlement for any case of loading history un-
der which the reinforced soil is subjected. Illustration by charts
have been provided for instantaneous loading the settlement
evolution in time for various substitution factor valuesIn the particular case of an instantaneous loading for t=0:

The most important parameter affecting predictions by the 
proposed model remains the radial coefficient of consolidation.
Because of unsatisfactory laboratory tests to determine this pa-
rameter the calibration of predicted results by the model be-
comes more difficult to carry out. Meanwhile more investiga-
tions with field data should be done to calibrate the proposed
porous elastic model. 

( ) 0QtQ =  H(t)  (22)

the solution in terms of normalized settlement writes:
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The evolutions of settlement and degree of radial consolida-
tion, under a prescribed load exerted by the foundation, may be
calculated as functions of the substitution factor and elastic
characteristics of the constituents of the composite cell model. 
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Figure 6. Settlement variation with time of reinforced soil submitted to 
instantaneous loading (Es=1000kPa, Ec=10000kPa, Q=1000kN, k=10-

8ms-1, b=1,7m, H=15m).

Furthermore, the excess pore pressure evolution us(t) and 
radial consolidation degree evolution Ur (%),defined in Guetif
(2004), are also predicted (figure 7).
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