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ABSTRACT

Increasing regulations and social expectations of mines to minimize environmental impacts whilst ensuring a safe working environ-
ment and maintaining profitability has led to a higher degree of control throughout the mining and processing cycle. In recent years
there has been an increasing trend with regards to the use of paste fill. Paste fill is defined simply as mine tailings (typically an effec-
tive grain size of approximately 5 wm) mixed with some form of binder. The tailings used to manufacture paste fill are unclassified;
that is they are not graded or sized in any form. This lack of grading results in greater variation of the tailings and consequently the
material characteristics. Traditionally, additional cement has been added into the paste fill blend to compensate for the variation of the
grain size distribution and improve stability of fill exposures. Cement is the most expensive component of paste and can constitute be-
tween 15%-20% of the total cost of mining. Therefore, any reduction in the use of excess cement will result in obvious economic
benefits. Within this study, artificial neural networks (ANNs) were applied to the prediction of fill strengths, and were based on the
input parameters of cement content, solids content, curing time and grain size distribution. Correlations between the predicted and
achieved strength of the paste for both Cannington mine and paste fill worldwide using ANNs were excellent. The use of ANNs as
part of an integrated planning tool for the design of backfills has also been discussed in the paper.

RESUME

Les réglements croissants et espérances sociales de mines pour minimiser des impacts écologiques pendant qu'assurant qu'un foncti-
onnement siir environ-réparé et maintenir la rentabilité a mené a un plus haut degré de contréle a travers l'extrait et le cycle de traite-
ment. Dans les années récentes il y a eu une tendance qui augmente en ce qui concerne l'usage de pate remplit. La pate remplit est
simplement définie comme extrait tailings (typiquement une taille de grain efficace d'approximativement 5 mm) a mélangé avec quel-
que forme de classeur. Le tailings a utilisé pour fabriquer la pate remplit est non classifiée (pas gradué ou a calibré dans la forme). Ce
manque de graduer a pour résultat la plus grande variation du tailings et par conséquent le charac-teristics matériel. Traditionnelle-
ment, le ciment supplémentaire a été ajouté dans la pate remplit le mélange pour compenser la variation du GSD et améliore la stabili-
té de remplit des expositions. Le ciment est le composant le plus cher de pate et peut constituer entre 15%-20 % du cotit total d'extrait.
Donc, n'importe quelle réduction dans l'usage de ciment supplémentaire aura pour résultat des avantages économiques évidents. Dans
cette étude, ces réseaux neuronales artificielles (ANN’le s) ont été appliqué a la prédiction de remplit des forces, et ont été basé sur les
parametres d'entrée de contenu de ciment, le contenu de solides, guérissant le temps et la distribution de taille de grain. Les corrélati-
ons entre la force prédite et atteinte de la pate pour la mine de Cannington et la pate remplissent dans le monde entier utilisant ANN’le
s était excellent. L'usage de ANN’le s comme la partie d'un outil de planification intégré pour la conception de remblais a été aussi
discutée dans le papier.

1 INTRODUCTION

Since the mid 1990s, paste fill has gained rapid acceptance as an
alternative backfill material to the conventional cemented hy-
draulic fills (Belem & Benzaazoua 2004, Rankine 2004, Naylor
et al. 1997, Landriault 1995,). As mine stopes are removed,
paste fill is used to backfill the voids. Paste fill provides sub-
stantial benefits to mining operations including an effective
means of tailings disposal, improvement of local and regional
rock stability, greater ore recovery and greatly reduced envi-
ronmental impacts (Rankine & Sivakugan 2004, Bloss &
Rankine 2005).

In order to provide stability, paste fill must remain stable
during the extraction of ore and minerals from neighboring
stopes. If the paste becomes unstable, the adjacent faces may re-
lax and, as a result, displace into the open stope. In the past,
considerably high cement quantities of up to 6% (typically 3 to
5% by wet weight) have been used to ensure the stability of
backfilled stopes, especially during blasting. Filling costs for a
mine typically represent in the vicinity of 20% of all mining
costs, with binder costs constituting approximately 75% of that
amount (Bloss & Grice 2001, Belem & Benzaazoua 2004). This
high cost of cement has placed greater emphasis on the optimi-
zation of fill design for strength with respect to cement usage.

The use of artificial neural networks (ANNs) provides a new
and immensely powerful opportunity to achieve this goal.
ANNs were used within this study to predict the required
strength of the paste fill and then to identify the most economi-
cal mix.

2 ARTIFICIAL NEURAL NETWORKS

ANNSs are computer based models, which use and analyse histo-
rical data to develop solutions to complex, multivariate pro-
blems. Neural networks are comprised of a series of intercon-
nected nodes or “neurons”, which perform the same function as
their biological namesakes. The neurons are interlinked by a se-
ries of connectors to form a series of layers. All networks have
at least two layers - the input and output layers. Intermediate
layers of neurons are not visible to neural network users and
thus are commonly referred to as “hidden” layers.

There are two main features in an ANN - the architecture
and learning algorithm. The architecture dictates the structural
configuration of the networks, and the learning algorithm de-
scribes the method in which the networks are able to learn from
the data. Learning may occur in either a supervised or unsuper-
vised environment. The difference between these two types of
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networks is that unsupervised networks are trained without any
output values, whereas supervised networks are trained with the
outputs which are target answers (Dayhoff 1990). The latter of
these network types is far more common. Unsupervised net-
works are usually confined to use in the classification of pat-
terns into similar groups.

For the current research, a General Regression Neural Net-
work (GRNN) was used with a feed-back supervised learning
algorith. The GRNN has been shown to train quickly on sparse
and incomplete data sets (Specht 1991, Abu Kiefa 1998). This
algorithm was considered suitable for use in this study due to
the data sets for backfills worldwide, and in particular paste fill,
being rare and typically held in-house by mining companies
with a high level of commercial interest tied into them.

3 AN INTEGRATED TOOL FOR BACKFILL DESIGN

Once placed, mine backfills need to satisfy certain dynamic and
static loading requirements to ensure a safe underground wor-
king environment for all mining personnel. Dynamic requir-
ments include the provision of resistance to liquefaction and
stability during localised blasting or other seisimic events.
Clough et al. (1981) identified an unconfined compressive
strength of 100 kPa as the minimum strength required to resist
mobilisation of cemented sands in earthquakes measuring up to
M=6.5 on the Richter scale. This figure is widely accepted by
the mining industry as providing adequate dynamic stabilty reis-
tance within stopes. The primary static loading requirement is to
provide a stable vertical face when exposed by the adjacent mi-
ning of stopes. This static requirement typically governs the de-
sign of backfilled stopes.

To identify the static stabilty requirements of underground
fill stopes, numerical modelling using FLAC? was undertaken.
The point which shows greatest stress concentration in the stope
is at the centre of the base. Within this study, an inherently con-
servative approach to static stabilty was adopted with stability
assumed to be satisfied, provided the uniaxial compressive
strength (UCS) of the backfill used exceeded this value of
maximum stress concentration. To provide a more representati-
ve figure of the internal stresses within a stope, taking into ac-
count the effects of arching, the stress at the mid-height of the
stope was also identified. These stress profiles were identified
for various base to height and width to depth ratios. Examples
of the output are shown in Figures 1 and 2.

3.1  Numerical modelling of backfill stress profiles

Numerical modelling of backfilled stopes was undertaken using
FLAC®® . The constitutive models selected for simulating the
paste fill and surrounding rock were Mohr-Coulomb and Elastic
models respectively. The development and assumptions used by
the numerical model are discussed by Rankine et al. (2001) and
Rankine (2004).

A sensitivity analysis was conducted on the input paratem-
ters for the numerical model and changes in stress development
within the stope were observed. Values for each parameter were
based on a reasonable variation which could be expected around
typical values for each variable which is shown in Table 1. The
material characteristics for cemented backfills included values
typical of aggregate, sand and hydraulic fills as well as paste
fill. This ensured that the ANN could be trained on data which
encompasses the fills likely to be encountered in practice.

Vertical stress development has been shown to be primarily
dependent on fill density and Poisson’s Ratio. Low values of
cohesion also contribute to increased vertical stresses within the
stope by limiting the ability of the soil arch development.

The effect of stope geometry was also investigated using
aspect ratios. Width to height (W:H) ratios of 1, 2, 3 and 5 with
base widths (plan) of 18.75, 25 and 37.5m were investigated to
determine the variation of vertical stress. Similarly the width to
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depth (W:D) aspect ratios were investigated for ratios of 1, 2
and 3. The typical outputs are depicted in Figures 1 and 2.

As expected, results showed that the vertical stress in stopes
increases with increasing base dimensions and width:depth ra-
tio.

The increased stress in the base of stopes with a larger plan
dimension results from the increased distance required for the
full development of the soil arch. This increased distance is
caused through an increased load path distance, and causes re-
ductions in the ability of stopes to transfer vertical loads
through shear. An increase in vertical stress with W:D ratio was
also observed. This increase is due to the transfer of the primary
arching mechanism from a 3-D arch, to a 2-D arch.

A W:D ratio of 2 has been found to delineate the boundary
between 2-D and 3-D arching. Figure 2 shows limited increase
in the vertical stress, due to increased stope depth. This is be-
cause arching is considered to be almost exclusively 2-D in both
cases.
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Figure 1 Vertical stress profile along the vertical centerline of stopes
with variable width to height ratios (base dimensions = 25 m x 25 m)
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Figure 2 Vertical stress profile down the centre of stopes with variable
width to height ratios (base dimensions = 25 m x 25 m)

Table 1 Input parameters for paste fill in the FLAC®® model

Material Properties Range Units
Cohesion, ¢, 100 - 1000 (kPa)
Density, pn 1700 - 2300 (kg/m®)
Friction Angle,0 0-30 (deg)
Young's Modulus, E 1-250 (MPa)
Poisson's Ratio, v 0.15-0.35

Tensile strength, t 20 - 400 (kPa)
Dilation Angle, y 0-15 (deg)




Outputs for the maximum vertical stress at the base and
mid-height of the stope were recorded for all the modelling
combintions of stope geometry and material properties and en-
tered into a database. This database was then used for input to
the final integrated fill design tool to predict the required fill
strengths for static stability (Fig. 3).
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Figure 3 Results for ANN modelling of the predicted maximum vertical
stress at the base of stopes

3.2 Development and application of ANNs to the prediction
of backfill strengths

Currently there are a number of simplified methods available to
relate physical properties to the UCS of backfills (Saliba 1996,
Bloss 1992, Swan 1985, , Berry 1981). However, these methods
are typically site specific and for specified types of fill. Therefo-
re, they lack the robustness of a solution which is able to be ap-
plied to any general case. The ANNs available from within the
Neuroshell® software package were used to predict backfill
strengths. The ANNs trained the networks with the data provi-
ded and did not place any limiting assumptions on the analysis.

Data were collated from various sources, including tests
conducted on Cannington paste fill as part of research by Ran-
kine (2004) and also strength testing of paste fills reported in
the literature. Table 2 summarises the data sets used for the
ANN modelling and the parameters used in each analysis.

Table 2 Data set delineations.

Data _ Data
D t Test P: t .
Set escription est Parameters Points

Inputs: %C, %S, P80,
Curing time 170
Outputs: €f, E, UCS
. 0, 0,
Paste Fills — World wide Inputs: %C, %S, P80,

2 . Curing time 39
Model Name: “PFVAR’ Outputs: UCS

Paste Fills — Cannington
Model Name: “PFCAN”

The ANNs developed using the input test parameters are
only valid for the range of values over defined within the train-
ing data. ANNs are used for interpolation of data and are not
able to extrapolate. Table 3 shows the range of values for each
of the ANNS.

Table 3 Range of values for input parameters

ANN % C % S Dyo Curing Time
model (um) (days)
PFCAN 2-8 74 -85 38 - 280 28 - 365
PFVAR 2-12 61 -86 20 —3700 28 - 365

Data sets for each of the ANN models were subdivided into
two groups — “modelling” data and “validation” data. The mod-
elling data were then further subdivided into a test set and train-
ing set (Fig. 4). Validation and test data differ in that the valida-
tion data are used to assess the predictive ability of the network
on “unseen” data, whereas the “training set” is “seen” data used

to calibrate the network during training. In each case, the divi-
sion of data was conducted randomly.

INPUT DATA

I |
Validation Data Modelling Data
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Test Set Training Set
(10%) (75%)

Figure 4. Division of data for ANN modeling

4 RESULTS

Once each of the models had been constructed, their individual
performance and precision of the models were assessed using
the coefficient of determination, 1%, between the predicted and
measured data. The validation data were used to provide an in-
dication of the predictive ability of the trained networks on un-
seen data.

Figures 5 and 6 depict predictions of fill strengths by the
ANN models for paste from Cannington and for paste fill
worldwide, respectively.
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Figure 5. Predicted versus measured UCS - Cannington paste fill

The correlation coefficients for Figures 5 and 6 were 0.991
and 0.901, respectively. A higher r* value was obtained for the
ANNSs developed for Cannington Mine “PFCAN”. This higher
value resulted from having a large database of unconfined com-
pressive strengths available to train the ANN. There is also a
higher degree of control over the manufacturing process of pas-
te concistency of the characteristics of the mill feed used to ma-
ke the paste.
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Figure 6. Predicted versus measured UCS - Paste fill from various
sources worldwide
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The 1 value of 0.901 for the ANN predictions of the paste
fill strengths from worldwide sources is significant. This indica-
tes that the factors of cement content, solids content, curing ti-
me and grain size of the paste can be used to predict the likely
stregth of the paste — with a moderately high degree of confi-
dence. Previously, the best predictive tool for backfill strengths
was that of the binder number concept — introduced by Swan
(1985). This method had an r* value of approximately 0.8, and
therefore it is suggested that the use of ANNs may provide a
better generalised solution.

5 INTEGRATED DESIGN TOOL FOR BACKFILL
PERFORMANCE USING ANNS

By integrating the use of ANNs to predict the required backfill
strength and UCS of the paste, the engineer is able to define an
array of paste fill mixes to satisfy the defined criteria. To find
the lowest cost paste fill option, the user is prompted for the in-
put variables of: solids content, Dg, (the size in um of which
80% of the tails will pass) and curing time.

The highest solids content that can be reticulated to the
stope is also defined. Yield stress, and thus the ability to reticu-
late paste underground, is governed by solids content (Clayton
2002). The grain size distrubution, nominally identified by the
Dy, can be identified using sieve analysis and the curing time
before exposure determined through investigation of the propo-
sed mining sequence.

An EXCEL program, PASTEC, generated by the first aut-
hor (Rankine 2004), integrated the use of these ANNSs, was used
to back analyse a previously filled stope at Cannington mine.
By comparing the historical fill records with the output from the
PASTEC model, it is evident that an overcompensation of ap-
proximately 10% in the cement content of the paste existed.
Calculated for a single year, if a reduction in cement of 10%
had been adopted, the saving for Cannington Mine alone would
have been in the order of between $AUD 700,000 and
$AUD1,000,000. Therefore, if applied as a generalised tool on a
global scale, the integrated design tool would provide enormous
commerical savings potential for the mining industry.

6 DISCUSSIONS AND CONCLUSIONS

The use of ANNs is a new area with enormous potential for ap-
plication in the field of geomechanics and mining. Its use in the
prediction of backfill strengths and vertical stress profiles based
on user defined inputs has provided a tool which is able to pre-
dict very accurately the required outputs. By using the two
ANN:S, an integrated model has been developed, which provides
enormous commerical potential for local mines or the global
mining community.

This integrated model approach to backfill design provides
the most holistic and complete method of backfill design to
date. It presents a method for the determination of optimum ce-
ment content for each paste fill mix, depending on the user de-
fined input parameters for the stope geometry, material bulk
density, curing time available to each exposure (1% to 4™) and
solids density. The solids density information is expected to re-
sult from the rheological requirements for the reticulation of the
paste to the stope.
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