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Abstract. The growing number of elderly people in our society makes it 
increasingly important to help them live an independent and self-determined life up 
until a high age. A smartwatch-based assistance system should be implemented that 
is capable of automatically detecting emergencies and helping elderly people to 
adhere to their medical therapy. Using the acceleration data of a widely available 
smartwatch, we implemented fall detection and inactivity recognition based on a 
smartphone connected via Bluetooth. The resulting system is capable of performing 
fall detection, inactivity recognition, issuing medication reminders and alerting 
relatives upon manual activation. Though some challenges, like the dependence on 
a smartphone remain, the resulting system is a promising approach to help elderly 
people as well as their relatives to live independently and with a feeling of safety. 
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1. Introduction 

Elderly people face a number of challenges in their daily lives which makes it necessary 
for many of them to be looked after by their relatives or health care professionals. Such 
challenges include forgetfulness and the tendency to fall as well as the fact that elderly 
people tend to live alone after the death of a spouse. The number of people suffering 
from dementia in e.g. Austria is expected to double from 120,600 in 2010 to 262,200 in 
2050 [1]. The numbers may scale to other industrial countries as well. Forgetfulness is 
especially risky when those affected are prescribed to a medical therapy, because 
forgetfulness is one of the main factors that contribute to low medical adherence [2], 
which is associated with decreased therapeutic success and higher mortality [3]. Their 
tendency to fall is another risk for elderly people. 30% of people aged 65 years or older 
fall at least once every year, and 20% of those require medical treatment afterwards [4]. 
The physical injuries sustained from such incidents are not the only consequence: 60% 
of elderly people with a history of falling develop a fear of falling [5], which is associated 
with a loss of physical capabilities which ultimately leads to a decrease in mobility level, 
therefore making the person more likely fall again [5][6]. In case of falling or any kind 
of emergency it is important that elderly people have easy access to help, like a phone or 
a spouse that is able to assist them. With growing age the number of people living alone 
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is growing [7], which makes falling an even more serious danger, because half of elderly 
people cannot get up by themselves after a fall, even if they are not injured [8]. 

The advance of smart technologies in recent years offers new ways of enabling 
elderly people to live a safe and self-determined life with minimal dependence on other 
people even at a high age. Smartphones and smartwatches make it easy to get in touch 
with relatives or emergency services if required, and allow them to send notifications to 
the user's wrist. Furthermore, smartwatches can track the behaviour of their users even 
if the smartphone is out of reach, detect unusual behaviour and react accordingly. 

The purpose of this paper is to investigate the possibilities and challenges when 
creating an assistance system for elderly people based on consumer devices. It proposes 
a smartwatch-based assistance system which is able to recognize emergency situations 
by performing fall detection and inactivity recognition, besides offering the possibility 
to set medication reminders and get help from relatives on the push of a single button. 

2. Methods 

To implement the smartwatch-based assistance system ("Carrie") a suitable smartwatch 
was selected and fall detection, inactivity recognition as well as medication reminders 
were developed based on current research in the respective areas. 

2.1. Smartwatch 

An investigation of the smartwatch market showed that a number of watches for iPhones 
and Android devices exist. For the use in the scenarios described above, a smartwatch 
with three dimensional acceleration sensors is needed. Additionally, the battery life 
should supports many days of activity before recharging is required. For the 
implementation of the smartwatch-based assistance system the Pebble smartwatch was 
chosen because it is capable of serving both Android- and iOS-powered devices, has a 
battery runtime of up to 7 days according to the manufacturer, is available for less than 
100 Euros and can be customized by creating own apps with an actively maintained SDK. 
Its ability to vibrate and the built-in acceleration sensor make it possible to alert the user 
and track his or her activity while wearing the watch. Other smartwatches are usually 
more expensive, only available for one platform or have a poor battery capacity. 

2.2. Fall detection 

The objective was to detect falls based on the acceleration data captured by the 
smartwatch. A lot of research exists in the field of accelerometer-based fall detection and 
[9] distinguishes between analytical and machine learning-based approaches to fall 
detection. While the former is mostly threshold-based, the latter uses mathematical 
models for the automatic classification of movements after a training period. For Carrie 
an approach based on machine learning utilizing a multilayer perceptron was chosen. To 
train the multilayer perceptron it was necessary to collect data of activities of the daily 
life and falls. Seven healthy subjects (aged 14, 23, 25, 68, 83 and two women of 76) were 
asked to walk, run, get up and sit down while the watch was recording their movements. 
The three youngest participants were also asked to perform falls to the left, right, front 
and back. Additionally data was recorded while the watch was vibrating and while the 
people were idle. Data was collected at 50Hz by the smartwatch's 3D acceleration sensor 
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and transmitted to the smartphone for further processing, because the smartwatch lacks 
the computing power necessary to perform fall detection [10]. Since the watch is not able 
to continuously transmit the x-, y- and z-readings of the sensor at a rate of 50 times per 
second, the Euclidean norm of the values was calculated and sent to the phone where the 
features needed for training the classifier were extracted: 
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By using the Euclidian norm the information about the direction of the movement 
and acceleration gets lost. Tests showed that this information is not needed to only detect 
whether a fall occurred or not. A default input signal (DIS) was extracted from the data 
stream coming from the smartwatch by identifying the largest deviation from the resting 
potential (the Euclidean norm at rest is 1000) in the data recorded during the previous 7 
seconds. The DIS consists of three seconds of data starting 1.5 seconds before the 
identified peak and is used to perform further feature extraction. 

Three algorithms for fall detection based on a multilayer perceptron with one hidden 
layer and 10 output neurons (one for each type of movement: idle, walking, running, 
getting up, sitting down, vibration, falling forward, backward, left and right) were 
compared. Similar to [11], approach 1 used the DIS directly as network input, thus using 
150 input neurons (three seconds of data with 50 samples per second). Approach 2 
extracted features from the DIS and used the maximum (A in Figure 1) in the DIS which 
marks the impact, the minimum value that occurred before A which is the suspected end 
of the fall (B), the difference in acceleration and time between A and B (intensity of fall 
and duration of impact), and the duration of the fall which is defined as the time between 
B and the maximum value before B which is the suspected start of the fall (C). Therefore 
approach 2 uses 5 input neurons. Approach 3 uses additional features to further improve 
fall detection: the mean and average values of the DIS were added to incorporate a global 

Figure 1: From the DIS features like the suspected impact (A), the end of the fall (B) and the begin of the fall 
(C) are extracted. 
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perspective on the sample as well as the difference in acceleration between start and end 
of the fall (B and C). Eight input neurons were therefore used for classifier 3. 

All three algorithms were implemented and an individual neural network was trained 
and evaluated for each algorithm respectively. Sensitivity and specificity were 
determined for every algorithm. We also studied the effect of different numbers of 
neurons on the hidden layer. Algorithm 3 showed slightly better accuracy and 
significantly better sensitivity compared to the other approaches. It was outperformed 
slightly by algorithm 1 in terms of specificity, but performed better than all other 
algorithms when using 10 neurons in the hidden layer. The network was therefore 
implemented using approach 3 with 8 input neurons, 10 neurons on the single hidden 
layer and 10 neurons in the output layer. 

WEKA (see [12]) was used to create the neural network. Since WEKA does not 
work on Android out of the box it was stripped of all classes and functionalities that 
caused compile-time errors when building it for Android. The resulting WEKA package 
can be used in an Android project to detect falls in real time. After providing WEKA's 
multilayer perceptron implementation with a network input it returns output values for 
each possible output class. The class with the highest output value determined the 
detected movement or fall (“winner-takes-all”). Falls were only reported if the highest 
resulting output value was associated with a fall and was at least 89%. 

2.3. Inactivity recognition 

In order to detect suspicious inactivity it is necessary to know the time that has passed 
since the last activity and usual behaviour patterns of the user. The approach used for 
inactivity recognition is very similar to the one described by Cuddihy et al. (see [13]), 
who record the duration of ongoing inactivity twice every hour and match it against a 
threshold which is calculated based on past inactivity durations that have been recorded 
on the same time of the day. It was modified to record the duration of ongoing inactivity 
four times every hour and respect weekly recurring behavioural patterns. 

Cuddihy et al. calculate the threshold using the configurable parameters MP, UBP
and VBP which are described with the values found reasonable by Cuddihy et al. in Table 
1. The interval weights Wr have been adapted to include four more weights in order to 
respect the hour before and after the given time. The minimum threshold has been set to 
30 minutes so that inactivity is never flagged as suspicious if it is 30 minutes or less. 

Table 1: Configurable parameters used for inactivity recognition. All parameters and values (except parameter 
MT and the values for the weights) have been suggested by Cuddihy et al. 

Parameter Description Value 

Maximum 
Percentile (MP) 

The percentile of data considered when determining the threshold. It is 
used to eliminate outliers. 

0.97 

Uniform Buffer 
Percentage (UBP) 

The percentage by which the maximum inactivity should always be 
increased when calculating the threshold. 

0.30 

Variable Buffer 
Percentage (VBP) 

Determines how much the surrounding intervals affect the threshold. A 
low VBP increases sensitivity at usually active times. 

0.40 

Interval Weights 
(Wr)

Controls the influence of each of the surrounding intervals, where r is 
relative to the current interval: -4 <= r <= 4. 

1,2,3,3,4, 
3,3,2,1 

Minimum 
Threshold (MT) 

The minimum threshold in minutes that needs to be exceeded in order 
to create an alert. 

30 minutes 
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The threshold for a time interval i (where i = 0 for 00:00 o'clock, i = 1 for 00:15 
o'clock) is calculated using the formula 

thresholdi = MAX(Mi+UBi+VBi, MT) (2) 

where Mi is the longest inactivity duration that has been recorded one hour before 
and after the current interval and is calculated as follows: 

Mi = MAX(mi-4., mi-3, mi-2, mi-1, mi, mi+1, mi+2, mi+3, mi+4) (3) 

mi is the 97th percentile of the previously recorded inactivity durations at interval i
and is used instead of the real maximum in order to eliminate extremes. 

Cuddihy et al. describe UB as a buffer that is proportional to the longest inactivity 
in the current timeframe and makes sure that inactivities that are slightly longer than the 
recorded maximum are allowed: 

UB = UBP * mi (4) 

Since UB should actually be different at every interval a slightly modified formula 
was used to reflect the values at each time interval i: 

UBi = UBP * mi (5) 

VBi is a variable buffer that is calculated by computing the weighted sum of variable 
buffers of all relevant intervals. Each timeframe is assigned a weight Wi that depends on 
the position of the timeframe relative to the current interval. 
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Figure 2: Durations of ongoing inactivity are represented as blue dots. The calculated thresholds are shown as 
red crosses. 
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Inactivity durations are recorded together with the number of the interval at which 
they occurred. The resulting data can be visualized as in Figure 2 where the calculated 
threshold for each time of day is visible as well. To calculate the threshold, data recorded 
on the 45 previous days is used. In order to make up for different behaviour of the user 
on different days of the week (like sleeping longer on weekends) same days of the week 
are given a higher chance of being used in the calculation: of 45 inactivity recordings up 
to 27 were recorded on the same weekday. The remaining inactivity recordings are taken 
from the most recent days. Thresholds are calculated once every day at midnight for the 
following day. 

2.4. Energy efficiency 

The constant stream of acceleration data from the Pebble smartwatch to the smartphone 
via Bluetooth resulted in the smartwatch's battery being drained after approximately 17-
19 hours. This is much less than the anticipated seven days of normal operation without 
fall detection. An analysis showed, that the highest share of energy consumption comes 
from the wireless transmission of data. Thus, the application on the watch was 
reconfigured to not transmit a continuous stream of data but to decide about possible falls 
on the watch itself and restrain data transmission to these suspicious values only. For this 
pre-detection we retain the acceleration data of the last 6 seconds and only start 
transmitting the data if a certain threshold has been exceeded. The threshold was set to 
the Euclidean norm of 1,700 which can be calculated from the raw acceleration data. If 
a value higher than that is observed the smartwatch starts transmitting data for 30 seconds, 
sending both data that was recorded before, during and after the possible fall. This had 
the effect that battery runtime could be increased by at least 180%, from 17-19 to 50-60 
hours, depending on the user's activity. The time of the last reception of acceleration data 
is also used on the smartphone to determine the currently ongoing inactivity for inactivity 
recognition. 

3. Results 

The resulting system is capable of detecting falls and suspicious inactivity, as well as 
providing a way of manually calling for help and issuing medication reminders using a 
smartwatch and a smartphone. 

The assistance system consists of a Pebble smartwatch that communicates with an 
Android smartphone via Bluetooth. In case of emergency situations alerts are sent to 
configurable emergency contacts via text messages. It is essential that the smartwatch 
and smartphone are connected at all times as the smartwatch cannot perform fall 
detection on its own or send notifications because it does not have any network interfaces 
except Bluetooth. 

Emergency detection is performed using fall detection, inactivity recognition and 
manual activation. A user can also manually issue an alert by pressing a dedicated button 
on the smartwatch. To reduce the risk of accidentally issuing a manual alert the 
smartwatch starts to vibrate and display a notification for 30 seconds during which the 
user has the chance to cancel the alert by pressing a specific button on the watch. Upon 
cancellation the currently ongoing inactivity duration is reset and fall alerts are inhibited 
for a period of one minute in case the cancelled alert originated from a misdetected fall. 
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If the user does not cancel the alert a predefined list of emergency contacts is notified 
of the situation. The alert contains the type of emergency and when an accurate GPS 
signal is available it also contains the user's address and a link to open Google Maps at 
the user's current geolocation so that the system is also of use if the user is outdoors, for 
example going for a walk. In case none of the contacts respond via call or text message 
within 5 minutes they are notified again. Emergency contacts can be configured on the 
smartphone by picking contacts from the contacts list or manually entering numbers. 
Contacts can be configured to only be notified if other contacts did not respond within 5 
minutes. Hence, it is also possible to notify official help (e.g. an ambulance) if none of 
the primary helpers react. 

To further enhance the usefulness of our application, the Carrie app on the 
smartphone can also be configured to issue medication reminders on different times of 
day. Alerts are then pushed at certain times to the smartwatch which starts to vibrate and 
shows a medication symbol. We decided that no information about which medication to 
take is included because the display can be hard to read for elderly people and it is 
assumed that either the user knows which pills to take or the medication has been 
prepared for them. 

4. Discussion 

The combination of fall detection, inactivity recognition and manual activation creates a 
smartwatch-based emergency detection system that promises high reliability because the 
detection mechanisms complement one another. For example if falling detection does 
not work the user can still manually trigger an alert or, if unable to do so, suspicious 
inactivity will be reported after some time has passed. A major weakness in the system's 
architecture is the heavy dependence on the availability of a smartphone which should 
therefore always be within a few meters of the user (signal range of the Bluetooth 
connection).

Research by Bagalà et al [14] has shown that machine learning algorithms that had 
been trained using staged falls tend to be less accurate when applied to real falls. 
Therefore, in the next phase of the project, real movement data of active elderly people 
will be collected in controlled environments like nursing homes to be able to better train 
the neural network. Additionally, the fall detection algorithm might yield better results 
when it is customized for the user. Therefore it might prove beneficial to walk the user 
through a setup process when first using the system, where he or she is instructed to 
perform activities of daily live which, together with pre-recorded falls, are used to train 
the neural network online. Furthermore, if a fall is mistakenly detected and the user 
cancels the alert, the signal that caused the alert could be used to further train the network 
so the same movement won't be classified as fall in the future. Further improvements to 
the fall detection could include monitoring a period of time after a suspected fall. If there 
are no normal activities an alert can be issued, while it can be cancelled if it is detected 
that the user is for example walking again. Future research should focus on evaluating 
and improving the emergency detection capabilities in field tests and clinical studies, as 
well as testing the system's acceptance and usability on elderly people. 
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