
Attacking Fieldbus Communications in
ICS: Applications to the SWaT Testbed

David URBINA a,1, Jairo GIRALDO a, Nils Ole TIPPENHAUER b, and
Alvaro CARDENAS a

a University of Texas at Dallas
b ISTD, Singapore University of Technology and Design

Abstract The study of cyber-attacks in industrial control systems is of growing
interest among the research community. Nevertheless, restricted access to real in-
dustrial control systems that can be used to test attacks has limited the study of
their implementation and potential impact. In this work, we discuss practical attacks
applied to a room-sized water treatment testbed. The testbed includes a complete
physical process, industrial communication systems, and supervisory controls. We
implement scenarios in which the attacker manipulates or replaces sensor data as
reported from the field devices to the control components. As a result, the attacker
can change the system state vector as perceived by the controls, which will cause
incorrect control decisions and potential catastrophic failures. We discuss practical
challenges in setting up Man-In-The-Middle attacks on fieldbus communications in
the industrial EtherNet/IP protocol and topologies such as Ethernet rings using the
Device-Level-Ring protocol. We show how the attacker can overcome those chal-
lenges, and insert herself into the ring. Once established as a Man-in-the-Middle at-
tacker, we launched a range of attacks to modify sensor measurements and manip-
ulate actuators. We show the efficacy of the proposed methodology in two exper-
imental examples, where an adversary can intelligently design attacks that remain
undetected for a typical bad-data detection mechanism.

Keywords. ICS, Critical System, Cyber-attacks, Fieldbus

1. Introduction

In recent years, security threats to industrial control systems (ICS) have received an in-
creasing amount of attention [7,6,15,8,10]. One area that has received particular atten-
tion are attacks against the integrity of sensor and control data in the system, also known
as false data injection attacks [12,16,19,14]. If the attacker manipulates or replaces sen-
sor data reported from the field devices, the control algorithm will take actions based on
an incorrect perception of the world, which will cause incorrect control decisions and
potential catastrophic failures.

So far, most of the analysis on false data injection has focused on a wide range
of suspected theoretical attacks and simulation studies, and only limited work has been

1Corresponding Author: David Urbina, University of Texas at Dallas, 800 Campbell Rd., Richardson, 75080,
TX; E-mail: david.urbina@utdallas.edu

Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016
A. Mathur and A. Roychoudhury (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-617-0-75

75

published on the practical challenges for launching such attacks as access to real-world
ICS is usually hard to obtain for security researchers.

In this work, we discuss practical attacks applied to a room-sized water treatment
testbed (the SWaT testbed). The Secure Water Treatment (SWaT) testbed includes a
complete physical process, the related industrial communication infrastructure, and a su-
pervisory control network. This paper is an extention of our previous work [9], where
we launched Man-in-the-Middle (MitM) attacks at the supervisory control layer of the
SWaT testbed. In that work, we attacked the physical system using Ettercap spoofing on
the Supervisory Control network level, which enabled us to modify the sensor informa-
tion. In addition, we noted that Ettercap-based spoofing can easily be detected by more
complex networking devices such as SDN-capable switches and their controllers.

In contrast to [9], our proposed methodology attacks fieldbus communications di-
rectly, which enables the adversary to have total control of the system operation, without
taking into account any command coming from the higher levels such as the Human-
Machine Interface (HMI). Such attacks on fieldbus communications are challenging due
to the ring topology and the device specific messages used in the fieldbus, requiring more
specific knowledge of the network operation. We discuss practical challenges in setting
up MitM attacks on a fieldbus communication network using the EtherNet/IP protocol
over an Ethernet ring (maintained with the Device-Level-Ring (DLR) protocol). Once
established as a MitM attacker, we are able to launch a range of sensor and actuator
attacks and demonstrate their efficacy.

We summarize our contributions as follows:

• We study fieldbus communications and implement a prototype Man-in-the-
Middle (MitM) attack.

• We show how a MitM attacker can obtain sensor readings from eavesdropped
packets, and craft her own spoofed sensor and actuator command traffic. We also
provide details on datatypes and conversions required (e.g., from 4-20mA signal
to physical measurements).

• We combine the MitM attack and detailed understanding of the EtherNet/IP pro-
tocol to demonstrate practical attacks on SWaT, and show their impact on the
physical process.

This work is structured as follows: in Section 2, we state the problem setting and
attacker model. In Section 3, we present our practical attacks and discuss them in detail.
We conclude the paper in Section 4.

2. Background and Problem Formulation

In this section, we introduce Industrial Control Systems (ICS), their fieldbus networks,
and the specific testbed we use for our experiments. Finally, we introduce our attacker
model.

2.1. The SWaT Physical Process

The SWaT testbed is a water treatment plant which consists of 6 main processes to purify
raw water. Each process possesses a PLC that receives the information from the sensors

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed76

and compute the control actions to the actuators. SWaT is set up to have two different
communication channels for many links: either wired (over IEEE 802.3 Ethernet) or
wireless communications (using IEEE 802.11).

The main physical processes SWaT can be described as follows (see Figure 1):

P1 - RawRaw in P2 - Chemical Pretreatment

P3 - Ultra ltrationP4 - Dechlorination

P6a UF Backwash

P5 - Reverse Osmosis
P6b -
Permeate

Figure 1. SWaT physical process overview

Raw water (P1) In this process, raw water is stored. P1 acts as the main water buffer
supplying water to the water treatment system. It consists of one tank, an on/off
valve that controls the inlet water, and a pump that transfers the water to the Ultra
Filtration (UF) system’s tank.

Pre-treatment (P2) While the water from P1 is pumped to the UF system, water quality
properties are evaluated and pre-treated. Conductivity, pH, and ORP are measured
to determine the activation of chemical dosing to maintain the quality of the water
within desirable limits.

Ultra Filtration (P3) The ultra-filtration process is used to remove the bulk of the feed
water solids and colloidal material by using fine filtration membranes that only
allow the flow of small molecules. The accumulated contaminants are removed by
back-washing away the membrane surface depending on the measure of a differ-
ential pressure sensor located at the two ends of the UF.

Dechlorinization (P4) After the small residuals are removed by the UF system, the re-
maining chlorines are destroyed in the ultraviolet chlorine destruction unit and by
dosing a solution of sodium bisulphite.

Reverse Osmosis (P5) The RO system is designed to reduce inorganic impurities by
pumping the filtrated and dechlorinated water with a high pressure through
semipermeable membranes.

RO final product (P6) The last part of the water treatment process consists on storing
the RO product i.e., cleaned water ready to distribute. In the SWaT case, treated
water is transferred again to the raw water tank in order to reuse it.

The SWaT testbed features distributed controls among the different process stages.
Each stage is controlled by a PLC (with hot-redundant counterpart), and all PLCs and
the SCADA system are connected together through a common network (which we call
Level 1 (L1) network). In addition, the PLCs are connected to local sensors and actuators
through individual fieldbus rings called Level 0 (L0). We now give details of this network
architecture.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 77

2.2. Industrial Control Network

A modern industrial control system typically consists of several layers of networks. The
SWaT industrial control network is illustrated in Figure 2. The physical process is mea-
sured by distributed sensors, and manipulated by actuators. These sensors and actuators
in SWaT operate by receiving and sending analog signals (4mA). The analog signals are
converted into digital signals by Remote Input/Output (RIO) modules. The digital sig-
nals are then encapsulated over fieldbus communication protocols (EtherNet/IP in our
case over the L0 network Figure 2), and sent back and forth from PLCs. PLCs in turn
communicate with a centralized Supervisory Control and Data Acquisition (SCADA)
system with the L1 network in Figure 2. This central system contains the HMI and His-
torian. In this work, we want to show a systematic methodology to deploy cyber-attacks
on industrial control systems (ICS), with a focus on fieldbus communication networks.

The reliability of such fieldbus networks is of great concern to the plant operator. For
that reason, ring topologies are a popular choice to implement these topologies. The ring
topology can be seen in Figure 2 at the L0 network, where there is a ring between the RIO
and a primary and a backup PLC. In particular, rings can tolerate faults such as the loss
of a single ring segment, without losing connectivity between any of the participating
devices. If the communication uses Ethernet as medium, rings can be constructed using
the device-level-ring (DLR) protocol.

In the context of an attacker who tries to insert itself as MitM, such ring topologies
have interesting properties. In particular, if the attacker cuts the ring to insert her own
device, the ring will automatically stop transmitting data through the “lost” segment. As
a result, the attacker will not receive any traffic to eavesdrop on. In order to successfully
complete the attacker, the attacker must “close” the ring again. We discuss that further in
Section 3.2.2.

L1 Network

HMI

Switch

HMI

SCADA Historian

PLC1a PLC1b

PLCPLC

Process 1
PLCPLC

Process 2

Remote IO

PLCPLC

L0 Network

RIO

Process n...

Sensor

42.42

SensorsActuators
...

PLC2a PLC2b PLCna PLCnb

HMI

Remote IO

L0 Network

RIO
Sensor

42.42

SensorsActuators

Remote IO

L0 Network

RIO
Sensor

42.42

SensorsActuators

Figure 2. SWaT network architecture.

2.3. Fieldbus Communications

SWaT’s ring topology in the fieldbus network contains the following four main devices
(see Figure 3).

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed78

Remote IO

secondary primary

PLCPLC

L0 Network

Sensor

42.42

Sensors

RIO

Actuators

Attacker

Figure 3. Example ring topology in SWaT, with an attacker inserted as Man-in-the-Middle. In this configura-
tion, the attacker can eavesdrop and manipulate all traffic between RIO and primary PLC.

Programmable Logic Controller (PLC) This is the control device which receives sen-
sors readings and emits control commands to the actuators. SWaT’s PLCs cor-
respond to a chassis conformed by 6 components: 1756-PA2 Control Logix AC
Power Supply Unit; 1756-L71 Control Logix 2MB Controller; 1756-EN2T Ether-
net I/P Module (for communications at the Supervisory Control Network level);
1756-EN2TR Dual Port Ethernet I/P Module (for fieldbus communications at the
ring level); 1756-RM2 Control Logix Redundancy Module; and a 1756-RMC1
Control Logix Redundancy Fiber Optic Cable. Each SWaT’s ring presents a redun-
dant PLC, and on power up the system selects one as Primary, actively controlling
the physical process, and other as Secondary, shadowing the memory state of the
Primary. From that moment on, the Primary is responsible for the monitoring and
control of the fieldbus communications and the relaying/receiving of data from the
SCADA network. If the Primary fails, the system automatically switches over the
control to the Secondary.

Remote I/O (RIO) This device is the responsible for the translation of 4-20 mA signals
to/from the actuators/sensors to a stream of bytes where each byte (or bit depend-
ing on the resolution of the I/O module) corresponds to an I/O signal of the sys-
tem. For the communications between the PLC and RIO, the stream is encapsu-
lated following the Common Packet Format of the EtherNet/IP specification [18]
and transported through a wired connection. The RIO is modular, and in SWaT
it consists of 4 components: 1794-AENTR Flex Dual Port Ethernet I/P Adapter
(for fieldbus communications at the ring level); 1794-IB32 Flex 32 Points Digital
Input Module (1-bit resolution per signal); 1794-OB16 Flex 16 Points Digital Out-
puts Module (1-bit resolution per signal); and 1794-IE12 Flex 12 Points Analog
Input Module (16-bit 2’s complement per signal).

Wireless Remote I/O (WRIO) SWaT features a manual switch to turn parts of the sys-
tem into “wireless mode”. If the field communications at the ring level are set to
wireless mode, this WRIO takes over the responsibility of scanning the analog
sensors and sending updates to the PLC. Its is important to highlight that in SWaT
this wireless transmission contains exclusively the analog input signals and not
the digital I/O signals. The Digital input and output signals are always transmitted
through the wired ring network between the RIO and PLC.

Wireless Access Point (WAP) In wireless mode, the WRIO connects to a wireless ac-
cess point connect to the EtherNet/IP ring thought a 1783-ETAP 3-ports switch.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 79

2.4. Attacker Model

Objective. The objective of an attacker depends on how much damage she wants to cause
to the system. Our proposed methodology can be used to a) manipulate sensor readings
that are reported from the sensors to the PLCs, and b) to manipulate control messages
that are sent from the PLC to the actuators. Therefore, a wide number of attacks can be
deployed, starting with a simple eavesdropping to sophisticated integrity persistent and
stealthy attacks.

Resources. The attacker is assumed to either a) being able to physically access the net-
work connecting the PLCs, sensors, and actuators, or b) able to fully compromise one
of the devices attached to that network. In both cases, the attacker will have a device
attached to the network, and can program the device to transmit arbitrary messages to
the network, and to process any message it receives.

3. Attacking Fieldbus Communications in SWaT

Based on the details we provided on SWaT, its fieldbus topologies, and the EtherNet/IP
protocol, we now show results of practical MitM attacks. We start by introducing tools
we used, and among them our custom SWaT Assault tool.

3.1. Tools

We used several tools to launch attacks against the fieldbus communications at the SWaT
testbed:

SWaT Assault We developed a command-line interpreter (CLI) application which in-
cludes a library of attack modules capable of launching diverse spoofing and bad-
data-injection attacks against the sensor and actuator signals of the SWaT testbed.
The attack modules can be loaded, configured, and run independently of each
other, allowing the attack of sensors and actuators separately. Attack modules also
can be orchestrated and assembled in teams in order to force more complex behav-
iors over the physical process, while maintaining a normal operational profile on
the HMI. SWaT Assault consists of 439 lines of Python [3] 2.7 code and its only
external dependencies are Scapy and NetFilterQueue.

Scapy Making use of the Scapy[4] packet manipulation program we developed a new
protocol parser for the Rockwell Automation proprietary message protocol used
for signal communication between the RIO and the PLC, and for the EtherNet/IP
Common Packet Format wrapper that encapsulates it. This parser (which we chose
to call SWaT message parser) is specific for the SWaT’s deployment (the SWaT
Ring implementation makes use of User Datagram Protocol (UDP) for the trans-
port of EtherNet/IP I/O implicit messages among ring devices) and its implemen-
tation follows SWaT’s Control Panels and Electrical Drawings manual. Scapy was
also used to sniff sensor readings from the EtherNet/IP Ring and to inject manip-
ulated data on both, sensor readings and actuation commands. Our tool also au-
tomatically recomputes the data integrity checksums used by the Transport Layer
protocol to match the false-data injection attack values.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed80

NetFilterQueue In order to avoid duplication of packets and/or race conditions between
original and injected packets, we employed the NetFilterQueue [2] Python bind-
ings for libnetfilter queue to redirect all the EtherNet/IP I/O messages between
PLC and RIO to a handling queue defined on the mangle table of the Linux firewall
iptables. The queued packets are later modified using Scapy and the previously
mentioned SWaT message parser, and finally released to reach their original desti-
nation i.e. PLC or RIO. Likewise, this technique allowed us to avoid disruptions on
the sequence of EtherNet/IP counters, and injection of undesirable perturbations
in the EtherNet/IP connections established between ring devices.
The command we use to queue packets for modification is the following:

iptables -t mangle -A PREROUTING -p udp --dport <port> -j NFQUEUE

Wireshark We used Wireshark [5] to understand the nature of the communication be-
tween devices in the ring. We also used Wireshark together with the SWaT’s Con-
trol Panel and Electrical Drawings manual, to derive the exact structure of the
EtherNet/IP-wrapped messages used in SWaT.

Ettercap We used Ettercap [1], a Man-In-The-Middle attack suite, on our attempts to
launch wireless attacks.

3.1.1. Differences Between Parsing Supervisory Network Packets vs. Fieldbus Packets

Ethernet

IP

TCP / UDP

CIP SWaT Messages

Scada Network Fieldbus

Ethernet/IP
Encapsulation

EtherNet/IP
Common Packet Format

Figure 4. EtherNet/IP encapsulation for CIP and custom SWaT Messages for Supervisory Network and Field-
bus communications, respectively.

While the SWaT networks use EtherNet/IP at the supervisory as well as the field-
bus level, the encapsulated protocol is different at each level: the CIP protocol is used
as main data payload for device communications at the Supervisory Control Network
level, while a device-dependent I/O implicit message payload is employed at the Fieldbus
Communications level (see Figure 4).

Parsing and injection of manipulated data at the Supervisory Control level using CIP
messages or at the Fieldbus Communications level using EtherNet/IP device-dependent
I/O implicit messages introduce different challenges and requirements to the attacker.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 81

Common Industrial Protocol

TCP / UDP

Internet Protocol

Ethernet
CSMA / CD

Ethernet

CompoNet

CompoNet
Time Slot

DeviceNet

CAN
CSMA / NBA

DeviceNetCompoNet

ControlNet

ControlNet
CTDMA

ControlNet

EtherNet/IP

Common Object Library

Physical Layer

Data Link Layer

Network Layer

Transport Layer

Application Layer

Figure 5. Common Industrial Protocol stack and its different physical layers.

Common Industrial Protocol stack The Common Industrial Protocol (CIP) network
specification library was originally developed by Rockwell Automation and finally stan-
dardized and maintained by Open Device Vendors Association (ODVA) and ControlNet
International. It aims to fulfill the main three needs of ICS systems: control, configura-
tion, and collection of data [11]. It defines the CIP application layer protocol as a encap-
sulated object-oriented protocol for transmission of connected (I/O implicit) messages
between a data producer and one or more data consumer devices, and unconnected (ex-
plicit) messages between two devices in the control network. Transmissions associated
with a particular connection are assigned an unique connection ID. While being an appli-
cation layer protocol, CIP is independent of the underlying layers, and requires an encap-
sulation protocol which allows abstraction from different data link and physical layers. It
also includes a Common Object library defining commonly used objects, some of which
are specific for a particular encapsulation protocol, and allows for extension and defini-
tion of vendor specific objects. The CIP specification library includes the definition of 4
different CIP stacks depending of the physical layer in use (see Figure 5): EtherNet/IP
(over IEEE 802.3 Ethernet), CompoNet, DeviceNet, and ControlNet.

Therefore, CIP messages contain much more rich semantic information about the
information being exchanged in the network, which can facilitate the understanding of
the process by the attacker. CIP messages follow an object-oriented format, allowing for
the transmission of a variable number of data with distinct types, which translates into
highly structured packets of variable lengths (see Figure 6). The attacker must dissect
each particular packet to extract the CIP object attributes containing the sensor or actuator
data, which may be set at different offsets depending on the number and type of objects
targeted by the packet.

On the other hand at the fieldbus level of SWaT, EtherNet/IP device-dependent I/O
implicit messages follow non-standard formats of fixed lengths, partially defined by the
vendor and by the control system designer, and where the analog sensor signals are en-
coded using 4-20 mA measurements. The attacker therefore must have detailed knowl-
edge and understanding of the system design a priori and implementation decisions, i.e.
she must have access to the devices specifications, electrical drawings, and installation
layouts in order to understand the information exchanged and manipulate the sensor
readings and control commands.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed82

Object Class #1 Object Class #2

Instance #2

Attribute #1
Attribute #2

Instance #1 Instance #1

MAC ID #4

Figure 6. CIP Object-Oriented Packet Structure.

3.2. MitM of Fieldbus Communications

We attempt attacks on the wired and wireless mode fieldbus communications in SWaT.
We now present results for both cases.

3.2.1. Wireless MitM

On our first try to sniff the fieldbus communications in the SWaT testbed we attempted a
wireless MitM attack between the PLC and the WRIO. We set the fieldbus communica-
tions into wireless mode and use a laptop we connected to the WAP. Using Wireshark, we
realized that we could already see one multicast EtherNet/IP connection, stacking Ether-
Net/IP over UDP, with the WRIO’s IP as source. This multicast connection corresponded
to the analog input signal which, as by SWaT’s design, is the only signal transported in
wireless mode. After switching on and off the wireless mode multiple times, we verified
that the multicast address range corresponded to the Organizational Local Scope [13], as
expected. The assigned UDP destination port was 2222, also defined in SWaT’s design.

It is important to highlight that the attacks presented on section 3.4 could be achieved
with minimum technical requirements through a wireless MitM if the ICS’s design ac-
counts for a complete wireless transmission of digital and analog signals. Unfortunately,
the digital input and output are not reported via the wireless links, and thus cannot be
compromised using the wireless MitM attack. In order to cope with this characteristic of
SWaT’s design, we resorted to performing a wired MitM directly in the EtherNet/IP ring.

3.2.2. Wired MitM

We assume an attacker who is an insider or who is able to set a physical device at any
point of the EtherNet/IP ring, between the PLC and the RIO. In our experiments, for
the implementation of the wired MitM, we intercepted the fieldbus communications by
adding a laptop with two Ethernet ports in a segment of the EtherNet/IP ring.

DLR must be taken into consideration when attempting a MitM in the EtherNet/IP
ring. If the attacker uses a DLR-unaware device, as we did in our experiments, she must
disable MAC learning and Spanning Tree Protocol when bridging both Ethernet ports.
Failing in carefully addressing this requirement will result in the isolation of the Ether-
Net/IP ring segment, as the DLR supervisor will recognize it as broken, and ultimately,
in the inability to sniff and inject data into the ring messages.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 83

Our configuration for the Ethernet ports and bridge for launching the attacks is the
following:

auto eth0 # Port 0

iface eth0 inet manual

auto eth1 # Port 1

iface eth1 inet manual

Bridge between Port 0 and Port 1

auto br0

iface br0 inet manual

bridge_ports eth0 eth1

bridge_stp off # Disabling STP

bridge_ageing 0 # Disabling MAC learning

3.3. Parsing and injection of manipulated data in EtherNet/IP ring packets

2 3 4 5 6 7 8 9 10 110 1

W
ater

F
low

T
an

k
L
evel

W
ater

C
on

d
u
ctiv

ity

W
ater

p
H

W
ater

O
R
P

S
p
are

S
p
are

S
p
are

S
p
are

S
p
are

S
p
are

S
p
are

16-bits 2’s complement

Figure 7. RIO’s Analog Input Module 12 input signals (16-bits 2’s complement per analog signal)

In SWaT, we identify three different device-dependent I/O implicit messages: one
for each I/O module conforming the RIO. Figure 7 shows the I/O implicit message for
the analog input module. It consists of a stream of 24 bytes, corresponding to 12 analog
inputs channels of 16-bits. The spare channels are not in use by SWaT’s current deploy-
ment. The digital input and output modules emit and receive bit streams, 32 bits and 16
bits respectively, where each bit corresponds to one digital signal. See table 1 for details
on RIO modules.

Table 1. RIO I/O modules.

Module Signal size (bits) # signals Avg. Freq. (ms)

Digital Input 1 32 50
Digital Output 1 16 60
Analog Input 16 12 80

The I/O implicit messages representing the analog signals are sent by the RIO to the
PLC with an average frequency of 80 milliseconds. They transport the numeric represen-

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed84

tation of the 4-20 mA signals measured by the analog sensors. In order to scale back and
forth the 4-20 mA signal to the real physical measurement we use Equation (1), which
is a typical linear transformation (scaling and bias shift) to change the analog signal (4-
20mA) into a physical meaningful quantity (e.g. the height of the water level in a tank
being 0.5m). The constant values (RawMin, RawMax, EUMax, EUMin) depend on the
deployment and the physical property being measured (we obtained the specific values
for each constant from the HMI software of the testbed). Figure 8 shows an example for
the scaling of the water flow in SWaT.

Out = (In−RawMin)∗ EUMax−EUMin
RawMax−RawMin

+EUMin (1)

FLOW
10.0

0.0

31208.0

-15.0

EUMax

EUMin

RawMax

RawMin

−RawMin) ∗ EUMax−EUMin
RawMax−RawMin + EUMin2.49 m3/h = (7790

Figure 8. Scaling from 4-20 mA signals to water flow. The 4-20mA signal is scaled by the RIO to another
value (7790 in this case) and this value sent over the network is the one we capture and convert to physical
observations using Equation (1) with the respective constants for each signal.

3.4. Example: Stealthy Sensor Attack

We illustrate the feasibility of our proposed methodology by deploying a stealthy sensor
attack in the first stage of the plant i.e., raw water storage. The raw water process consists
of a storage tank with its water level sensor h1, one valve that opens when h1 < 0.5 m
and closes when h1 > 0.8 m, and one pump whose action depends on the UF process.
As a safety mechanism, if the water level in tank 1 is below 0.25 m, the pump is im-
mediately Off. The attacker’s goal is to overflow the water without being detected by a
typical behavior-based detection mechanism using the “physics” of the system under to
control to identify anomalies. Using the methodology described above, we gain access
to the ring and we are able to modify the sensor and actuator information by constructing
appropriate packets.

3.4.1. Attacker Action

Figure 9 depicts how an attacker can gain access to the sensor measure hi(k) and ac-
tuator command unom

i (k) packets and modify them. In this example, the attack consists
on injecting false information to the level sensor in tank 1. In particular, data injected
is computed using ha

1(k) = h1(k)+ δ (k). As result of this attack, the level of the water
is decreasing all the time, i.e., δ (k)− δ (k− 1) = Δ < 0 is the rate at which the sensor
information is modified.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 85

3.4.2. Detection Mechanism

The detection mechanism also known as bad-data detection uses the residuals ri(k),
which consists on the difference between the sensor measure hi(k) and its estimated
ĥi(k), such that ri(k) = |hi(k)− ĥi(k)|. For a sensor attack occurring at a time instant k∗,
the residuals are then ri(k) = |ha

i (k)− ĥi(k)| for all k ≥ k∗. In our work, the estimated
states are obtained by obtaining a mathematical approximation of the system behavior
with a Luenberger observer (we refer to [16,17] for more details on system estimation
and the bad-data detection method, which are out of the scope of this paper). When
ri(k)> τi for τi > 0, an alarm is triggered indicating the presence of an attack. The main
property of this type of detection is that it is based on the physical properties of the sys-
tem and it can detect changes that violate those physical properties. For instance, Fig-
ure 10 depicts how the detection mechanism is able to trigger alarms for τ1 = 0.1 when
an attack induces a sudden change in the sensor measurements, ha

1(k
∗) = 0.1 m, which

yields to r1(k) > 0.1. However, an intelligent adversary can remain stealthy by causing
small changes in the sensor information.

Figure 9. Detection mechanism and man in the middle attack for SWaT. h(k)1 is the attacked water level mea-
sure, unom

1 (k),ua
1(k) are the real and attacked control command, respectively, for time instance k.

100 200 300 400 500 600 700

W
at

er
 le

ve
l (

m
)

0

0.5

1

Real water level
Sensor measure

Time (sec)
100 200 300 400 500 600 700

R
es

id
ua

ls

0

0.1

0.2

0.3

0.4

Attack

Alarm Alarm

Figure 10. Sensor attack in the water level h(1k). The attack is detected when r1(k)> 0.1.

Figure 11 illustrates the effect of the stealthy sensor attack. Before the attack is
launched, the valve was closed and the pump was ON, so the water level was decreasing.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed86

200 400 600 800 1000 1200 1400 1600W
at

er
 le

ve
l (

m
)

0.5

1 Real water level
Sensor measure

200 400 600 800 1000 1200 1400 1600

�(
k)

-0.6
-0.4
-0.2

0

Time (sec)
200 400 600 800 1000 1200 1400 1600

R
es

id
ua

ls

0

0.005

0.01

Attack

Figure 11. Effects of a stealthy sensor attack in the SWaT testbed. The PLC is connected to an intelligent
verifier that analyzes the sensor measure and detects attacks based on sudden changes in the physical behavior.
The attack was designed such that the bad-data detector with τ1 = 0.01 could not detect the attack.

As soon as the attack starts, the sensor measurement received keeps indicating that the
water level is always decreasing (a little bit faster because the pump is ON), such that
the valve opens when it reaches its minimum level ha

1(k) = 0.5 m. At that instant the
pump continues pumping water such that the real water level remains constant for some
time. When the pump stops (ha

1(k) < 0.25 m), the tank starts filling up with water (the
water level h(k) starts increasing) but the false sensor reading keeps indicating low water
levels. The valve never closes and eventually it will yield to an overflow. Due to the small
rate of change, the bad-data detection with a threshold τ1 = 0.01 never detects the attack.
Smaller thresholds can detect the attack but also increase the number of false alarms.
Besides, even if τ1 is smaller, the attack can be designed to remain stealthy for small Δ.

4. Conclusions

In this work, we discussed practical MitM attacks on ICS Fieldbus communications. In
particular, we provided details on the typical topologies (in particular, DLR) and proto-
cols used in such a setting (EtherNet/IP). We also discussed practical challenges in set-
ting up MitM attacks and how to overcome them, and demonstrated results of our prac-
tical attacks. We have shown that, although EtherNet/IP can be used as the overall en-
capsulation protocol, the protocol selection, and therefore, parsing and injection of ma-
nipulated data on the encapsulated message depends on the control system layer. SWaT

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 87

presents CIP for Supervisory Control Network communications and a device-specific I/O
messages for Fieldbus communications.

The MitM of an EtherNet/IP ring also presents several challenges: The attacker must
verify that the attacking device incorporated into the ring does not break the ring per-
manently, as these events could potentially be monitored, i.e. the attacking device must
not interfere with the DLR protocol. An attacker who successfully deploys a MitM de-
vice into a EtherNet/IP ring established for Fieldbus communications must be assumed
to have access to all digital and analog signals. She could inject manipulated data in all
sensors and actuators monitored and controlled by the ring’s PLC at any time. Therefore,
the adversary could effectively isolate and manipulate the physical process disregarding
control actions sent by the control room or the PLCs. Using the proposed methodology
to launch attacks, different detection mechanisms can be tested and improved. In addi-
tion, more robust communication infrastructures can be designed in order to decrease an
attacker’s impact over the system.

5. Acknowledgments

We thank SWaT’s lab engineer Kaung Myat Aung for his valuable advise and help during
the experimentation process. In addition, we thank Professor Aditya Mathur for giving us
access to the SWaT testbed deployed at SUTD. The work from UT Dallas was supported
by NIST under award 70NANB14H236 from the U.S. Department of Commerce.

References

[1] Ettercap Project. https://ettercap.github.io/ettercap/, October 2015.
[2] Python bindings for libnetfilter queue. https://github.com/fqrouter/python-netfilterqueue, October 2015.
[3] Python Language. Version 2.7.10. https://docs.python.org/2/, October 2015.
[4] Scapy Packet Manupulation Program. Version 2.3.1. http://www.secdev.org/projects/scapy/doc/, Octo-

ber 2015.
[5] Wireshark Network Protocol Analyzer. https://www.wireshark.org/, October 2015.
[6] M. Abrams and J. Weiss. Malicious control system cyber security attack case study–maroochy water

services, australia. Technical report, The MITRE Corporation, 2008.
[7] D. Albright, P. Brannan, and C. Walrond. Did stuxnet take out 1,000 centrifuges at the natanz enrichment

plant? Technical report, Institute for Science and International Security, 2010.
[8] S. Amin, A. Cárdenas, and S. S. Sastry. Safe and secure networked control systems under denial-of-

service attacks. In Hybrid Systems: Computation and Control. Proc. 12th Intl. Conf. (HSCC ’09), LNCS,
Vol. 5469, Springer-Verlag, pages 31–45, 2009.

[9] D. Antonioli and N. O. Tippenhauer. MiniCPS: A toolkit for security research on CPS networks. In
Proceedings of Workshop on Cyber-Physical Systems Security & Privay (CPS-SPC), co-located with
CCS, Oct. 2015.

[10] A. Banerjee, K. Venkatasubramanian, T. Mukherjee, and S. Gupta. Ensuring safety, security, and sus-
tainability of mission-critical cyber-physical systems. Proceedings of the IEEE, 100(1):283 –299, Jan
2012.

[11] P. Brooks. EtherNet/IP: Industrial Protocol White Paper. Technical report, Rockwell Automation, 2001.
[12] A. A. Cárdenas, S. Amin, Z.-S. Lin, Y.-L. Huang, C.-Y. Huang, and S. Sastry. Attacks against process

control systems: risk assessment, detection, and response. In Proceedings of the 6th ACM symposium
on information, computer and communications security, pages 355–366. ACM, 2011.

[13] I. N. W. Group. Administratively Scoped IP Multicast. http://tools.ietf.org/html/rfc2365, October 2015.
[14] O. Kosut, L. Jia, R. Thomas, and L. Tong. Malicious data attacks on smart grid state estimation: At-

tack strategies and countermeasures. In Proc. of the IEEE Conference on Smart Grid Communications
(SmartGridComm), pages 220–225, Oct 2010.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed88

[15] M. Krotofil and D. Gollmann. Industrial control systems security: What is happening? In Industrial
Informatics (INDIN), 2013 11th IEEE International Conference on, pages 670–675. IEEE, 2013.

[16] Y. Liu, P. Ning, and M. K. Reiter. False data injection attacks against state estimation in electric power
grids. ACM Transactions on Information and System Security (TISSEC), 14(1):13, 2011.

[17] D. G. Luenberger. Observers for multivariable systems. Automatic Control, IEEE Transactions on,
11(2):190–197, 1966.

[18] ODVA. The CIP Networks Library Volume 2: EtherNet/IP Adaptation of CIP, 2007.
[19] L. Xie, Y. Mo, and B. Sinopoli. False data injection attacks in electricity markets. In Proc. of the IEEE

Conference on Smart Grid Communications (SmartGridComm), pages 226–231, Oct 2010.

D. Urbina et al. / Attacking Fieldbus Communications in ICS: Applications to the SWaT Testbed 89

