
Accurate in-network file-type classification

Dinil Mon Divakaran, Yung Siang Liau, and Vrizlynn L. L. Thing

A*STAR Institute for Infocomm Research (I2R), Singapore

Abstract. Accurate classification of file types carried by network traffic
aids in securing a network against various types of malicious activities
such as malware infection, data exfiltration, botnet communication, etc.
An important challenge here is to accurately classify files without slow-
ing down network traffic. Therefore, the cost of accurate file-type clas-
sification has to be known. In this work, we carry out a preliminary but
extensive investigation to evaluate different sets of features for file-type
classification. The objective is to detect not only file types under normal
scenario, but also files that are transferred with obfuscated headers. Our
experiments show that the feature vector consisting of unigram frequen-
cies leads to high accuracy; yet, combining this feature set with entropy
feature vector leads to improvement in accuracies.

Keywords. Classification, files, network, real-time, n-grams, entropy

1. Introduction

Network traffic is an important medium for security breaches, and therefore for
security analysis. Exfiltration of sensitive data from an enterprise, download of
malicious executables, covert communications, sharing of copyrighted software,
etc. happen over a network. In this work, we conduct preliminary research to
detect the types of contents or files carried by traffic flows. Real-time content
classification aids in securing a network, be it an enterprise network, an ISP
network or a government organization. For example, a financial enterprise often
blocks encrypted attachments in mails, so that the administration can monitor the
contents of email exchanges. ISPs are interested in blocking malware (which are
typically in binary format) before they reach end-users. Similarly, a government
organization engaging in tenders might want to scrutinize files before they leave
the network. Yet, another organization network, like that of a retail store, would
not expect any kind of binary executables or codes in their traffic. Identifying file
types is also required in forensic analysis, for example, to detect file fragments
and recover files from computers and mobile systems [1].

While accuracy of file-type classification is paramount to its utility, the effi-
ciency of classification cannot be ignored—such classification solutions are typi-
cally deployed at the perimeters of a network. Routers at the edges of a network
are connected using high capacity of links, and depending on the network load, a
router sees large numbers of flows and packets traversing through it. Given this
realistic scenario of deployment, it is necessary to consider the cost of classifying

Proceedings of the Singapore Cyber-Security Conference (SG-CRC) 2016
A. Mathur and A. Roychoudhury (Eds.)
© 2016 The authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-617-0-139

139

file types carried by network traffic. Cost is in terms of, both, the number of bytes
or packets that need to be buffered, and the computational runtime required for
feature extraction (and classification).

In [2], the authors study a number of features (and their combinations) such
as n-grams, distribution frequencies as well as Shannon’s entropy and Kolmogorov
complexity, for classifying file types. While the evaluation is done for 30 file types,
fragments of 512 bytes (for both training and testing) are extracted from a small
number of files—2,587. This naturally makes sampled fragments dependent, po-
tentially affecting results. Overall accuracy of 73.4% is reported, using a combina-
tion of unigram and bigram frequencies. But feature vector of bigram frequencies
has a dimension of 65,536, making it impractical for real-time classifications.

In a recent research work [3], block entropies (refer Section 2.3) are used for
classification of files in network traffic. The work compares results of classifica-
tion using the byte-streams of variable sizes from both the beginning of file and
random locations. We compare block entropies in our evaluations as well (using
the same feature vector as in [3]). From our experiments, we observe that block
entropies (which require higher computational time) are not required for accu-
rate classification of files using the beginning of the file; indeed unigram frequen-
cies feature vector alone gives high accuracy in this scenario. For streams ex-
tracted from random locations, a combination of feature vectors (including block
entropies) perform better than a feature vector consisting of only block entropies.

In this paper, we differentiate features based on the costs, and evaluate the
accuracy of classification using different feature sets and their combinations, while
varying the number of bytes required for classifying a flow. We describe the differ-
ent feature vectors used for classification in the following section. Subsequently,
we evaluate the goodness of different feature vectors in classifying file types, using
a database of around 60,000 files and nine file types.

2. Feature vectors for classifying file types

2.1. n-gram frequencies

Given a stream of bytes, a commonly used set of features is the n-gram frequen-
cies [2,4,5]. In case of unigram, the frequencies of bytes are stored in a vector
of dimension 256. The size of the feature vector increases exponentially with in-
creasing size n-grams (or n), and so does storage space required for computa-
tion of the feature vector. Besides, our experiments have shown that bigrams and
higher orders do not bring in additional value in comparison to unigram frequen-
cies for file-type classification. Therefore, we use a feature vector consisting of
only unigram frequencies in this work. The computation of unigram frequencies
is straight-forward—for a byte-stream of size m, a single pass over the m bytes
gives the frequencies of unigrams.

2.2. Moments of the probability distributions

The feature vector consists of mean, standard deviation, skewness and kurtosis.
Skewness for a stream of bytes is a measure of symmetry of distribution of bytes.

D.M. Divakaran et al. / Accurate In-Network File-Type Classification140

For sample values, the skewness is calculated as, b1 = 1
m

∑m
i=1(xi−x̄)3

σ̄3 , with x̄ and
σ̄ being the mean and standard deviation, respectively, of the m samples.

The fourth measure is kurtosis, which characterises the peakedness of a dis-

tribution. The kurtosis of m samples, k = 1
m

∑m
i=1(xi−x̄)4

σ̄4 . While still capturing
the characteristics of the byte distribution in a given stream similar to unigram
frequenies, the feature vector here has a much small dimension of four.

2.3. Block entropy

Entropy a measure of randomness of a random variable. For a discrete random
variable X taking values in X , entropy is defined as: H(X) = −∑

x∈X p(x) log(x),
where p is the probability mass function. Following conventions, we take 0 log 0 =
0. We measure entropy in bits, i.e., the log is taken to the base 2.

For contents in a given file, X is the set of all values a byte takes. However,
the above computation of entropy can be generalized for byte-blocks as well.
For example, when we consider a block of byte one, |X 1| = 28. For blocks (or
equivalently, sequences) of two bytes, |X 2| = 28∗2. Hence, we can generalize the
entropy computation over a block of i bytes as: Hi(X) = −∑

x∈X i p(x) log(x).
Block entropies were used in [3] for file-type classification. The complexity of

computing block entropy is O(m2) for a stream of m blocks.

2.4. Entropy of data from Markov information source

When the data source has a Markovian property (present is dependent on the
past), as is the case with text documents, the probability of a byte in a sequence
is conditional on the probabilities of occurrences of the preceding i bytes. Here i
is referred to the order or the memory that needs to be recorded. For a Markov
information source of order i− 1, entropy is computed as follows;

HM
i =

∑

x1∈X
p(x1)

∑

x2∈X
p(x2|x1)...

∑

xi∈X
p(xi|x1x2...xi−1) log p(xi|x1x2...xi−1)

(1)

The runtime complexity of computing HM
i is O(mi) for order i − 1, where m is

the number of bytes in the stream.

3. Performance evaluation

This section presents results form the experiments conducted. Before proceeding,
we discuss on the data used for evaluation purposes, and the experiment settings.

3.1. Data

We collected around 60,000 files for training and testing purposes. The different
file types forming the data are: encrypted (enc), executables (exe), PDF (pdf),
JPG (jpg), PNG (png), zip (zip), gzip (gz), MP3 (mp3), plain text and HTML.

D.M. Divakaran et al. / Accurate In-Network File-Type Classification 141

Plain text and HTML are considered as a single class, called the transparent class
(trans). Most of these files are extracted from a Linux system. All documentations
were installed to extract a number of text, HTML and PDF files. A subset of PDF
files also came from personal research papers collected over the years. Image files
in different formats were extracted from the Linux system as well as downloaded
from the Internet. Executable files consist of Linux system commands. MP3 files
were downloaded from sites offering free and legal downloads of music.

The compressed files, archives and encrypted files where created by randomly
sampling files from the database (MP3 and executable files were excluded from
sampling). We performed sampling without replacement; therefore the total num-
ber of files used for training and test still remained the same. To obtain encrypted
files, we encrypted a file using one of the following ciphers with equal probability:
AES-256, CAST-128, Blowfish, Twofish, and Triple DES.

3.2. Settings

Unless otherwise specified, we use nine file types (classes) for our experiments—
enc, exe, gz, jpg, mp3, pdf, png, trans and zip. Depending on the size of the
byte stream being extracted, the number of files used for each class changes. For
example, for the scenario where 64-byte streams are extracted from the beginning
of a file, the number of files used for each class in the training phase was 5000.
The number of files used for testing varied across class; the minimum is 500 and
the maximum was 3700 for this particular scenario.

We use a 3:1 ratio for the number of files used for testing and training (the
actual number of files is dependent on the stream-size being extracted). As a rule,
we do not consider a file-type if the number of files available is less than 500 for
any of the two phases of training and testing; and this will be explicitly specified
below, as and when such cases arise.

We use Random Forests for classification, as it can efficiently handle large
number of features, over a dataset of considerable size. Unless otherwise spec-
ified, the four different feature vectors used in the scenarios below are i) Uni-
gram frequencies (Section 2.1), ii) Distribution moments (Section 2.2), iii) Block
entropies—feature vector being H1, H2, H3, H5, as in [3] (Section 2.3), and
iv) Markov entropies—feature vector being HM

1 , HM
2 , HM

3 (Section 2.4). Note
that the feature H1 and HM

1 are the same.

3.3. Metrics for evaluation

To evaluate the classifiers using different sets of features, we use two commonly
and widely adopted metrics in classification, namely overall accuracy and F1 score.
Overall accuracy, or simply accuracy, is the ratio of the sum of correctly predicted
files (across all file types) to the total number of files. For a file type, F1 score =
2× precision×recall

precision+recall , where precision = No. of True Positive
#(No. of True Positive + No. of False Positive) , and

recall = #No. of True Positive
#(No. of True Positive + No. of False Negative) .

3.4. Results

We evaluate classifications using the different sets of features, resulting in multiple
scenarios. The scenarios and the results are discussed below.

D.M. Divakaran et al. / Accurate In-Network File-Type Classification142

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8 16 32 64

O
v
e

ra
ll

a
c
c
u

ra
c
y

Stream size (in bytes)

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(a) Classification accuracies

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

enc
exe gz jp

g
m

p3
pdf

png
tra

n
zip

F
1

File types

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(b) F1 for file types

Figure 1. Scenario 1: byte-streams extracted from the beginning of files

Scenario 1 - Feature extraction from the beginning of a file: When a stream of
contiguous bytes is extracted from the beginning of a file, naturally the ‘finger-
print’ (for example, header, magic number, specific strings, etc.) of the file is
involved in the phases of classification. Yet, classification using the features ex-
tracted from the beginning location is not equivalent to signature matching, which
requires an exact match of byte sequences.

Fig. 1(a) plots the accuracies obtained using the different feature vectors, for
stream-sizes of 8, 16, 32 and 64 bytes. We observe that feature vector formed of un-
igram frequencies gives the best results, achieving close to 100% accuracy. While
the feature vector of distribution characteristics has a small dimension of four,
the classification accuracy is high, and close to the best. Both Block Entropies
and Markov Entropies perform relatively worse (in comparison to unigram fre-
quencies and distribution characteristics). The performance obtained with Block
entropies is similar to that given in [3] (recall, our work and [3] use the same set
of Block entropies as feature vector). However with increasing stream-size, the
classification accuracies with these feature vectors are seen to increase.

Fig. 1(b) gives the accuracies obtained in classifying each file type, in terms of
the F1 score, when trained and classified using the four different feature vectors.
This figure corresponds to the accuracy results for 64 bytes in Fig. 1(a). Entropy
features perform worst in classifying gz files.

Scenario 2 - Feature extraction from a fixed location: In this scenario, we skip
the very beginning of the file that is highly likely to contain the fingerprints
specific to file types. Thus the obfuscation of files by swapping or modifying the
header part will not be able to beat the classification system.

Specifically, the feature extraction phase skips the first 100 bytes of a given
file, and extracts from the byte location following the 100th byte. Observe that
in this scenario, the location of the stream of consecutive bytes is fixed (for both
the training and the testing phases).

Fig. 2(a) plots the classification accuracies. We observe that the accuracies
for all the four feature vectors have come down significantly. The feature vector
using unigram frequencies gives the best accuracies, ranging from 73% to 76%.
The remaining three feature vectors lead to comparable accuracies. The accuracies
also increase with increasing stream size.

For the experiment using streams of 64 bytes, the correspond F1 score is
given in Fig. 2(b). Comparing the classification accuracies of gz, pdf and zip file

D.M. Divakaran et al. / Accurate In-Network File-Type Classification 143

0.4

0.5

0.6

0.7

0.8

0.9

1.0

8 16 32 64

O
v
e

ra
ll

a
c
c
u

ra
c
y

Stream size (in bytes)

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(a) Classification accuracies

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

enc
exe gz jp

g
m

p3
pdf

png
tra

n
zip

F
1

File types

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(b) F1 for file types

Figure 2. Scenario 2: byte-streams extracted after skipping first 100 bytes of a file

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1500 3000 4500 6000

O
v
e

ra
ll

a
c
c
u

ra
c
y

Stream size (in bytes)

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(a) Classification accuracies

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

enc
exe jp

g
m

p3
pdf

tra
n

zip

F
1

File types

Unigram frequencies
Distribution moments

Block Entropies
Markov Entropies

(b) F1 for file types

Figure 3. Scenario 3: byte-streams extracted from a random location in a file

types in figures 1(b) and 2(b), it is clear that the header significantly helps in
identifying these file types, as header removal brought down the classification
accuracy significantly for all feature vectors.

Scenario 3 - Feature extraction from a random location in a file: Here we extract
contiguous stream of bytes from a randomly chosen location. To ensure that
there is no bias towards the headers of file types, the first 100 bytes are skipped,
and a location in a file is selected uniformly randomly. We observed from the
experiments that stream sizes in 100s of bytes (from random locations) do not give
good accuracy in classifying file types. Therefore, here we provide the accuracies
for stream sizes in 1000s of bytes; more specifically, we extract streams of sizes
in multiples of a standard data packet size—1500 bytes. Thus the buffer space
required to store packets of a single flow (or connection) can be estimated in
number of packets.

As the numbers of files for types gz and png were less than the minimum
requirement, we do not consider these file types in this scenario, and the scenarios
following. In Fig. 3(a), we plot the accuracies for stream sizes corresponding to
one, two, three and four packets. Unigram frequencies still give the best classifi-
cation accuracy, and the accuracy increases with the number of contiguous bytes
used for classification. However, different from the previous scenarios, entropies
give better classification results than distribution characteristics in this scenario.
We need to keep in mind that the computational cost of entropies is higher than
the other features. From Fig. 3(b) (plotted for stream-sizes of 6000 bytes), we ob-

D.M. Divakaran et al. / Accurate In-Network File-Type Classification144

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.0

1500 3000 4500 6000

O
v
e

ra
ll

a
c
c
u

ra
c
y

Stream size (in bytes)

UF
UF+DM
UF+BE
UF+ME

All

(a) Classification accuracies

0.4

0.5

0.6

0.7

0.8

0.9

1.0

enc
exe jp

g
m

p3
pdf

tra
n

zip

F
1

File types

UF
UF+DM
UF+BE
UF+ME

All

(b) F1 for file types

Figure 4. Scenario 4: using combinations of feature vectors

serve that for all feature vectors, pdf and zip file types pose challenge in accurate
classification.

Scenario 4 - Combinations of feature vectors: In this section, we experiment
combinations of feature vectors. As unigram frequencies have given the highest
accuracies in all the previous scenarios, we combine feature vector of unigram
frequencies with other feature vectors. UF stands for unigram frequencies, DM for
distribution moments, BE for Block entropies, and ME for Markov entropies. We
also study the effectiveness of using all feature vectors in classification (denoted
by ’All’ in the corresponding figures).

Fig. 4(a) gives the accuracies. The highest accuracy, of ≈ 89%, is attained
for random streams of size 6000 bytes, for the combination of all the four feature
vectors (’All’ in the figure). In general, combining feature vector of entropies with
unigram frequencies is seen to increase the classification accuracy. While adding
feature vector of block entropies to the feature vector of unigram frequencies al-
ways increases the accuracies of classification of file types, this relative improve-
ment decreases with increasing stream size. Recall that the computational cost
of block entropies is a quadratic function of the number of bytes. Computing en-
tropies for larger size streams may potentially slow down the traffic, depending
on the capacity of the network and traffic characteristics (number of flows per
second, number of packets per second).

Fig. 4(b) gives the F1 score for stream sizes of 6000 bytes. We observe that,
in comparison to unigram frequencies, the combination UB+BE feature vectors
increases the accuracy of classification of encrypted files from 84% to 89%. The
combination of all feature vectors significantly increases the accuracy of zip file
classification from 50% to 66%. The combination also increases the classification
accuracy of PDF files from 71% to 78%.

3.5. Discussion

To check if similar performance in terms of accuracy can be achieved when all
computations are bounded within quadratic time in the number of bytes ex-
tracted, we performed one more experiment by removing the only feature that
takes more runtime complexity—HM

3 . This modified set of features, all of which
can be computed in linear or quadratic time, is equivalent to the features used
in ‘All’ (UF+DF+BE+ME), but with the third feature in the ME feature vector

D.M. Divakaran et al. / Accurate In-Network File-Type Classification 145

removed. The accuracy and F1 scores obtained were almost the same as those for
the ‘All’ set of features. From this, one can now decide the features (and their
combinations) as well as the stream-size to be used for classification depending
on the resource capabilities (computational power and buffer sizes) at one’s dis-
posal and the network load. One set of features requires only linear time—UF and
DF, and another set requires quadratic time—BE and ME (HM

1 , HM
2). Increasing

stream-size for classification results in increased accuracy, but at the cost of both
increased buffering and computational time (where, depending on the features,
the increase in computational time will be linear or quadratic).

4. Conclusions

In this paper, we conducted studies to determine the right set of features and
stream-size for accurately classifying file types in network traffic. Feature vector
consisting of unigram frequencies extracted from beginning of files, and which can
be computed in O(m) time, gives the best and close to 100% accuracy. As not
more than 64 bytes are required to achieve this performance, the features can be
computed in constant time.

As header of files alone cannot be used a reliable source for classification, we
also experimented on streams extracted from random locations (and excluding the
header part). Our experiments reveal that though unigram frequencies perform
good, combining all feature vectors together indeed performs the best. Depending
on the resources available at the point of deployment and the network load, (in
terms of link capacities, number of flows per second, number of packets per second,
etc.), the stream size and feature vectors to be computed may be varied.

Acknowledgment

This material is based on research work supported in part by the Singapore Na-
tional Research Foundation under NCR Award No. NRF2014NCR-NCR001-034.

References

[1] S. L. Garfinkel, “Carving Contiguous and Fragmented Files with Fast Object Validation,”
Digital Investigation, vol. 4, pp. 2–12, 2007.

[2] N. Beebe, L. Maddox, L. Liu, and M. Sun, “Sceadan: Using Concatenated N-Gram Vectors
for Improved File and Data Type Classification,” IEEE Transactions on Information
Forensics and Security, vol. 8, no. 9, pp. 1519–1530, Sept 2013.

[3] A. R. Khakpour and A. X. Liu, “An Information-theoretical Approach to High-speed Flow
Nature Identification,” IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1076–1089, 2013.

[4] M. McDaniel and M. Heydari, “Content based file type detection algorithms,” in Proc. of
the 36th Annual Hawaii International Conference on System Sciences, Jan 2003.

[5] W. J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: Identifying file types by n-gram
analysis,” in Workshop on Information Assurance and security (IAW05), United States
Military Academy, 2005, pp. 64–71.

D.M. Divakaran et al. / Accurate In-Network File-Type Classification146

