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Abstract. In digital forensics, the detection of the presence of tampered images is
of significant importance. The problem with the existing literature is that major-
ity of them identify certain features in images tampered by a specific tampering
method (such as copy-move, splicing, etc). This means that the method does not
work reliably across various tampering methods. In addition, in terms of tampered
region localization, most of the work targets only JPEG images due to the exploita-
tion of double compression artifacts left during the re-compression of the manip-
ulated image. However, in reality, digital forensics tools should not be specific to
any image format and should also be able to localize the region of the image that
was modified.

In this paper, we propose a two stage deep learning approach to learn features
in order to detect tampered images in different image formats. For the first stage,
we utilize a Stacked Autoencoder model to learn the complex feature for each indi-
vidual patch. For the second stage, we integrate the contextual information of each
patch so that the detection can be conducted more accurately. In our experiments,
we were able to obtain an overall tampered region localization accuracy of 91.09%
over both JPEG and TIFF images from CASIA dataset, with a fall-out of 4.31% and
a precision of 57.67% respectively. The accuracy over the JPEG tampered images
is 87.51%, which outperforms the 40.84% and 79.72% obtained from two state of
the art tampering detection approaches.

Keywords. Image forgery detection, region localization, deep learning, feature
learning

1. Introduction

In the digital era, there are an enormous volume of forged images on social media plat-
forms such as Facebook or Flickr. The distribution of manipulated images can be shared
very easily and can be used to mislead viewers from the truth. This may result in very
serious consequences so the authenticity of digital images is urgently needed.

While there are a few solutions to automate image tampering detection, some of
these methods are specific only to the JPEG file format [5,14,6,4,24,20,23] where they
detect the tampered region based on artifacts left by multiple JPEG compressions. Other
solutions [1,12,7] also identify features based on a specific tampering method such as
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copy-move where objects in the image are copied and pasted to hide or insert object. In
these works, the duplicated parts of the image are discovered by invariant features.

There are a few techniques to automate image tampering detection. [10,19,11] deter-
mines the authenticity of the image where it is identified either as authentic or tampered
[10]. However, these techniques do not identify the tampered region. Hence, a more so-
phisticated approach to obtain the tampered regions is required as this removes the need
to manually identify suspicious regions. Currently, there are a few techniques to identify
tampered regions. [5,14,6,4,24,20,23] exploits the artefacts left by multiple JPEG com-
pressions to detect the tampered regions. However, these techniques are applicable only
to the JPEG formats. Camera based methods [2,17] have also been explored where the
detection is based on demosaicing regularity or sensor pattern noise where the irregu-
larities of the sensor patterns are extracted and compared for anomalies. However, these
methods are constricted to specific assumptions. For example, [16] works on the assump-
tion that the image comes from a camera with the presence of Color Filter Array while
[9] assumes that there is a presence of sensor patterns pre-obtained from specific camera
models. Other methods to detect tampered regions also includes local descriptors. These
methods [1,12,7] identify features that identify similar objects in the image which were
copied and pasted to hide or insert object. These works are not applicable to tampering
techniques such as splicing where objects are copied from one image and inserted into
another.

In this paper, we address the above problems by proposing a two stage hierarchy
feature learning approach for image tampered region detection. Deep learning provides
a novel approach to the identification of features for tampered regions, which inherently
represent characteristics of the tampered regions appearing in the dataset [18,21]. Such
learning is data-driven and can be applied to images from any category of tampering. It
greatly saves us time and energy to find new features from a set of images. In this work,
we show that a deep learning Stacked Autoencoder (SAE) model can be used for feature
learning for characterizing tampered regions. At the first stage, our experiments have
shown that features of tampered regions are not only more effectively represented but
it also results in a lower feature dimension. At the second stage, we provide contextual
information by including neighboring patches to further improve the detection results. To
the best of our knowledge, this work is the first work that utilises deep learning approach
for feature learning in the field of tampered region localization.

In the following, Section 2, we will introduce our proposed method. Experimental
results are shown in Section 3 and Section 4 concludes the paper.

2. Proposed Method

2.1. Basic Features Generation

As we are looking into tampered characteristics, we are unable to use pixels dependency
as per traditional deep learning object recognition models [13]. Hence, we have to de-
vise some basic features for the deep learning to learn and transform the initial features.
We first converted the image into a YCrCb color space as studies [22] have shown that
this color space is known to be more sensitive to tampering artifacts. We then segmented
the image into 32 by 32 patches. Finally, we applied a 3 Level 2D Daubechies Wavelet
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Figure 1. Stacked Autoencoder Architecture. The 1st, 2nd, 3rd hidden layers are for unsupervised learning with
the 4th layer being a supervised classification network for feature fine tuning.

decomposition to each YCrCb component of the patches. We then obtained the standard
deviation, mean, and the sum for each of the approximation, horizontal, vertical and di-
agonal coefficients to obtain 90 features. In addition, we applied Daubechies orthogonal
wavelets D2-D5 to obtain a total of 450 basic features.

2.2. Two Stage Training Hierarchy for Tampering Detection

Based on the above raw input, we derive a complex feature with better discriminative
ability to distinguish the tampered patch from the authentic ones. To achieve this, we
propose a two-stage training hierarchy as follows. For the first stage, we utilize a SAE
model to learn the complex feature for each individual patch. For the second stage, we
integrate the contextual information of each patch so that the detection can be conducted
more accurately.

2.2.1. 1st Stage: Stacked Autoencoders for Complex Feature Learning

At the 1st stage, we use a SAE for complex feature learning. A SAE is a neural network
that is built by stacking multiple layers of basic autoencoders together. The outputs of
each layer are treated as inputs to the successive layer. On top of the SAE, there usually
comes with an additional MLP layer to further tune its parameters. The overall structure
is shown as in Fig. 1 with three hidden layers plus a MLP layer. A SAE is known to be
able to learn features that can represent its input. Typically, at the 1st layer, it learns the
first order features. At the 2nd layer, it learns the second order feature which corresponds
to the patterns of the first order features and so forth . Consequently, high layers of
the SAE tends to learn higher-order features and have very good discriminative power.
Consider a SAE with parameters W l ,bl denoting the parameters for lth autoencoder.
Output of the lth layer is ae(l) with its input zl . Then the encoding of the input feature
vectors over stacked autoencoders is performed by the encoding of each layer forwards
as follows:

ae(l) = f (z(l)) (1)

z(l+1) = W (l)ae(l) +b(l) (2)
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where f (·) is an activation function and a common choice is the sigma function:

f (x) =
1

(1+ exp(−x))
(3)

The decoding of SAE is performed in a reverse way, i.e., by an decoding of each layer
backwards:

ae(n+l) = f (z(n+l)) (4)

z(n+l+1) = W (n−l)ae(n+l) +b(n−l) (5)

In this aspect, if we have a SAE with n layers, then the transformed complex feature y is
encapsulated as the activation of the last layer:

y = ae(n) (6)

To obtain the parameters of the SAE, we use the greedy layer-wise training [3]. Specif-
ically, for the first layer, we use the raw input as introduced in Section 2.1 to obtain the
parameters W (1),b(1). Then the activation output is used as the input of the second layer
to obtain the parameters W (2),b(2). To obtain parameters more accurately, at the top of
the second layer, we additionally add a layer each two nodes indicating either tampering
or authentic and unroll and trained the whole architecture as a MLP [3]. So that for a new
incoming image patch, we can represent them using Eq. (6).

2.2.2. 2nd Stage: Context Learning for Tampered Regions

Since tampered regions usually span across a few patches and would consist of different
shapes and sizes, so the contextual information can additionally indicate if a patch is tam-
pered or authentic. Therefore, for each patch, we introduced another layer to integrate the
contextual information. To be specific, we firstly divide the image into non-overlapping
32 by 32 small patches. For each patch p, we determine its contextual neighborhood, say
N(p), and we assume that there should exist a consistent feature pattern among patches
within this neighborhood.

N(p) = [y0
p,y

1
p,y

2
p, ...,y

k
p] (7)

where y0
p is the complex feature learnt by the introduced SAE from the patch p. And

yi
p, i ≥ 1 is the feature of its ith neighboring patch. Through this representation, the rela-

tion among spatially-close patches is preserved. The final prediction label is determined
by an average value over its neighboring patches.

Prob(p) =

{
1 1

k+1 ∑yi
p∈N(p) MLP(yi

p)≥ α,

0, otherwise.
(8)

where MLP(·) is the probability value predicted by the MLP trained in the first stage and
α is an threshold to binarize the map. In this paper, α is taken as 0.5, a midpoint of the
maximal probability. For the neighborhood selection, we choose k = 3. That is to say,
for each patch, we include its right, bottom and bottom-right three patches, position of
each of which overlaps with the patch itself by half patch size horizontally, vertically and
both, respectively.
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3. Experimental Results

3.1. Data Setup

One of the major obstacles in image region localisation is the lack of an open source
database available for benchmarking. The Columbia Image Splicing Database [15] and
the CASIA database [8] are the only Image Forgery database available to date. However,
these databases only denote whether the images were tampered or not and do not provide
ground truths of the tampered regions. In order to overcome this obstacle, we manually
labelled 1000 images randomly selected from the CASIA 1 and 2 databases. For the
task of labelling the ground truth, we referred to their published instructions [8] on how
the images were tampered and labelled the ground truths accordingly. Fig. 2 shows an
example of the tampered image and the manually labelled ground truth respectively.

(a) Tampered image (b) Labelled ground truth

Figure 2. Example of tampered region and ground truth.

For training using the SAE strategy, we randomly selected 770 images for patch level
training. There are totally 36439 tampered patches and 63561 authentic patches. The
data is mildly imbalanced as the tampered regions are typically smaller than the rest of
the authentic regions. However, we show in our experimental results that the imbalanced
training data does not affect the final overall accuracy.

The remaining 230 unseen images (where there are 135 authentic images and 95
tampered images) were then used for validating our proposed method.

3.2. Training

Using the training architecture discussed in Section 2, in the first layer, we learnt our
features using a SAE with 3 hidden layers. Hence, the network’s input is 450 dimensions
and the number of neurons in the SAE’s remaining layers are 500-256-128-2. At the
second layer which integrates contextual features, the average of the MLP values of the
3 half-overlapped neighbouring patches are further used to calculate the final prediction
value.

The SAE training was performed using a Core i7 PC with 24GB RAM in a Matlab
environment. The total training time was 13 hours based on the amount of training data.

3.3. Evaluation

Utilising the proposed structure, we generated the detected tampered regions for each of
the 230 unseen images. As our model uses patches as inputs, we evaluated our proposed
method based on patches as well. Since the ground truth is labelled at pixel-level, so
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the corresponding grids will be labelled with the same labels, based on which all the
afterwards evaluation are conducted. To be specific, the images are segmented into 32
by 32 grids, overlapped with the ground truth and labeled accordingly. Fig. 3 shows an
example, the left figure is the original pixel-based ground truth while the right one is the
patch-based ground truth. Based on this, there are 4 possible scenarios among the results:

Figure 3. An illustration of patch-wise ground truth.

1) if both the output and the ground truth are labelled as tampered (in white color), we
take the result as a True Positive (TP). 2) if the output grid is predicted as tampered
(in white color) but the ground truth grid is labeled as authentic (in black color), the
result is a False Positive (FP), 3) if the ground truth grid is authentic, but the output grid
is predicted as authentic, the result is a False Negative (FN), 4) if both the output and
ground truth label of a grid are authentic, the result is a True Negative (TN). Based on
the above, we evaluate the results using the following criteria:

Accuracy =
T P+T N

T P+FP+T N +FN
(9)

Fallout =
FP

FP+T N
(10)

Precison =
T P

T P+FP
(11)

For accuracy and Precison, the higher the values are, the better the classifier performs.
For the Fall-out, the lower the value is, the better the classifier is. The statistics of the
above criteria are summarized in Table 1. While our Fall-out is kept to a minimal of
4.31%, our precision is at 57.67%, which indicates that our proposed method can well
predict the label of individual patch. As our method is dependent on patches, the detected
tampered regions may not necessarily cover the exact parts of the ground truth grids and
this results in more false positives which may effect the value of precision. However, this
is can be solved by some image based post processing techniques. One possible solution
is to leverage image segmentation in which way the labels of the segments are propagated
from the corresponding patch labels. Therefore, we can effectively recover the tampered
object since the localized region have already been identified.

Since the CASIA dataset contains both JPEG and TIFF images, and our method does
not depend on specific image format, we further investigate the performance for each
of them. As there is no authentic image with TIFF format, we reported the results for
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Table 1. Performance Matrix for all test images.

Fall-out 4.31%

Precision 57.67%

Overall accuracy 91.09%

(a) Input TIFF image 1. (b) Ground truth of (a). (c) Detected results.

(d) Input TIFF image 2. (e) Ground truth of (d). (f) Detected results.

Figure 4. Detection results for TIFF image examples from CASIA 2 database.

tampered images only. Among the 95 tampered images, there are 51 JPEG and 44 TIFF,
with results shown in Table 2. From the data, we can see that the performance for JPEG
and TIFF are mostly similar, which indicates that our proposed method has the capability
to be applied to various format images. As illustrated in table 2, the overall accuracies are
consistent for each image format at 87.51% for JPEG and 81.91% for TIFF respectively.
In addition, the fall-outs are kept to a minimal of 7.09% and 4.39% for JPEG and TIFF,
separately.

Table 2. Performance Matrix between Tampered JPEG and TIFF images

JPEG TIFF

Fall-out 7.09% 4.39%

Precision 59.43% 80.65%

Overall accuracy 87.51% 81.91%

To visualize the results, we provided some examples in Fig. 4 and Fig. 5. Fig. 4 in-
cludes two examples of TIFF images while Fig. 5 illustrates two JPEG examples. Within
each figure, the first column is the tampered images, the second column is the ground
truth and the last column is our detection results. Note that for the detection results, we
plot them in a grayscale version instead of binary values just for better visualization pur-
pose. But all the statistics reported in the above table are based on binary label (i.e., either
tampered or authentic). As shown in the these examples, our proposed method is capable
of identifying the tampered regions accurately.
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(a) Input JPEG image 1. (b) Ground truth of (a). (c) Detected results.

(d) Input JPEG image 2. (e) Ground truth of (d). (f) Detected results.

Figure 5. JPEG images from CASIA 2 database

3.4. Comparison with existing work

The above provides a results overview of our proposed method. In this section, we eval-
uate our method against existing works. Since JPEG image is the most popular im-
age format today and majority of the work which localize tampered region such as
[20,14,6,4,24] are only applicable to JPEG images, we compare our work with two ex-
isting studies in JPEG domain. Both of these works exploit the double compression arte-
facts left after tampering. The first method is proposed by Thing et al. [20] which lever-
ages the double quantization effect among JPEG images for tampering detection. We
choose it as it claims to be robust in practical applications even with a relatively limited
or small training data set available. Additionally, this work is reported to perform well
for CASIA dataset, so we believe it to be a good baseline. The second one is proposed
by Bianchi et al. [4] based on an improved and unified statistical model characterizing
the artifacts that appear in the presence of both A-DJPG or NA-DJPG.

Table 3. Detection accuracy comparison with existing works among all JPEG images.

Author Accuracy

Bianchi et al. [4] 40.84%

Thing et al. [20] 79.72%

Proposed Method 87.51%

The experiments are conducted among the all JPEG images. For [4], we obtained
their codes from the authors website. As for [20], we contacted the authors to obtain their
codes for evaluation on our database. However, these existing methods are pixel based
as compared to our proposed method which is patch base. Hence, in order to have a fair
comparison, we took two average score from the corresponding patch in the existing
method. Using the same 32 by 32 patch wise evaluation, we obtain the accuracy as shown
in Table 3.
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From the results, we can see that our proposed method achieves the highest accuracy
at 87.51%, which outperform the second best by Thing et al. [20] by 7.79% and outper-
form the work by Bianchi et al.[4] by around 46.67%. In [4], the output of their algorithm
is a probability map corresponding to the probability of the region being double com-
pressed. Our results illustrate two main drawbacks on this method; firstly, the tampered
regions need to be manually identified since the authors did not provide a threshold for
detecting the regions. Secondly, the tampered regions are not accurately detected on our
test database.

(a) (b)

(c) (d) (e)

Figure 6. Comparison of detected tampering region, Example 1. (a) Input JPEG image, (b) Ground truth
(white region is tampered), (c) results by Thing et al. (d) results by Bianchi et al. (e) results of our method.

We visually compare the detected regions with the existing works [20,4] as illus-
trated in Figs. 6 and 7. From the figures we can see that our proposed methods can de-
tect the tampered region accurately. Furthermore, the method by [4] requires a threshold
to be set in order to automatically identify the tampered region. Based on the table, we
can observe that our proposed method obtained higher accuracy over existing works on
the same test set. Furthermore, the advantage of our proposed method is that it is also
applicable to both JPEG and TIFF image formats.

4. Conclusions

In this paper, we propose a deep learning approach for feature learning used to char-
acterize tampered regions across multi format images. Our experiment results demon-
strate that the proposed method detects tampered regions well with an overall accuracy
of 91.09%. As future work, we will include other image transforms such as DCT as the
base feature input. We will also investigate if other deep learning architectures such as
Deep Belief Networks will improve the performance of feature learning. In addition, we
will continue our efforts to manually label more ground truths from other datasets such
as the Columbia Image Splicing dataset [15] as it also includes BMP file formats. This
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(a) (b)

(c) (d) (e)

Figure 7. Comparison of detected tampering region, Example 2. (a) Input JPEG image, (b) Ground truth
(white region is tampered), (c) results by Thing et al. (d) results by Bianchi et al. (e) results of our method.

will allow the deep learner to learn more characteristics of tampered regions and ensure
better accuracy for tampered region localization across different image file formats.
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