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Abstract. Despite their overwhelming success, present-day Massive Open Online
Courses are far removed from the student modelling capacities displayed by earlier
Intelligent Tutoring Systems. Being mere content delivery tools, MOOCs typically
lack a thorough assessment module as well as tools for personalising the learner’s
track. When learning music, particularly, these two properties are indispensable.
This chapter surveys suggestions made by experts in the field of AI in education
today towards the incorporation of ITS tools and techniques into MOOCs. Yet,
more traditional student models and tutoring modules are not without shortcomings
themselves and the real challenge lies in making active models of both the tutor
and the student, which can be used to predict future learning tracks and set the
right challenges. Agent-based tutoring systems offer an attractive framework for
building such active tutor/student models. The proposed concepts are illustrated
in the domain of music composition. A tutoring system has been implemented to
teach students the craft of counterpoint, a commonly used strategy for learning
polyphonic music composition. It is based on the theory of flow to keep students
motivated and optimize learning.
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1. Introduction

Since their appearance in 2011, Massive Open Online Courses (MOOCs) have become
omnipresent in today’s higher education landscape. Yet, although their rise is recent and
their popularity large, the ideas that support these courses have been around for multi-
ple decades (see [1] in this Volume). The first “teaching machine” was introduced in the
fifties by the behaviorist B. F. Skinner in the form of an incremental mechanical system
that would reward students for correction responses to questions [2]. The idea was later
reinforced by the famous two-sigma problem that could show that student achievement
in classroom interaction differs greatly from results obtained from individual tutoring
[3]. If we transfer this idea into today’s globally connected age, to what extent do partic-
ipants in Massive Open Online Courses experience individual tutoring? Surely, in terms
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of evaluation, “in classes of 100,000 students, or more, instructors, no matter how many
assistants they might have, are not going to be able to do the grading” [4].

MOOCs are mere content delivering tools today, replacing traditional university lec-
tures, more than tools for assisting teachers in traditional classroom education. Despite
their overwhelming success in terms of student numbers that these courses reach, the
current first-generation MOOCs have two main shortcomings that are often mentioned
by experts: (i) automatic assessment does not go beyond regular expression matching in
simple self test questions at the end of each lecture segment and (ii) every learner follows
the same learning path through the lectures, lacking any personalized tutoring. These two
shortcomings are also reflected in the high number of dropouts (90-95%), which is often
attributed to challenges similar to distance learning, such as time management. However,
a comparative study showed that “MOOC students learned a bit more than students in a
traditional university course, but less than students taught with an interactive engagement
pedagogy” [5]. In sum, MOOCs as they are today are very useful in blended learning
settings, where a human teacher incorporates MOOC material into their own lectures but
currently less efficient in stand-alone education.

Two main paths are typically put forward to escape this deadlock situation in the
online setting. First, by constructing knowledge in a collaborative way and by assessing
each other’s work, students learn from each other. This kind of learning is sometimes
referred to as collaborative or peer learning and found especially interesting in problem-
solving kinds of domains, like design or music composition. Second, online courses
form a testbed for adaptive learning techniques by means of intelligent automated tools.
Indeed, Intelligent Tutoring Systems have focused for decades on building exactly such
systems that perform automatic assessment based on extensive domain knowledge and
student models. A student model can be defined as the set of beliefs that a tutor has about
a student. These beliefs include the knowledge and skills of the student in the target
domain, his learning preferences and other attributes. They can be inferred based on a
student’s observable behavior: through his answers, actions or the results that he obtains.

Indeed, one would assume that such personalized education becomes crucial in big
groups of learners. The large-scale data available in MOOCs hosts a huge potential for
machine learning techniques to extract and generalize over learner patterns and offer in-
dividual learning tracks. This chapter tries to bridge the apparent gap between earlier in-
telligent tutoring systems (ITSs) and the (seemingly) abrupt rise of video-based MOOCs
and argues for the need of an active tutor and student model, something which can
only be achieved within an agent-based architecture.

This chapter is organised as follows. First, the current state of individual tutoring in
MOOCS is reviewed. Next, a brief history on Intelligent Tutoring Systems is given to
make the reader familiar with the basic terminology and architecture. The main contribu-
tion of this chapter, active tutor and student models, will be introduced in a fourth section
and its capabilities demonstrated in the domain of music—more specifically counterpoint
tutoring, a compositional technique. Finally, conclusions are drawn.

2. Individual tutoring in MOOCs

How well do MOOCs score in terms of facilities for individual tutoring? Many course
designers have argued already that the real advantage of using MOOCs lies in their value
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in so-called flipped classrooms or hybrid education, where a regular lecturer relies on
MOOCs only as content delivery for his course and uses it to spend more time on individ-
ual tutoring and discussions on the subject matter in physical interactions with the stu-
dents in the classroom. A MOOC is then rather seen as one way of learning, which allows
students to connect and collaborate by engaging in the learning process actively. Daphne
Koller reported a higher-than-usual attendance in her Stanford courses that are taught this
way: “We can focus precious classroom time on more interactive problem-solving activ-
ities that achieve deeper understanding—and foster creativity” [6]. Such studies point to
the importance of teachers as individual mentors who can debug students’ thinking and
“honestly be enthusiastic when they excel” [7].

Apart from improving the quality of face-to-face time in lectures, the real question
is whether MOOCs can be used as stand-alone tools in distance education in the way
intelligent tutoring systems were thought to function? A systematic comparative study
by Judy Kay and her colleagues at the University of Sydney across a sample of major
massive open online course platforms revealed that “all of the systems currently have
only rudimentary facilities to capture learner activity data for analysis” [8], meaning
that offering opportunities for individual learning paths is not on the agenda of current
MOOC designers. The student can see “rather simple information about their marks and
progress” [id.]. The researchers therefore rightfully conclude by saying that “here is a
place where there is exciting potential to introduce Artificial Intelligence & Education
(AIED) tools and techniques into MOOCs” [8].

MOOCs certainly offer new opportunities for individual tutoring when they are
used in blended learning settings where teachers can inspect every student’s individual
progress on certain exercises and intervene if needed by offering targeted feedback on the
components the student is struggling with or teaming up stronger with weaker peers [9].
Still, automatized individual tutoring with richer evaluation models to measure student
engagement are not yet fully realized. This is not the least the case in learning music, a
discipline that involves many different skills that cannot be assessed with simple multi-
ple choice questions and in which the personal nature of a learner’s track is primordial.
Yet, the effective use of online and intelligent technology has been underresearched in
music as well [10]. Their absence has contributed to the general feeling of disappoint-
ment towards MOOCs [11]. To understand how this aspect could be improved, the fol-
lowing section situates MOOCs within the larger history of Intelligent Tutoring Systems,
in which individual tutoring through the use of student models plays a prominent role.

3. A brief history of Intelligent Tutoring Systems

Although today a well-established concept, Intelligent Tutoring Systems (ITSs) have
gone a long way since the first breakthroughs in the early seventies that incorporated AI
techniques into programmed instructions. These early advances allowed for (i) alterna-
tive representations of content, (ii) alternative paths through material and (iii) alternative
means of interaction. Much of the research into expert systems turned out to be useful
for representing expert (tutor) knowledge and building student models. In the eighties,
and still very much so today, the main research questions of the field of ITS could be
formulated as follows [12]:

• What is the nature of knowledge, and how is it represented?
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Figure 1. The history of Intelligent Tutoring Systems
.

• How can an individual student be helped to learn?
• Which styles of teaching interaction are effective, and when should they be used?
• What misconceptions do learners have?

3.1. From frame-based approaches to ITSs

The first attempts to build tutoring systems were all frame-based, where most frames
contained simple questions (fill the gap exercises, selecting the correct answer, etc.).
Such tutoring systems proceeded to present the next frame regardless of the accuracy of
the student’s response. It was therefore nothing more than a programmed textbook, com-
pletely lacking any individualization. In the 1960s, Crowder tried to overcome this major
shortcoming as he introduced the notion of branching programs. Although still having
only a number of fixed frames, these programs no longer ignored student’s responses but
the system could comment on a student’s response and use it to choose the next frame
[13].

Generative Computer-Assisted Instruction (CAI) was launched in the late 1960s.
The idea of generative CAI was that a computer could generate teaching material au-
tomatically. One of the main advantages was that memory usage could be considerably
reduced by this technique, since the frames did not have to be saved as such. However,
this approach remained restricted to drill-type exercises, in which the learner model con-
sisted of nothing more but an integer. Uhr and his collaborators [14] implemented a se-
ries of systems which auto-generated problems in vocabulary recall and arithmetic, two
domains that presumably require drill and practice types of exercises. The sophistication
in their systems was situated in the task-selection mechanism, which ensured the exercise
level to be adapted to the student’s overall performance.

It was Jaime Carbonell’s mission to put Artificial Intelligence into CAI, meaning
that the computer should have a representation of what is being taught, to whom and
how [15, 16]. He developed SCHOLAR, a tutoring system for teaching Latin-American
geography. SCHOLAR helped students enhance their knowledge by (i) solving problems
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at a certain level or by (ii) involving them in discussions with the computer in a more
interactive way.

Although there is no sharp boundary, in the 1980s intelligent CAI was replaced
by Intelligent Tutoring Systems (ITS), which try to extend the domain of applicability,
power and accuracy of CAI systems [17, 18, 19, 20]. Figure 1 summarises the different
steps in the history of Computer-Aided Instruction until the arrival of ITS. Examples of
early ITS include the Pittsburgh Urban Math Project (PUMP) algebra tutor [21] and the
SHERLOCK control panel [22], used to train Air Force techniques to diagnose prob-
lems that might occur. Another early system is GUIDON [17, 23], which was the first
intelligent tutor based on an expert system. GUIDON was also the first program to teach
medical knowledge.

3.2. The general ITS architecture

Current Intelligent Tutoring Systems have a standard architecture with a number of com-
ponents that are each responsible for a specific function. The components can best be
explained according to the knowledge type they encode, which results in the following
four types:

1. Domain knowledge (how experts perform in the domain): definitions, processes
or skills needed to multiply numbers (e.g. the AnimalWatch tutor), generate alge-
bra equations (e.g. PAT tutor), etc.;

2. Student knowledge (how to reason about student knowledge): stereotypic student
knowledge of the domain and information about current student (time spent on
problems, hints requested, correct answers, preferred learning style, etc.);

3. Tutoring knowledge (encoding reasoning about the feedback): either derived
from empirical observations of teachers or enabled by technology (simulations,
animated characters);

4. Communication knowledge: includes graphical user interfaces, animated agents,
dialogue mechanisms.

The domain knowledge module (expert knowledge), the student model module (stu-
dent knowledge) and the tutoring module (tutoring knowledge) are interconnected in the
main architecture of an ITS. Communication knowledge is incorporated by a user in-
terface module that mediates between the student input and the tutoring module (Figure
2). Because the communication knowledge is often included in the tutoring module, the
remainder of this section discusses the three main interconnected modules in the ITS
architecture: expert knowledge, student knowledge and tutoring knowledge.

3.2.1. Expert knowledge

Domain models interact very closely with the student model: they are the first step in
representing the expert knowledge. They can generally be divided into three categories
of complexity: (i) problem solving (mathematics problems, Newtonian mechanics), (ii)
analytic and unverifiable domains (ethics, law) and (iii) design domains (architecture,
music composition). There are two main axes in the classification of domain models: a
first one ranging from simple to complex and a second one ranging from well-structured
to ill-structured. Category 1 models represent expert knowledge in the field of arithmetic
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Figure 2. The basic architecture of an Intelligent Tutoring System consists of three main modules: expert
knowledge, a student model and a tutoring module.

and other well-defined domains (well-structured, simple). Category 3 represents the other
side of the axes: complex and ill-structured domains such as the knowledge needed to
build an ITS for architecture tutoring. Finally, Category 2 contains qualitative represen-
tations of expert knowledge for fields such as language or music, which are halfway on
both axes [24].

Learning music involves a whole range of learning activities: from music history
over mastering an instrument to interpreting a piece and composing in a particular style,
requiring different kinds of cognitive skills. While more academically oriented courses
could be assessed and taught in a more traditional way, teaching students how to compose
requires advanced tutoring and close guidance. In an online tutoring system, the models
that represent this knowledge thus need to reflect this knowledge closely. To teach stu-
dents the craft of classical composition, for example, a common approach is to teach the
practice of counterpoint, which consists of a set of do’s and don’ts in polyphonic music
writing. It could be classified as Category 1 due to the formal and well-defined nature
of rules that constrain harmony and melody. Still, just checking student’s work for cor-
rectness is unsatisfactory given the complexity of the task and modelling the knowledge
including all student misconceptions, is a difficult and time-consuming task that often
needs to be carried out by hand.

3.2.2. Student knowledge

A student model can be defined as the set of beliefs that a tutor has about a student. These
beliefs include the knowledge and skills of the student in the target domain, his learning
preferences and other attributes. They can be inferred based on a student’s observable
behaviour: through his answers, actions or the results that he obtains. Traditional ITSs
keep track of a student’s performance based on a series of pre-set learning objectives,
such as a range of grammatical phenomena in the target language or vocabulary items
covering the learning situations that the student has selected.

To improve the student modelling enterprise, some tutoring systems allow their stu-
dents to inspect and control the student model [25]. Student models with this property
are called open learner models (OLMs). They can contain simple overviews of knowl-
edge (such as a skill meter) or a more detailed representation of knowledge, concepts
etc. Park Woolf [24] lists several motivations for the use of open learner models, such
as (i) the student has the right of access to and control over his personal information;

K. Beuls and J. Loeckx / Chapter 9. Steps Towards Intelligent MOOCs124



(ii) the student can potentially correct the learner model; (iii) the frequent asymmetric
relationship between the student and the tutor can be resolved; and (iv) OLMs stimulate
reflective learning in the student.

Researchers in ITS tend to classify their student models according to three main
dimensions. The first one covers the input that the system receives, while the remain-
ing two are structural properties of the student profile. Van Lehn [26] refers to them as
bandwidth, target knowledge type and the differences between student and expert:

1. Bandwidth refers to the amount and quality of the input that the diagnosis compo-
nent receives about what the student is doing or saying. From this input, the tutor
must infer what the student is thinking and believing [26].

2. Target knowledge type. Because a good student model can in practice solve the
same problems as a real student would be able to solve, it can be used to actively
predict the real student’s answer. To solve these problems the model needs “some
kind of interpretation process that applies knowledge in the student model to the
problem” [27]. Depending on whether we are dealing with procedural or declara-
tive knowledge, a different interpretation process is required.

3. Student-expert differences. The knowledge of a student is usually regarded as the
background knowledge of a student modeling system. Student knowledge always
needs to be understood in relation to an expert model that can provide explanations
on the correct way(s) to solve a problem. To compare student and expert or tutor
knowledge, most ITSs claim to use the same knowledge representation language
for both [26]. However, reality is often different. Due to economy and other im-
plementation issues, the student model is often a copy of the expert model plus a
collection of differences: missing concepts (knowledge that the student does not
yet have) and misconceptions (knowledge that the student has that the tutor does
not).

3.2.3. Tutoring knowledge

A tutoring model has two main functions, which are mirrored in the basic tasks of in-
struction, namely to stimulate and evaluate learning. ITS resarch has mainly addressed
these functions separately [28] and sometimes together as in the ASSISTment system
[29, 30, 31], which combines ’assistance’ and ’assessment’. A tutoring model thus needs
to decide on when and how to intervene and it is responsible for content planning of what
to teach next. The question of when and how to assist the learner is “the fundamental
dilemma of tutoring” [32, 33, 34].

Assisting and tutoring the learner can further be divided into two sub-functions [34]:
“cognitive diagnosis, defined as the detection of the sources of errors, and the selection
of tutoring or remediation strategies”. Recent developments in automatically learning the
learner’s affective states [35, 36, 37] have increased the complexity of reasoning about
optimal tutoring decisions.

Tutor’s decisions are often reflected in the different forms of interaction that the tutor
has with the learner. Typical forms of interaction include socratic dialogs, hints, feedback
from the system, etc. A human teacher typically uses six types of feedback [38, 39, 40]:
explicit correction, recasts, clarification requests, metalinguistic feedback, elicitation,
repetition or any combination of these. These interactions usually occur through the user
interface module, that connects the student with the tutoring module (see Figure 2). The
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user interface often includes a dialogue system for interacting with the student. This
type of conversational interaction is particularly useful when the learner’s answer is in-
complete. Because tutors usually have an approximate sense of what a student knows,
it “appears to be sufficient to provide productive dialogue moves that lead to significant
learning gains in the student” [41].

4. Introducing active tutor and student models

4.1. State-of-the-art

Intelligent Tutoring Systems today work with static student models that keep track of a
student’s performance on certain predefined knowledge domains by counting scores and
comparing these to averages. If the technique of a student model is to be included to
make MOOCs more intelligent, we should consider a more dynamic student model that
can actually function as a real model of the actual student and predict future behavior.

In Artificial Intelligence, a promising way to introduce such dynamic models is to
make use of agents that can take on the role of learners and tutors. Such agents are au-
tonomous entities that pursue their own goals and learn according to the outcome of its
own or other agents’ actions. Indeed, multi-agent systems have sometimes been consid-
ered as good candidates for building basic Intelligent Tutoring Systems infrastructures
as they fulfil all the necessary requirements [42]:

(i) they are made of different interconnected, complex components;
(ii) they provide multiple, different and complementary services;

(iii) each of their components is functionally autonomous; and
(iv) they are equipped with specific knowledge structure and reasoning mechanisms.

Agents are thus often decomposed by their function in the teaching and learning pro-
cess, with for instance one evaluation agent, one modeling agent, one recording agent,
one student agent, etc. [43]. Moreover, the usefulness of agent technology in intelligent
education systems is their contribution to make these systems adaptive, able to learn and
dynamic by providing dynamic adaptation of domain knowledge and of behaviour of
individual learners ([44], cited by [43]). Pedagogical agent-based systems are often used
to monitor a particular project and enhance communication between members of a group
[45]. Some researchers have designed agents for every course unit [46] or assigned a new
agent to a specific learning topic [47].

4.2. Active student & tutor agents

We suggest to abandon such distributed systems in favour of a more holistic agent-based
tutoring system with only two agents: one that models a tutor and one that simulates a
learner. The latter can then function as an active student model that can run and try out
solutions in parallel to predict a student’s behaviour. These predictions can then be used
to set the right challenge level, select the next exercise and suggest corrections to the real
student. We will reuse concepts and findings of a recent PhD dissertation on language
tutoring with such an agent-based architecture [48]. Similarly, the two agents that form
the backbone of an agent-based counterpoint tutoring system are the music agent (ex-
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Figure 3. Example of a correct first species counterpoint piece. Given the cantus firmus (CF), a student is
asked to compose the counterpoint voice, that should obey harmonic, melodic and motion constraints.

pert composer) and the student agent (music pupil). Both agents share the same archi-
tecture: a set of music rules, a processing engine and a meta-level architecture to capture
inconsistencies in the student’s composition of the counterpoint voice. Yet, although the
components of the teacher and student agent are homologous, the realization of these
components is not identical. The teacher agent represents an ideal composer in counter-
point whose musical skills also allow him to correct erroneous utterances of others. The
student agent does not yet master all the counterpoint rules that are needed to be fully
expressive in his compositions.

A music agent can be extended with a tutoring strategies component and a student
profile component to become a fully-fledged tutor agent. These components personalize
the tutoring process by keeping essential information about the student that is constantly
being updated so that tutoring can be personalized to better fit the motivations of the in-
dividual student. This approach is particularly interesting in the domain of music, where
learner’s paths are very personal and the rules to be learnt exhibit complex interactions
so that keeping track of which rules a student masters, is crucial.

5. Illustration in the domain of music

5.1. The study of counterpoint

The study of counterpoint attempts to express the properties of melodious polyphonic
music, by investigating how the individual voices are formed and interact with each other.
It has been a very important historical effort to capture the style of Renaissance music
in which the independence of voices and harmonious polyphony is central. Still today,
however, it is an indispensable tool to teach students the craft of classical music com-
position. A counterpoint exercise consists of a given cantus firmus (CF) or monophonic
melody, on which a student has to compose a second melody to (called the counterpoint
voice, CP). Of course, not all possibilities of notes are allowed (in this case a random
melody would suffice), and here come the counterpoint rules into play. Figure 3 gives an
example solution of such an exercise. The composed melody, should obey:

(a) harmonic or vertical (spanning two voices),
(b) melodic or horizontal (concerning one voice) and
(c) motion rules (relative movement of two voices).

As these rule are interacting in different ways, solving a counterpoint exercise can be seen
as solving a complex sudoko. One discriminates between hard constraints (absolute “no-
go’s”) and soft constraint (discouraged). Besides constraints, there are also guidelines
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Figure 4. The study of counterpoint is centred around “rules” that limit the compositional freedom of a com-
poser. They are intended to maximise the independence of voices while meanwhile preserving the harmonious
nature. The most basic rule of counterpoint, pictured above, specifies which harmonic intervals are allowed
and which are forbidden.

for creating ‘better sounding’ melodies, for example that a melody should be smooth
and consist of the least number of skips available. The rules and guidelines collectively
define the polyphonic musical style of the Renaissance era (1400-1600 AD). Because
the ‘freedom’ of compositional expression has been limited on purpose in counterpoint,
it helps pupils to cope with the many and complex interactions that occur constantly in
polyphonic music.

Figure 4 depicts a basic harmonic rule in standard musical notation, that says that
the possible harmonic interval (that is, distance between two notes with regards to pitch)
are restricted: only octaves, minor/major sixths, perfect fifths and minor/major thirds are
allowed. Of course there are many more and more complex rules that involve the two
voices and movement of the melodic lines. The difficulty of counterpoint lies in the fact
that the rules often conflict with each other so that solving one error leads to violation of
another rule. It leads us too far to explain all this in detail and we refer readers interested
to know more about the musical aspects of counterpoint to excellent literature on the
topic [49, 50].

Also from a computational point of view, counterpoint is interesting as the “rules”
to be learnt are quite formalised and the interactions not too complex. For this reason,
it has been an interesting case study for computational representations in the past, us-
ing formalisms in the domain of feature spaces, fuzzy logic or constraint programming
[51, 52, 53]. Though these approaches yield satisfying results, they lack musicality, ex-
planatory power and mechanisms to engage them in tutoring activities as the musical
knowledge can not be exploited.

In the following sections we will outline the basic operation of our proposed tutoring
system for teaching counterpoint. We will look in more detail at the two-agent architec-
ture, at the musical grammar to analyse a given composition and at how the tutor agent
diagnoses errors and repairs them.

5.2. Tutoring based on the theory of “flow”

Figure 5 depicts the overall process of the proposed Intelligent Counterpoint Tutoring
System, based on the concept of flow. Flow theory, introduced by Mihalyi Csikszent-
mihalyi [54], describes the experience of intrinsically motivated people when they are
deeply engaged in an activity. During this time, people are in such a state of extreme
concentration that they forget about time and the world around them. It is believed that
learning is optimized in this situation and the primary goal of the process pictured in
Figure 5 is thus to keep students in a state of flow. One of the groundbreaking aspects
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Figure 5. The challenge level is adapted to match the student’s capabilities and skills to keep them in a state of
flow and optimize learning. In order to achieve this, the tutoring agent should be well aware of what knowledge
a student masters by keeping the student model up-to-date. The virtual tutor analyses the composition of a
student and can suggest repairs when needed.

of this theory is the fact that the distinction between teacher and learner is diffused and
students are put central to the learning process [55].

Flow occurs when a person perceives the challenges and the skills brought to it, as
both balanced and (slightly) above average. For example, if an exercise is too difficult,
a student may become anxious or frustrated which not only hampers learning but is also
detrimental to motivation. If, on the other hand, the exercises that are presented are too
easy, a student may become bored and lose interest. Finding this balance is one of the
challenges of our tutor agent. As a consequence, it is essential that the tutor continuously
gauges the student’s skill level and keeps the student model in sync by tracking in detail
which knowledge the student masters and which not.

In our specific case, the student model is an active one and corresponds to the (ex-
ecutable) set of counterpoint rules that the student masters. Because this knowledge can
be instantiated, the tutor agent can simulate which response(s) a student will/might give.
If there are any discrepancies observed, the student model is adapted to reflect accord-
ingly to match the student’s skill set. When a student provides an answer to an exercise,
the expert tutor (who masters all counterpoint rules), analyses the piece and diagnoses
which rules have been violated and suggests repairs. We will now look in more detail
into each of these steps, starting with the musical analysis when a student submits the
solution to an exercise.

5.3. Analysing the student’s answer

To encode musical knowledge, we have opted for a grammar-based representation of
counterpoint rules. Figure 6 shows an example initial structure before analysis. To build
this grammar for musical composition we use the Fluid Construction Grammar frame-
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Figure 6. Partial initial transient structure for the example counterpoint exercise with selected voice, frame
and bar units expanded. Bar units have two parent units: the voice to which they belong (horizontal view) as
well as the frame (vertical view).

work, a computational formalism that is based on the theory of Construction Grammar
within linguistics [56, 57]. In construction grammar, the main data structure is a construc-
tion, which is a mapping between meaning and form through semantic and syntactic cat-
egorisations. Constructions are implemented as feature structures with a conditional and
a contributing pole. In grammatical processing, constructions contribute to a transient
feature structure that is being built up from scratch, starting from a conceptualization in
formulation and from an utterance in comprehension. Information that is in the condi-
tional pole functions as a requirement that needs to be satisfied before a construction can
contribute new features or hierarchy to the transient feature structure.

For example, a lexical construction for “goat” has the following conditional slots
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(on the right-hand side of the arrow): semantic predicates (conditions in formulation) and
strings (conditions in comprehension). In formulation, this construction will contribute
the “goat” form and features such as referent, lex-cat, number and sem-cat. In
comprehension, the construction contributes the meaning predicates as well as the same
contributing features on construction’s the left-hand side.

⎡
⎢⎢⎢⎢⎢⎢⎣

?word-unit

referent: ?ref
lex-cat: noun
number: singular
sem-cat:
{animate, non-human, four-legged}

⎤
⎥⎥⎥⎥⎥⎥⎦
←

⎡
⎢⎣

?word-unit

# predicates: {goat(?ref)}
# form: {string(?word-unit, “goat”)}

⎤
⎥⎦

Similarly, musical rules can be represented as constructions. For the moment, we
will ignore the controversial topic of ’meaning of meaning’ and consider all counterpoint
rules as being purely syntactic. Now instead of features such as form, referent or
sem-cat, a construction contains information about the pitch, interval, motion, etc.
of a note or a musical phrase. Instead of an utterance, the grammar engine will now
receive a musical piece with two voices, the first one being the cantus firmus and the
remaining one the counterpoint voices. For simplicity sake, we now only consider first
species counterpoint exercises, also called note against note, in which only one note is
played at the same time as the cantus firmus, as shown in Figure 3. In this simple case, a
melody can be represented by a straightforward list of notes , in which tone pitches are
represented by a single number from 0 to 12, representing the relative pitch in a chromatic
scale (an octave contains 12 semitones in Western music). The list-based representation
of the piece discussed above, is included here:

((0 2 5 4 7 5 4 2 0)

(7 5 9 12 11 9 7 11 12))

Figure 6 shows the initial transient structure when analysing the example piece.
There are melodic units such as voice-1 containing the full phrase of the cantus firmus
and harmonic units such as frame-1 for the cosounding bars 1-1 and 2-1 with an interval
distance of 7 semi-tones (see pitch features in respective bar units). It is on this initial
feature structure that individual constructions will work.

Constructions can then focus on any part of the transient structure: certain bar units
within the same voice, a frame unit connecting two bars vertically, etc. or even units
that have not been built yet such as a melodic motion unit, combining all adjacent notes
within a single motion movement (see Figure 7). Similar to the lexical construction
shown above, a harmonic construction such as the octave construction consists of a con-
ditional pole with features that have to be present (here a frame unit with harmonic in-
terval distance of 12) and a contributing pole (harmonic interval categories octave and
consonant).

⎡
⎢⎢⎣

?frame-unit

harmonic:
interval:

category: {octave, consonant}

⎤
⎥⎥⎦←

⎡
⎢⎢⎢⎢⎢⎢⎣

?frame-unit

meta-info:
unit-type: frame-unit

harmonic:
interval:

distance: 12

⎤
⎥⎥⎥⎥⎥⎥⎦
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larger-phrase-unit-30

bar-1-5
bar-1-9

(direction descending)

+
phrase-unit

(7 5 4 2 
0)
(descending-phrase-unit-218 
larger-phrase-unit-29)

(5 
9)
1

descending-phrase-unit-218
bar-1-5

bar-1-6

larger-phrase-unit-29

descending-phrase-unit-215
bar-1-6

bar-1-7

larger-phrase-unit-28

descending-phrase-unit-211
bar-1-7

bar-1-8

descending-phrase-unit-206
bar-1-8

bar-1-9

Figure 7. A descending motion phrase ranging from bar 1-5 to bar 1-9 of the example piece. Only the upper-
most unit is fully expanded here. It groups a low-level descending phrase unit and a higher order phrase unit.
The motion construction thus always looks at two units with the same melodic motion direction and unites
them into a phrase unit, containing the full phrase, time information and the direction.

Figure 8. Example of a first species counterpoint piece with a violation of the “legal intervals” rule in the
second bar.

The current grammar contains 29 constructions, divided into harmonic, melodic and
harmonic-melodic ones. As it goes beyond the scope of this paper to describe the full
grammar in detail, we’ll simply make an inventory of the constructions of the tutor gram-
mar that are used to analyse musical pieces.

5.4. Diagnosing the student’s answer with regard to counterpoint rules

Once constructions have done their work to analyse the musical piece and build a tran-
sient structure that highlights relations between individual notes on a melodic and a har-
monic level, the tutor uses a set of diagnostics that contain specific counterpoint rules to
diagnose particular deviations. This section highlights some examples of such diagnos-
tics for three types of counterpoint rules: harmonic, melodic and harmonic-melodic (mo-
tion). All diagnostics make use of the final transient structure that results from the appli-
cation of the musical constructions. A diagnostic will either return one or more problems
or nothing at all. The problems will then trigger repair strategies that launch a search
process to find a satisfying solution for every problem. Let us consider the following
erroneous counterpoint piece, with its musical notation shown in Figure 8.

((7 5 9 12 11 9 7 11 12)

(0 0 5 4 7 5 4 2 0))
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Parsing "(7 5 9 12 11 9 7 11 12) (0 0 5 4 7 5 4 2 0)"

Applying
CONSTRUCTION SET W LEARNING (29)
in direction ←

two-leaps-in-same-direction
issued-by:

two-leaps-in-same-direction?

affected unit(s): ascending-phrase-unit-1351 ascending-phrase-unit-1349

illegal-interval
issued-by:

legal-interval?

affected unit(s): frame-2

more-than-one-climax
issued-by:

single-climax?

affected unit(s): voice-1

Figure 9. Problems diagnosed for the example melody: two illegal harmonic intervals in frames 2 and 4 and
one melodic problem at the end where two skips follow each other in a descending motion (4→2→0).

5.4.1. Harmonic rules

1. Legal intervals

This diagnostic will check all frames (vertical cuts in the piece) to see if each
of them is either an octave, perfect fifth, minor/major third or minor/major
sixth. Unisons are only allowed in the first bar. There are constructions for
each of these intervals as well as for the illegal ones which leave behind a
harmonic interval-category feature. This feature is a list such as {third,
major-third, consonant}. All the diagnostic has to check here is the pres-
ence of the consonant value. In the example melody introduced above, there are
two illegal intervals located in frame 2 (perfect fourth) and frame 4 (minor sixth),
which is signalled by FCG diagnostics in Figure 8b.

5.4.2. Melodic rules

1. Big leaps

No leaps bigger than a minor sixth (distance 8) are allowed, nor are tritones
(distance 6). This diagnostic goes through every phrase unit and checks its
melodic interval feature for its distance. If it is bigger than 8, it will diagnose
a leap-bigger-than-minor-sixth problem. If it is equal to 6, it diagnoses a
tritone problem.

2. Exposed tritones

A motion where the begin and end note form a tritone is forbidden. To di-
agnose this, we need to find the largest motion unit (marked with the feature
largest-unit set to + and then inspect the distance between the first and last
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phrase-unit
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(5 
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1

Figure 10. The descending phrase unit contains an exposed tritone, with the difference between start and end
note equal to 6 semi-tones. The diagnostic has left a counterpoint feature in the unit’s meta info.

note-unit. Instead of manually going through the transient structure, we instantiate
a diagnostic construction and check whether it can apply1. If it does, the problem
is present. We include the diagnostic exposed-tritones-cxn here below. Fig-
ure 10 shows the problem box in the web interface. Section 5.5 will show in more
details how this problem could be repaired.

⎡
⎢⎣ ?top-phrase-unit

meta-info:
counterpoint: exposed-tritones

⎤
⎥⎦←

⎡
⎢⎢⎢⎢⎣

?top-phrase-unit

meta-info:
largest-phrase: +

time: {?init-time, ?end-time}
voice: ?voice

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

?bar-unit-1

pitch
absolute: ?pitch-1

time: ?init-time
voice: ?voice

⎤
⎥⎥⎥⎥⎦ >

⎡
⎢⎢⎢⎢⎣

?bar-unit-2

pitch
absolute: ++ :exposed-tritones? ?pitch-2

time: ?end-time
voice: ?voice

⎤
⎥⎥⎥⎥⎦

3. Climax

A single climax is preferred, located somewhere in the middle of the counterpoint
melody (when it is the highest voice), not at the beginning or the end. This rule
requires two steps: first of all there can be only one global climax (marked with

1The absolute pitch distance is calculated by means of an expansion operator (indicated by the ++) that is
called during the matching process. If no tritone is found, the diagnostic construction cannot apply.
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the feature (global +). Second, this note should be situated around the mid-
dle of the melody. The diagnostic currently defines middle as the length of the
melody plus and minus one. For each of these steps a problem can be signalled:
more-than-one-climax or single-climax-not-centralized.

4. Voice crossing

The counterpoint voice should not cross the cantus firmus. As there is a construc-
tion that analyses a melody for possible crossings and leaves a feature if there has
been one (or multiple), this diagnostic simply has to check the presence of such a
feature.

5.4.3. Motion rules

1. Parallel perfect consonances

Thanks to the motion constructions (detecting parallel, similar, contrary or oblique
motion in two melodies) and the melodic constructions that mark perfect fifths or
octaves, it has become straightforward to signal the presence of a parallel perfect
consonance. This diagnostic looks for a parallel motion phrase that contains a
perfect consonance feature.

2. Approaching fifths or octaves

A fifth or octave harmonic interval may not be approached by similar motion. This
diagnostic again consists of a construction that looks as follows:

[
?frame-unit

counterpoint: approaching-5ths-or-8ves

]
←

⎡
⎢⎢⎢⎢⎢⎢⎣

?frame-unit

form:
co-sound: {?bar-2, ?bar-4}

harmonic:
interval:

category: perfect-fifth OR octave

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

?phrase-unit-1

phrase: ?phrase-1
melodic:

motion:
direction: ?same-dir

subunits: {?bar-1, ?bar-2 }

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

?phrase-unit-2

phrase: ?phrase-2
melodic:

motion:
direction: ?same-dir

subunits: {?bar-3, ?bar-4 }

⎤
⎥⎥⎥⎥⎥⎥⎦

5.5. Suggesting pedagogically sound repairs

Simply indicating whether a counterpoint piece satisfies or breaks particular counter-
point rules without providing clues how to improve a solution, is insufficient in a com-
plex learning domain as music composition. Insightful feedback in the form of “repair
strategies” can hence improve learning considerably. Repair strategies formulate ways to
solve individual problems that were diagnosed by the tutor agent. Solving an individual
problem locally, however, can introduce new problems at different points in the melody.
Repairing counterpoint violations thus turns into a local search problem that scores re-
pairs and fixes (solutions suggested by a repair strategy).

The main purpose of repairing counterpoint violations is not just to find a solution
(or fix) that satisfies all the rules, but one that provides insight to the student on how
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Figure 11. A breadth-first search is applied to find the least number of repairs needed to fix a student’s piece.
The number of counterpoint rule violations is indicated inside the node. First, all fixes (resulting from a repair)
at search depth 1 are explored; next the fixes at depth 2 are explored, ordered by number of violations in
ascending order.

to repair his/her mistakes. Therefore, it is important that the tutor provides the “easiest”
way to repair its solution. Easy in this sense is the solution where the fewest additional
problems were introduced while repairing, i.e. errors that were not made by the student.

Figure 11 illustrates the search process that the tutor runs through to find the best
set of fixes. A student piece with two violations, is analysed and all possible fixes (that
is, resulting pieces after a repair) are listed together with the remaining number of viola-
tions for each. Next, fixes at search depth two are explored and the process is repeated.
The tutor follows thus a breath-first search strategy. A simple heuristic of ranking by re-
maining rule violations is used to choose the order of exploring the nodes at a particular
depth. This approach is guaranteed to find the easiest way to repair the student’s piece.
Because the original exercise originates from a correct counterpoint with rule violations
introduced, the search depth can be limited in practice. For example, when a student has
to create a counterpoint voice from scratch, the search depth can be limited as there is
no real instructional advantage of proposing many fixes to change a very bad piece into
a good one.

It goes beyond the scope of this paper to explain the full details of the tutor’s repair
strategies. However, we briefly discuss a single problem with its possible repair strategies
in what follows. The problem at stake is exposed tritones (see above). Figure 12
illustrates the problem and points to three possible repairs:

1. Altering the starting or ending note of the motion phrase.
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Figure 12. Possible repair strategies for an exposed tritone. The starting or ending note can be changed—with
or without breaking the motion (a). The motion can also be extended so the tritone is resolved (b). Another
solution is to break the motion within by altering the one-before-last note (c).

2. Extending the phrase so that the tritone is not exposed any more.
3. Breaking the motion somewhere in the middle of the phrase.

These repair strategies are relatively generic and can introduce valid solutions for
other problems at the phrase level too (e.g. approaching fifths). They all work on the
affected unit(s) for which the problem was diagnosed but also have access to the full
transient structure of the musical analysis as they might have to modify other units (cor-
responding to notes, melodic phrases, harmonic frames or complete voices) in order to
solve the counterpoint violation.

For instance, the first strategy to change the initial or ending note of a phrase (given
by the problem) yields multiple possible fixes. The exact number is dependent on the
range of notes the initial note can be changed into. For now, both the first and the last note
of the phrase can be increased or decreased by maximally 3 degrees, resulting in twelve
possible fixes for this first repair strategy. To select a valid fix, we rank them based on
the number of new problems they introduce into the piece and first pursue the one with
the fewest.

5.6. Updating the student model

Finally, the tutor agent has immediate access to the student model so that he can scru-
tinize the actual state of the agent’s construction inventory and learning strategies. It is
only then that he can properly align the student model to the real student that is being
coached. The student model is aligned after every interaction that the student has with the
tutor agent. When the student was successful in the current task, the tutoring strategies
will indicate how to update the student agent’s constructions that correspond to the task.
Indeed, as particular potential rule violation were elicited by the exercise design, the tutor
can increase its confidence that the student truly masters these counterpoint rules. Vice
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Figure 13. The difficulty level of counterpoint exercises can be controlled in a fine-grained manner. The tutor
agent gradually increases the number of potentially violated rules, number of measures and number of notes to
fill in, according to the skill level of the student.

versa, when a student’s solution is diagnosed with errors, the student model is updated
accordingly by lowering the confidence that the student masters the rule.

Also, when there was a failure or mismatch between the goals of the tutor agent and
the real student (this can happen specifically when a new difficulty (counterpoint rule) is
introduced by the tutor), the student agent proves useful to verify whether the mismatch
could have been predicted based on the student model or not. Because the construction
inventories have the same architecture in the tutor and the student agent, this symmetry
can be used to learn about possible gaps or inconsistencies in the student’s grammar.

5.7. Creating counterpoint exercises

The student model informs the tutor about the exercise complexity a pupil can handle
and which counterpoint rules (s)he masters. To keep students in flow, fine-grained control
over the challenge level is crucial to keep it in balance with the skill level. For this reason,
we propose the fine-tuning of three parameters as shown in Figure 13:

(a) the number of measures (longer pieces can introduce more conflicts),
(b) the number of notes to fill in (more degrees of freedom), and
(c) the rules that are potentially violated in the exercise.

The automatic generation of exercises with such a fine-grained particular challenge level,
however, has not yet been fully operationalised. In a first stage, we have implemented
control measures (a) and (b). In the future, we plan to implement (c) in the following
manner. Using a database of correct counterpoint pieces of varying length that is con-
stantly updated, a new piece is generated by altering random notes to create a piece that
will probably violate certain rules. Analysis of this piece tells the tutor which rules have
been violated exactly. At this point, the tutor can decide to present this piece to the stu-
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dent if it aligns with the particular difficulties the student struggles with (according to the
student model), or store it for later use and create a new exercise. Clearly, this approach
is far from perfect and needs further refinement.

6. Conclusions

We can now speak of at least two generations of ITS research, and we are currently at the
dawn of a third one, which will probably be much more revolutionary. The first genera-
tion spans roughly from 1970 until 1990, a period of thirty years in which more than 40
systems were released. This early generation was powered by the booming of Artificial
Intelligence, a field that was seeking applications for its technologies. The second gen-
eration, ranging from roughly 1990 until today has formulated the scientific foundations
of the field [58]. Also implementations of real systems in schools realized, thanks to new
spread of digital technologies in traditional education. The third generation massively
scales the potential of Computer-Assisted Instruction to online video-based courses that
are freely accessible to thousands of students: the so-called MOOCs. Although the first
hype of MOOCs in the years 2012-2013 had set high hopes onto the disrupting nature of
these courses on the traditional education landscape, they failed to accomplish them.

One reason for their failure that this chapter has put forward is the lack of individual
tutoring they offer (when used in a distance education setting), which is mainly due to
the absence of a student model and tutoring strategies. By building a bridge to earlier
techniques found in Intelligent Tutoring Systems and enhancing these by making use of
a truly predictive student model in the form of an active autonomous agent that simulates
the actual learner.

In this chapter, we have outlined a tutoring system based on the theory of flow. Flow
theory describes the experience of intrinsically motivated people when they are deeply
engaged in an activity. It is believed that learning is optimized when students are in a
state of flow. This situation happens when the challenge level is kept in balance with the
skill level of the student to avoid boredom and anxiety. For this reason, an architecture
based on active tutor and student agents is proposed. As the student agent carefully track
the pupil’s skill level and can simulate its answers, appropriate exercises can be presented
to the student that keeps her/him in a state of flow.

The proposed methodology has been tested in the domain of music, more precisely
the Study of Counterpoint, still today an effective instructional tool to teach students the
craft of polyphonic music composition. An operational grammar of music and counter-
point as well as a tutor and student agent has been implemented in Fluid Construction
Grammar (FCG). A core component of the virtual tutor is the in-depth musical anal-
ysis of the student’s piece and the possibility to suggest repairs that correct the mis-
takes. This way, the student does not only get feedback on the correctness of an answer
(right/wrong), but also insight into his/her mistakes and how to solve them, a mechanism
central to any learning process. Though the creation of counterpoint exercises that elicit
specific counterpoint violations is still suboptimal, the proposed work opens up the way
to a stand-alone online counterpoint tutor.
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