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Abstract. The paper contrasts results obtained by the partially factored limit state design method and a more advanced Random 
Finite Difference Method (RFDM) in a benchmark problem of slope stability analysis with random undrained shear strength 
parameter. Local Average Subdivision method was used to simulate a non-Gaussian random variable. The key difference 
between the methods is that RFDM takes into account spatial variability of soil allowing slope failure to occur naturally along 
the path of least resistance. The probabilistic method lead to predictions of the "probability of slope failure" as opposed to the 
more traditional "factor of safety" measure of slope safety in the limit state design method; however, they give significant 
different results depending on the level of the variability. Analyses conducted using Monte Carlo Simulation show that the same 
partial factor can have very different levels of risk depending on the degree of uncertainty of the mean value of the soil shear 
strength. Calibration studies show the partial factor necessary to achieve target probability values. 
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1. Introduction 

It is well recognized that the soil variability has a 
significant effect on the stability of slopes. 
However, in practice, the variability is not 
considered properly in routine slope stability 
analysis. This is due mainly to the fact that the 
effects of soil variability are complex and 
difficult to quantify. Furthermore, most of the 
available slope stability analysis computer 
programs, used in practice, are unable to 
consider the factors. 

Traditionally, the geotechnical engineering 
community deals with the uncertainties by 
applying a factor of safety or considering a 
relatively large permissible stability ratio (e.g., 
Terzaghi 1996). However, using a global factor 
of safety, the variability of different sources of 
uncertainties is not accountable. Currently, the 
geotechnical community is preoccupied with the 
transition from an overall safety factor to limit 
state design method with partial factors (e.g., BS 
EN 1997 2004). The design values of the 
material properties are obtained by applying 
factors to the characteristic values. The selection 
of appropriate partial factor values to achieve the 
required reliability level is introduced in 
Eurocode 7 through various design approaches.  

 Although the limit state design method have 
some advantages comparing to the traditional 
factor of safety method, however, the methods 
generally called ‘deterministic’ which cannot 
simulate the degree of soil variability. The 
limitation of the traditional methods is shown in 
Figure 1, where all the three cases have same 
factor of safety as a ratio of the load to resistance, 
but have different probability of failures (shown 
as hatched area in the figure). 

An alternative method based directly on the 
probabilistic methods can be used to assess the 
reliability level of the design. Eurocode 7 does 
not provide any guidance on the direct use of 
fully probabilistic reliability methods. However, 
EN1990 states that the information provided in 
Annex C, which includes guidance on the 
reliability index values, may be used as a basis 
for probabilistic design methods. 

The research presented in this paper focuses 
on investigation and quantifying the influence of 
soil variability on slope stability using 
probabilistic analysis. 

A random field generation technique using 
Local Average Subdivision (LAS) method 
(Fenton and Vanmarcke 1990) in conjunction 
with finite difference method is used for 
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reliability analysis of a slope in Monte Carlo 
framework. 

 
Figure 1. Possible load (S) and resistance (R) distributions 

(Green 1989). 

 

2. Modeling soil spatial variability 

The soil variability is quantified by its mean, 
coefficient of variation and scale of fluctuation 
(or correlation distance). Having statistically 
characterized a soil layer based on data obtained 
at discrete locations, it is possible to generate 
random field predictions of the spatial variability 
across the entire site. 

The present strategy generates random fields 
using the Local Average Subdivision method. 
The algorithm is broken down into the following 
basic steps (Hicks and Spencer 2010): 

 
(1) LAS generates a square 2D isotropic 

standard normal random field. The field is 
generated by uniformly subdividing the 
domain into square cells, maintaining the 
mean value of the subdivided cells through 
upward averaging, with each cell value 
spatially correlated with its neighbours 
based upon an exponential Markov 
covariance function. This is given by: 

 (1) 

where  is the covariance,  is the lag 
distances in the vertical and horizontal 
directions. 

(2) An anisotropic field is generated by 
squashing the isotropic field; i.e., 
preserving  in the horizontal plane while 
compressing  in the vertical direction to 
become . 

(3) The anisotropic field is transformed from a 
standard normal distribution to another 
distribution by using a suitable 
transformation, i.e., for lognormal 
conversion: 

 (2) 

where  defines the centroid of the 
random field cell and  is the local 
average for a random field cell at location 

 . An example of a random field for a 
two-dimensional soil domain is illustrated 
in Figure 2. The dark cells have higher 
values of , whereas the light cells have 
lower values for the prescribed statistical 
characteristics. 

3. Random Finite Difference Method (RFDM) 

Although the Random Finite Element Method 
(RFEM) has been around in various guises since 
the 1980s, the technique was developed by 
(Fenton and Griffiths 1993, Griffiths and Fenton 
1993) in the 1990s. It involves mapping a 
random field onto a finite element mesh and 
subsequent analysis of the problem by finite 
elements. Similar approach is used here. The 
random field is generated using MATLAB 
(MATLAB 2012). The mapping of the properties 
involves assigning each random field cell value 
to a finite difference, or sampling point within 
the element, thus mapping the spatial variation of 
the properties to the deterministic finite 
difference (FD) analysis. Due to the range of 
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possible random fields, the analysis is carried out 
within a Monte Carlo framework, where, in each 
realization, the random field is mapped onto the 
FD domain, a deterministic FD analysis is 
undertaken, and the required measure of 
performance is recorded. 

 

 
Figure 2. An example of random field simulation using 
Local Average Subdivisiob method. 

 
Meanwhile, the spatial variability of 

undrained shear strength, , was modeled by it 
coefficient of variation (COV) and scale of 
fluctuation . In the interest of generality, the 
scale of fluctuation was normalized by the slope 
height H, i.e., , while the mean value of  
was expressed in terms of a dimensionless 
stability coefficient, Ns, similar to Taylor (1937) 
stability number as 

 (3) 

where = the mean value of , = unit 
weight of soil; and =slope height. 

Figure 3 shows a typical finite difference 
mesh for a 1:1 cohesive slope with  and 
D=2. An element size of 1m is adopted for the 
finite difference mesh in the figure. The input 
parameters for the parametric study are 
summarized in Table 1. 

Probabilistic analysis of a cohesive slope 
problem using the RFEM were previously 
conducted by Griffiths and Fenton (2004). 
However, the current parametric studies extent 
their work by investigating slopes with different 
geometry. The current study also aim at 
developing a set of probabilistic stability charts, 

which can be used for a preliminary estimate of 
probability of failure . 

 

 
Figure 3. typical finite difference mesh for a 1:1 cohesive 

slope ( , ) 

 
Table 1. Input parameters for parametric studies 

Parameters Input values 

14o, 18.4o, 26.6o, 45o 
 1, 2, 3 

 0.1, 0.2, 0.3, 0.4, 0.5 

COV 0.1, 0.3, 0.5, 1.0 

 0.1, 0.5, 1, 5, 10 

4. Probabilistic analysis results 

Figure 4 shows the effect of varying the number 
of realizations of Monte Carlo simulation on the 
probability of failure that starts to converge at 
2,000 realizations. Further increment in the 
number of realizations causes only minor 
changes in the results. 

 

 
Figure 4. Effect of number of realizations on probability of 
failure (COV=0.5, ). 
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Prior to the probabilistic analyses, 
deterministic finite difference analyses were 
conducted using limit state design method 
according to the material factors defined in 
Eurocode 7. The results are summarized in Table 
2. 
 
Table 2. Factor of safety for slope stability analysis using 
limit state design method in Eurocode 7 

  FOS (FDM) 

0.1 20 0.55 

0.2 40 1.10 

0.3 60 1.65 

0.4 80 2.15 

0.5 100 2.70 

5. Probabilistic analysis results 

Based on 2,000 realizations of MCS for each 
parametric group described in Table 1, the 
influence of each parameter on the estimated  
is investigated. 

Figures 5 and 6 show the effects of varying 
COV on for different values of  with 
Ns fixed at 0.2 and 0.3, respectively. 

 

 
Figure 5. Effect of varying COV on probability of failure for 

different values of with Ns=0.2 ( , ). 

 
In general,  increases as COV increases 

(i.e. increasing variability in ). When Ns=0.2 

and FOS =1.10 in deterministic analysis (i.e. 
marginally stable slope), increases 
significantly as COV increases from 0.1 to 0.3 
for all values of . However, the increase in 

 becomes lesser as COV increases from 0.3 to 
0.5, which is the upper bound value for COV 
suggested in the literature (Phoon and Kulhawy 
1996). 
 

 
Figure 6. Effect of varying COV on probability of failure for 

different values of with Ns=0.3 ( , ). 

 
On the other hand, for the slope with Ns=0.3 

and FOS=1.65 (i.e. a stable slope), the rate of 
increase in  as COV increases from 0.1 to 0.3 
is smaller than that observed for slope with 
Ns=0.2. However,  increases significantly as 
COV increases from 0.5 to 1.0. 

Figures 7 and 8 show the effect of varying 
 on  for different values of COV with 

Ns fixed at 0.2 and 0.3, respectively. Two 
different trends are obvious, which are dependent 
on the values COV, i.e.  either increases or 
decreases as  increases. For Ns = 0.2,  
increases as  increases when COV=0.1, but 

 decreases as  increases when COV=0.3, 
0.5 and 1.0. 

On the other hand, for Ns=0.3,  increases 
as  increases when COV=0.1, 0.3 and 0.5, 
but  decreases as  increases when 
COV=1.0. 
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Figure 9 shows the plots of  versus FOS 
for different degrees of anisotropy (i.e. ) 
with COV=0.5. It is observed that the curves 
intersect at FOS ~ 1.4. When FOS < 1.42, the 
isotropic assumption leads to higher estimate of 

conservative. In contrast, when FOS>1.4, the 
isotropic case becomes unconservative, as a 
lower is estimated. However, the effects are 
small compared to the effects of variation in the 
values of COV and . 

 

 
Figure 7. Effect of varying  on probability of failure 

for different values of COV with Ns=0.2 ( , ). 

 
Figure 8. Effect of varying  on probability of failure 

for different values of COV with Ns=0.3 ( , ). 

 
This study investigated the effects of soil 

heterogeneity for a rigid strip footing assuming 
two-dimensional plane strain condition. It is 
deemed that when adding the 3rd direction in the 

analysis, the variability of predicted response 
will be reduced. This is due to local averaging of 
soil strength over the length of the failure surface. 
Based on the results, it is deemed that, for the 
real situation with soil variability in the third 
direction, the predicted response variability will 
be smaller than the predicted for 2D assumption. 
In this respect, the 2D results are conservative. 
 

 
Figure 9. Probability of failure versus factor of safety for 
different degrees of anisotropy with COV=0.5 and Ns=0.3 
( , ). 

 

6. Conclusion 

The random finite difference method was used to 
investigate the influence of soil variability on the 
reliability of a cohesive soil slope. The spatial 
variability of the soil shear strength was modeled 
by the coefficient of variation and the scale of 
fluctuation using Local Average Subdivision 
method. 

The results of analyses indicated that both 
COV and  have a significant effect on the 
estimated . It was generally found that,  
increased as COV increased. However, as  
increases,  either decreased or increased, 
depending on the values of COV, Ns and slope 
geometry.  
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