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Abstract. In geotechnical applications, mechanical properties of soil vary spatially within the soil mass and they are often 
represented by random fields. When data at certain locations of the soil mass are available, conditional random fields may be 
used to incorporate them. In this paper, we combine conditional random fields with sparse polynomial chaos expansions to 
analyze response quantities with otherwise too expensive Monte Carlo-based techniques, such as reliability and sensitivity 
analysis.  
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1. Introduction 

Mechanical properties of soils are uncertain due 
to their natural spatial variability within the soil 
mass. In engineering applications, however, they 
are often inferred from a limited number of 
measurements taken in boreholes drilled through 
the region of interest. Between the boreholes, 
however, the material properties remain 
uncertain. A common approach to represent them 
in geotechnical applications is through the use of 
random fields based on geostatistical information. 
Several approaches are available in the literature 
to construct unconditional random fields, such as 
the expansion optimal linear estimation method 
(EOLE) (Li and Der Kiureghian, 1993). 
Accounting for available borehole information, 
however, requires the modelling of conditional 
random fields (Hoffmann and Ribak, 1991). 

Typically, the analysis of geotechnical 
problems is carried out through the use of finite 
element models (FEM). In this context, analyses 
which require a large number of FE model 
evaluations, such as Monte Carlo-based 
reliability analysis, can become intractable. To 
reduce the associated costs, the expensive FE 
model may be replaced by a meta-model, e.g. Al-
Bittar and Soubra (2013), Vorechovsky (2008) 
and Cho et al. (2013), where the framework of 

Sparse Polynomial Chaos Expansions (SPCE) 
(Blatman and Sudret, 2011) is applied. 

The combination of conditional random 
fields and meta-modelling, however, has not 
been addressed in the geotechnical literature yet. 
In this paper we combine the idea of conditional 
random fields (see Section 2) and the framework 
of SPCE (see Section 3) into an efficient 
framework for analyzing response quantities in 
geotechnical problems. The algorithm is 
illustrated in Section 4 on the problem of a strip 
foundation located on a two-layer soil mass.  

2. Spatial Variability 

2.1. Random Fields 

2.1.1. Definition 

Consider a probability space defined by the tuple (�, �, �)  where �  is the event space equipped 
with �-algebra � and probability measure �. In 
this context, a random variable � is denoted by 
the mapping �: (�, �, �) � �. The collection of 
various random variables �	  is described by a 
random vector 
 = [��, … , ��]. 

A random field 
(�, �) is then defined as a 
curve in � in the vector space of functions with 
finite second moments ��(�, �, �) where � � � 
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(Lin, 1967; Vanmarcke, 1983; Sudret and Der 
Kiureghian, 2000). The domain �
 � �� 
describes the geometry of the system. 
Consequently, �  denotes the geographical 
location, i.e. the coordinates of the system. Note 
that for a given location � � �
 the random field 
reduces to a random variable, whereas for a 
given � � �  the output is a trajectory, i.e. a 
curve. 

Gaussian random fields are an important 
family of random fields. They are completely 
described by their mean value �(�) , variance ��(�) and autocorrelation function �(�, ��). 

2.1.2. EOLE 

A Gaussian random field 
(�, �)  is defined 
implicitly by the properties listed above. It is not 
straightforward, however, to sample it so as to 
obtain realizations of 
. 

Discretization procedures approximate the 
random field 
(�, �)  with some function 
�(�, �) , where � = {�	, � = 1, … , �}  is a finite 
set of random variables describing the 
randomness of the field: 


(�, �) � 
�(�, �). (1) 

The explicit function 
� allows one to sample the 
random field 
. An overview of several available 
discretization algorithms is given in Sudret and 
Der Kiureghian (2000). Among them, the 
expansion optimal linear estimation method 
(EOLE) is presented here briefly.  

EOLE is based on the Kriging method which 
is popular in geostatistics. Considering a set of 
nodal points 
� = ����, … , �� ! in the domain �", 
the optimal linear estimation of the random field 
at a point � is given by: 


�(�, �) = #(�) + $%(�)&'  $&'&'-� /0� 2 #&' 3,  
(2) 

where 0� = �45�, … , 45 !  is the set of correlated 
Gaussian variables associated to points 
�, #&'  and $&'&'  its mean value and covariance matrix 
(6&'&'7,8 = �(��7) �(��8) �(��7, ��8) ), and $%(�)&'  is a 
vector of components �(�) �(��7) �(�, ��7), 9 =1, … , ;. 

By introducing the eigenvalue 
decomposition of the covariance matrix: 

$&'&'<	 = >	<	, (3) 

one gets the EOLE approximation: 


�(�, �(�)) = #(�) + ? @A(B)
CDA

�	E� <	F$%(�)&' ,  
(4) 

Note than the ; eigenvalues in Eq. (3) have been 
listed in descending order, and that only � G ; 
terms are retained in practice.  

It can be shown that the approximation of a 
random field using EOLE leads to an 
underestimation of the variance of the random 
field (Sudret and Der Kiureghian, 2000) due to 
the finite number �  of eigenvalues considered. 
Hence, �  should be chosen large enough in 
order to ensure a good approximation of 
 (e.g. 
Var/
�3 H 0.95 Var(
)). 

2.2. Conditional Random Fields 

2.2.1. Observations in Random Fields 

Conditional random fields are random fields 
conditioned on observations. In this paper we 
define the observations as a set of geographical 
locations L = {M(	), � = 1, … , N}  at which the 
random field values O = {P	, � = 1, … , N}  are 
known. The conditional random field reads then: 


Q(�, �) = 

/�, �R
/M(�)3 = P�, … , 
/M(S)3 = PS3.  

(5) 

2.2.2. Discretization of a Conditional Random 
Field 

The conditional random field is discretized by a 
finite set of nodal points. We define the random 
vector T � �SUW  composed of the response of 
the observations O and the set of yet unknown 
responses 0� = �45X = 
Y/��X3, Z = 1, … , \!: 

T = ^0�O_, (6) 
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where 0� � �W  and O � �S.  Then T  can be 
represented as a Gaussian vector: 

T ` b(#c, $cc), (7) 

where: 

#c = ^#&'#d_,    $cc = e$&'&' $&'d
$&'dF $ddf, (8) 

where $&'d is the covariance matrix between the 
set of prediction points 
�  and the observation 
points L.  Hence, it can be shown that 0� 
conditioned on the observations O  can be 
computed by: 

0�RO ` b/#&'|d, $&'|d3, (9) 

where: 

#&'|d = #&' + $&'d$dd-� (O 2 #d), (10) 

$&'|d = $&'&' 2 $&'d$dd-� $&'dF . (11) 

Eq. (11) describes the covariance matrix of 0� 
conditional on the observations O, which can be 
used for sampling 0�. 
2.2.3. Sampling of a Conditional Random Field 

Hoffmann and Ribak (1991) and Hoffmann 
(2009) proposed a two-step algorithm to sample 
from the conditional multivariate Gaussian in 
Eq. (9): 

1. Generate a realization of T  from the 
unconditional random field 
(�, �)  with 
EOLE ignoring the observations and denote 
the realization Tg = [0�g, Og]F. 

2. Compute the realization of the conditional 
random field using Eq. (10), which reads in 
the specific case 0� = 0�g + $&'d$dd-� (O 2
Og),  Note that this is a deterministic 
transformation of the realization of the 
unconditional random field obtained in 
step 1. 

This algorithm offers a convenient way of 
generating realizations of conditional random 
fields as a function of �  random variables 

defined in EOLE and a set of observations {L, O}. 

3. Meta-Modelling 

The realizations of the conditional random field 
are then typically plugged into a finite element 
model (FEM) in order to analyze a quantity of 
interest (e.g. the settlement of a foundation). 
Analyzing the influence of the conditional 
random field on the quantity of interest is often 
unfeasible due to the high computational costs of 
FEM. An alternative is then to approximate the 
behavior of the FEM by a meta-model. 

3.1. Computational Model 

Generally speaking, in engineering applications a 
computational model h , such as a FEM, is a 
mapping of the �-dimensional input vector i to 
the output scalar j, i.e. h: i � �k � �� � j �� . Suppose the uncertainties in the inputs are 
represented by a random vector k  with joint 
cumulative density distribution (CDF) lk . The 
components of k = [m�, … , m�]F  are assumed 
independent for the sake of simplicity, hence the 
joint probability distribution n (PDF) of k can be 
written as the product of its marginals m	 , i.e. nk(i) = o npA(q	)�	E� . Then the model response 
is a random variable s = h(k). 

3.2. Polynomial Chaos Expansions 

A common non-intrusive meta-modelling 
method is Polynomial Chaos Expansions (PCE) 
which approximates the computational model h 
with a sum of polynomials orthogonal with 
respect to the distributions of the input variables 
(Ghanem and Spanos, 2003; Sudret, 2015): 

s � h(tuv)(k) = ? wxyx(k)x�z , (12) 

where wx � �  are the polynomial coefficients 
corresponding to indices ~  in the truncated set z � ��  and yx(k)  are multivariate 
orthonormal polynomials. 
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3.3. Sparse PCE 

One strategy to compute efficiently the 
coefficients wx  in Eq. (12) is least-square 
minimization, as introduced by Berveiller et al. 
(2006). Consider a set of � samples of the input 
vector � = {�(	), � = 1, … , �}  and the 
corresponding responses of the exact 
computational model � = ��(	) = h/�(	)3, � =
1, … , �!.  The set of coefficients w�  can be 
computed through the solution of the least-
squares problem: 

�� = argmin
���|z|

1
� 

? /�(	) 2 ? wxy�(�(�))x�z 3��	E� . (13) 

The efficiency of meta-modelling algorithms 
depends greatly on the choice of the set of 
polynomials z  in Eq. (12) and (13). For this 
reason, algorithms have been developed to select 
out of a candidate set of polynomials the ones 
that are most influential to the system response. 
Following Efron et al. (2004), Blatman and 
Sudret (2011) introduced the least angle 
regression (LAR) algorithm for this purpose. 
LAR determines the sparse set of polynomials 
that best describes the behaviour of the exact 
computational model h  based on the 
experimental design �, hence the name sparse 
PCE. 

3.4. PCE for Conditional Random Fields 

Consider a finite element model whose input 
depends on the random input vector k and the 
realization of a random field 
(�, �). As seen in 
Section 2.2, the conditional random field can be 
discretized by a finite set of � random variables, 
collected in the vector �. A new input vector can 
then be built as a combination of � and the other 
stochastic input variables k. The computational 
model reads then: 

s � hU(k, �), (14) 

which can be approximated by a sparse PCE 
meta-model of dimension � + |k|.  The 
experimental design includes realizations of the 

stochastic variables k as well as realizations of 
the variables � used to describe the random field. 

Note that the computational model hU  is 
composed of the steps of (i) generating the 
conditional random field realization based on 
EOLE, �'  and the observations {L, O},  (ii) 
calculating the realization of the conditional 
random field and the stochastic variables i in the 
finite element model and (iii) computing the 
response value j of the finite element model. 

4. Foundation Settlement on Soil Layers with 
Uncertain Thickness 

4.1. Problem Statement 

Consider the two-dimensional strip foundation 
sketched in Figure 1. The soil mass is composed 
of two layers separated by an irregular horizontal 
interface �.  It is assumed that the soil mass is 
weightless and lays on a rigid bedrock at a depth 
of 5 m below the soil surface.  

 

 
Figure 1. Foundation settlement – geometry and notations. 

 
The interface between the two soil layers is 

modelled by a one-dimensional Gaussian random 
field �  with mean value �� = 21 m  measured 
from the soil surface, �� = 0.3 m  and an 
exponential autocorrelation function with 
correlation length ��,� = 5 m. Note that there is a 
probability of � �2 �

g.�� = 4.3 � 10-�  that the 
interface is “above” the soil surface. In this case, 
the lower layer would reach the soil surface at 
that location. Further, at three locations on the 

R. Schöbi and B. Sudret / Application of Conditional Random Fields and SPCE to Geotechnical Problems448



horizontal axis indicated in Figure 1, the 
interface depth �  is measured to be: �(� =24 m) = 20.5 m, �(0 m) = 1 m, �(3 m) =20.8 m.  Several realizations of the conditional 
random field are drawn in Figure 1 to showcase 
its variability. The measurements clearly reduce 
the spatial variability of the interface in the area 
close to the observations.  

The mechanical properties of the soil mass 
are modelled by a linear elastic behaviour. In 
particular, Young's modulus �  and Poisson's 
ratio �  describe the linear elastic constitutive 
model. 

On top of the soil mass is located a 2 m wide 
and 0.5 m thick foundation ( �� = 25 GPa , 
�� = 0.4 ) which is subjected to a vertical 
pressure £. 

The probabilistic model of all stochastic 
variables is summarized in Table 1. Each 
variable is defined by its distribution function, 
mean value and coefficient of variation (CoV). 

 
Table 1. Foundation settlement – input distributions 
(subscript u, l stand for upper and lower layer of the soil 
model; I summarizes the random field) 

Variable Distribution Mean CoV �¤  Lognormal 5 MPa 10 % �8  Lognormal 20 MPa 10 % �¤, �8  Deterministic 0.3 - 
£  Gumbel 100 kPa 20 % 
� Gaussian -1 m 30 % 

 

4.2. Analysis 

The quantity of interest is the settlement j of the 
midpoint of the foundation. 

The random field is discretized with �¥¦ = 30 random variables leading to a total 
dimensionality of the computational model of �§¨§ = 30 + 3 = 33.  The experimental design 
consists of � = 300  Latin-hypercube samples. 
The FE model has been developed using the 
COMSOL Multiphysics software with a total 
width of the soil model of 40 m and the mesh 
(partially) displayed in Figure 1 (17’042 degree-
of-freedom). The sparse PCE model is calibrated 
using the Matlab-based toolbox UQLab (Marelli 
and Sudret, 2014). 

For estimating the accuracy of the meta-
model, a validation set of © = 1000 Monte Carlo 
samples is generated. The relative mean square 

error between the prediction and the exact values 
on the validation set is ª««¬­® = 4.4%.  This 
indicates an accurate approximation of the 
foundation settlement j  obtained by � = 300 
evaluations of the exact computational model h. 

Due to the inexpensive-to-evaluate 
formulation of the sparse PCE meta-model, the 
PDF n°(j) of the foundation settlement j can be 
estimated. The solid line in Figure 2 displays the 
estimate of n°(j)  obtained from the kernel 
smoothing of a large Monte Carlo (©�u = 10±) 
sample of the input vector. 

 

 
Figure 2. Foundation settlement – PDF of q. 

The dashed line in Figure 2 represents the 
PDF of the settlement in case an unconditional 
random field (with the same parameters) is used 
i.e. ignoring the borehole data. The difference 
between the two distributions shows the 
influence of the borehole data, namely a 
significant reduction of the uncertainty in the 
settlement estimation. The conditional random 
field PDF is more peaked and narrower. The 
mean value and the standard deviation of the 
foundation settlement are {�²,Y = 20.0³³, �²,Y = 3.0³³}  and {�² = 20.5³³,  �² =3.9³³}  for the conditional and unconditional 
random field, respectively. These points indicate 
that the observations reduce indeed the 
uncertainty in the settlement prediction.  

In order to analyze the influence of the 
random field on the foundation settlement, Sobol’ 
indices are computed from the coefficients of the 
PCE meta-model (Sudret, 2008). The resulting 
total Sobol’ indices, denoted by 	́§¨§ , are 
illustrated in Figure 3 for the cases of conditional 
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(black bars) and unconditional (white bars) 
random field. Note that “I” stands for the total 
Sobol’ index involving all 30 random variables 
describing the random field of the interface. 

In the case of an unconditional random field, 
the influence of the random field onto the 
variance of the settlement is the largest amongst 
the input variables, whereas the influence is the 
smallest for the conditional random field. This 
indicates that the few observations (three points) 
significantly reduce the uncertainty regarding the 
location of the interface. The remaining input 
variables have the same relative importance to 
each other in terms of the Sobol’ indices for both 
cases. 

 

 
Figure 3. Foundation settlement – total Sobol’ indices of the 

PCE meta-models 

5. Conclusions 

Geotechnical problems are often solved with 
expensive-to-evaluate computer models, e.g. 
finite element models (FEM). When accounting 
for the variability in the input variables, as well 
as for the spatial variability of the model 
parameters, the analysis of the model response 
can become computationally intractable. 

In this paper we combine the idea of 
surrogating the computer model with sparse 
polynomial chaos expansions (PCE) and the 
framework of conditional random fields. EOLE 
is used to approximate the conditional random 
field and parametrize it with a finite number of 
variables used as inputs for the PCE.  

The combined approach is capable of 
accurately predicting the probability distribution 

of a foundation settlement with only 300 runs of 
the FE model. In addition, global sensitivity 
analysis can be carried out as post-processing of 
the PCE. It quantitatively demonstrates how even 
a small number of observations can substantially 
reduce the uncertainty related to the spatial 
variability of the model parameters.  

References 

Al-Bittar, T., Soubra, A.-H. (2013). Bearing capacity of strip 
footings on spatially random soils using sparse 
polynomial chaos expansion. Int. J. Num. Anal. Meth. 
Geomech. 37, 2039–2060. 

Berveiller, M., Sudret, B., Lemaire, M. (2006). Stochastic 
finite elements: a non intrusive approach by regression. 
Eur. J. Comput. Mech. 15(1-3), 81–92. 

Blatman, G., Sudret, B. (2011). Adaptive sparse polynomial 
chaos expansion based on Least Angle Regression. J. 
Comput. Phys 230, 2345–2367. 

Cho, H., Venturi, D., Karniadakis, G. (2013). Karhunen 
Loève expansion for multi-correlated stochastic 
processes. Probabilistic Eng. Mech. 34, 157–167. 

Efron, B., Hastie, T., Johnstone, I., Tibshirani, R. (2004). 
Least angle regression. Annals of Statistics 32, 407–499. 

Ghanem, R., Spanos, P. (2003). Stochastic Finite Elements: A 
Spectral Approach (2nd ed.). Dover Publications, 
Mineola. 

Hoffmann, Y. (2009). Gaussian fields and constrained 
simulation of the large-scale structure. In Data Anal. 
Cosmol. Lect. Notes Phys., pp. 565–583. Berlin: 
Springer Verlag. 

Hoffmann, Y., Ribak, E. (1991). Constrained realizations of 
Gaussian fields - a simple algorithm. Astrophys. J. 380, 
L5–L8. 

Li, C.C., Der Kiureghian, A. (1993). Optimal discretization 
of random fields. J. Eng. Mech. 119(6), 1136–1154. 

Lin, Y.-K. (1967). Probabilistic theory of structural 
dynamics. McGraw-Hill. 

Marelli, S., Sudret, B. (2014). UQLab: a framework for 
uncertainty quantification in MATLAB. Proc. 2nd Int. 
Conf. on Vulnerability, Risk Analysis and Management 
(ICVRAM2014), Liverpool, United Kingdom. 

Sudret, B. (2015). Polynomials chaos expansions and 
stochastic finite element methods. In K.-K. Phoon, 
Ching, J. (Eds.), Risk Reliab. Geotech. Eng., Chapter 5. 
Taylor and Francis. 

Sudret, B. (2008). Global sensitivity analysis using 
polynomial chaos expansions. Reliab. Eng. Sys. Safety. 
93, 964-979. 

Sudret, B., Der Kiureghian, A. (2000). Stochastic finite 
elements and reliability: a state-of-the-art report. 
Technical Report UCB/SEMM-2000/08, University of 
California, Berkeley. 173 pages. 

Vanmarcke, E. (1983). Random fields: analysis and synthesis. 
Cambridge, Massachusetts: MIT Press. 

Vorechovsky, M. (2008). Simulation of simply cross 
correlated random fields by series expansion methods. 
Struct. Safety 30(4), 337–363. 

 

R. Schöbi and B. Sudret / Application of Conditional Random Fields and SPCE to Geotechnical Problems450


	1. Introduction
	2. Spatial Variability
	2.1. Random Fields
	2.1.1. Definition
	2.1.2. EOLE

	2.2. Conditional Random Fields
	2.2.1. Observations in Random Fields
	2.2.2. Discretization of a Conditional Random Field
	2.2.3. Sampling of a Conditional Random Field


	3. Meta-Modelling
	3.1. Computational Model
	3.2. Polynomial Chaos Expansions
	3.3. Sparse PCE
	3.4. PCE for Conditional Random Fields

	4. Foundation Settlement on Soil Layers with Uncertain Thickness
	4.1. Problem Statement
	4.2. Analysis

	5. Conclusions
	References

