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Abstract. Due to the complexity of natural ground condition, consolidation settlement is usually difficult to predict. In this study, 

a Pareto multi-objective optimization based back analysis method for consolidation settlement is presented in this study. The 

model is a coupled flow and deformation model for unsaturated soil foundation which is implemented in the interactive 

multiphysics software environment COMSOL. A multi-objective optimization algorithm AMALGAM is adopted to identify soil 

parameters based on multiple types of measurements. A case history of a highway trial embankment is used to demonstrate the 

proposed back analysis method. The observed displacement and pore-water pressures are utilized simultaneously to estimate the 

mechanical and hydraulic parameters of the soil. The results show that the bi-objective Pareto front exhibits a sharp rectangular 

pattern. When only displacement is used in back analysis, the numerical model with optimized soil parameters cannot simulate 

pore-water pressure very well, and vice versa. However, the back analyzed soil parameters of the compromise solution from the 

bi-objective back analysis can reasonably simulate both the displacement and pore-water pressure and predict the settlement well. 
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1. Introduction 

Due to the complexity of natural ground 

condition, consolidation settlement is difficult to 

predict. Numerical modeling provides a tool to 

examine field performance and predict future 

deformation. Recently, researchers investigated 

the consolidation settlement based on the theory 

of coupled flow and deformation in unsaturated 

soils (Wong et al., 1998; Wu et al., 2012; Qin et 

al. 2010; Shan et al. 2012; Khoshghalb and 

Khalili 2013).  

The predicted consolidation behavior of in 

situ soft clay is quite different from field 

observations, mainly due to the approximate 

numerical modelling techniques used, as well as 

the uncertainties involved in soil properties and 

ground conditions. The laboratory or field 

measured soil parameters are subject to 

uncertainties of sample disturbance and 

measurement error. Even with accurately 

measured soil parameters, the predicted 

performance using numerical modeling may still 

deviate from the field observation due to 

inherent spatial variability of in situ soils and 

model error. Some researchers conducted back 

analyses to calibrate soil parameters for ground 

settlement based on field response (Kim and Lee, 

1997; Knabe et al., 2012; Park et al., 2009; 

Shibata et al. 2014). Nevertheless, previous 

studies were mostly based on a single objective 

function and only one type of field observation 

was used in the back-analysis. In a 

comprehensive field monitoring program of 

foundation engineering, usually different types 

of measurement, such as displacement and pore-

water pressure, are measured. The use of a 

single objective may not be adequate to consider 

all the important characteristics of the field 

performance. To consider different types of 

measurements simultaneously, the back-analysis 

of consolidation settlement may be implemented 

within a multi-objective optimization framework. 

In this study, a back analysis method for 

consolidation settlement based on the Pareto 

multi-objective optimization is presented. A 

multi-objective optimization algorithm, the 

multi-algorithm genetically adaptive multi-

objective method (AMALGAM), is 

implemented together with the finite element 

model of unsaturated consolidation in the 

interactive multiphysics software environment 

COMSOL, to identify soil parameters. The 

application of this method is illustrated by the 
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example of a highway pavement project. Two 

parameters of the model are estimated using the 

field data of settlement and pore water pressure. 

The trade-offs of the two objectives are analyzed 

based on the Pareto optimal solutions. The 

calibrated model is used to predict the settlement 

of the soft foundation after construction is 

completed. 

2. Methodology 

2.1. Theory of Coupled Flow and Deformation 

in Unsaturated Soils 

Kim (2000) presented a formulation for coupled 

flow and deformation in unsaturated soils 

basically along the line of Biot’s (1941) poro-

elastic theory of consolidation. It is assumed the 

air phrase is continuous and the air pressure is 

atmospheric. The effective stress and pore water 

pressure (negative value for soil suction) are 

adopted as two independent stress state variables. 

The constitutive model for unsaturated soil is 

elastic. Under the plane strain condition, the 

governing equations can be simplified as: 
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where u and v are displacement in the x and y 

direction respectively; h is the pore pressure 

head; t is time; kx and ky are coefficient of 

permeability in the x and y direction respectively; 

n is the porosity; Sw is the degree of water 

saturation (0≤Sw≤1); βw is the compressibility of 

water; γw is the unit weight of water; αc is Biot’s 

hydromechanical coupling coefficient or the 

effective stress coefficient; G is the shear 

modulus (modulus of rigidity), λ=Eν/[(1+ν)(1－

2ν)], E is Young’s modulus, and ν is Poisson’s 

ratio; ρs is the solid density; ρw is the density of 

water. The superscripts e in Equations (2) and (3) 

denotes the incremental values of physical 

quantities.  

In this study, the degree of saturation and 

the permeability of the unsaturated soil (van 

Genuchten, 1980) are defined as follows:
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where Swr is the residual saturation, α, β, γ, a and 

b are unsaturated hydraulic parameters. 

2.2. Back Analysis and Parameter Estimation 

Based on Multi-objective Pareto Optimization 

First, define the residual errors of a prediction 

model for consolidation settlement as: 

i i i
y yε ′= −                                              (6) 

which yi’ is the observed performance, yi is the 

simulated output of a prediction model. In this 

study, a finite element model of consolidation 

settlement based on the coupled governing 

equations is developed in the commercial 

multiphysics modeling finite element program 

COMSOL. 

Because of the uncertainties of the initial 

and boundary conditions, the structural 

inadequacies of the prediction model, and 

uncertainties of input parameters and 

measurement errors, the residual errors of a 
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prediction model are not expected to be equal to 

zero. The problem of back analysis to determine 

soil parameters is usually transferred into an 

optimization problem, where the objective 

function of optimization is defined as a function 

of residual errors. In this study, RMSE is 

considered as the objective function: 

2
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When multiple types of measurements are 

to be considered in the back-analysis 

simultaneously, the objective function can be 

written as a multi-objective optimization form 

(Deb 2001) 
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where F(x) is the vector of objective functions, 

where fm(X), m = 1, 2, . . . , M,  is the mth 

objective function. For example, f1(X), f2(X) and 

f3(X) can be the RMSEs of wall deflection, 

ground surface settlement and the bottom heave, 

respectively. X is the vector of model 

parameters, { }1 2
X , , ,

n
x x x= … . 

The objective functions of multi-objective 

optimization constitute a multidimensional 

objective space. Different objective functions 

are often conflicting with each other and it is not 

possible to satisfy all the goals at a time. Hence, 

the multi-objective optimization yields a set of 

Pareto optimal solutions (Pareto 1897; Cohon 

1978; Deb 2001). The Pareto optimal solutions 

are defined as follows: 
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This formula means the solution 
( )i

X  is no 

worse than 
( )j

X  in all objectives and 
( )i

X  is 

strictly better than 
( )j

X  in at least one objective. 

Then the solution 
( )i

X  is said to dominate be 
( )j

X .  A solution is said to be Pareto optimal if 

it is not dominated by any other solution in the 

solution space. 

 

Figure 1. Pareto front in two dimensional space. 

The set of Pareto optimal solutions forms a 

front in the objective space and the front is 

called the Pareto front and all the solutions in the 

Pareto front are considered as optimal solutions. 

Figure 1 illustrates the Pareto solution set for a 

simple problem in a two dimensional space 

which the aim is to simultaneously minimize 

two objectives (f1, f2). Here, three essential and 

most informative Pareto points are selected from 

the Pareto solutions. The first Pareto point is the 

best solution with respect to the first objective 

(i.e., minimize f1). In Figure 1, we denote this 

point as P1. The second Pareto point is the best 

solution with respect to the second objective (i.e., 

minimize f2). This point is denoted as P2. P1 and 

P2 represent the optimal solutions of single 

objective back analysis. The third point is the 

knee point in the Pareto front, where a small 

improvement in one objective would lead to a 

large deterioration in at least one other objective 

(Branke et al. 2004). In the graph, we denote the 

point as Pk and the solution is subsequently 

referred to as the compromise solution. 

In this study, the multi-algorithm 

genetically adaptive multi-objective method 

(AMALGAM) developed by Vrugt and 

Robinson (2007) is adopted. The AMALGAM 

method uses the Nondominated Sorted Genetic 

Algorithm (NSGA-II, Deb et al. 2002), Particle 

Swarm Optimizer, Adaptive Metropolis Search 

(Haario et al. 2001), and Different Evolution 

(Storn and Price 1997) for population evolution 

and is more robust and efficient than the other 

multi-objective Pareto optimization methods for 

complex and higher dimensional problems. A 

detailed description of AMALGAM can be 

found in Vrugt and Robinson (2007) and hence 

is not repeated here. The multi-objective back-

analysis is established by integration of 

AMALGAM with the finite element prediction 

model through MATLAB. 
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3. Case Study of a Highway Trial 

Embankment 

3.1. Project Description and Monitoring Data 

A trial embankment of a highway project in 

Zhejiang province of China is illustrated in this 

paper. The soil profile of at the test site consists 

of soft clay within the top of 3.0 m which is 

underlain by about 14.0 m of silty clay. Below 

this layer lies an approximately 3.0 m thick layer 

of soft silty clay. The distribution of the soil is 

shown in Figure 2. The embankment 

construction history is summarized in Table 1.  

For the ground improvement of the site, the 

vertical-drainage technique was employed and 

the drainage elements were installed in a square 

pattern with 1.5m×1.5 m spacing to the depth of 

15m. Displacement and pore water pressure are 

measured at points a and b in Figure 2 

respectively.  

 
Figure 2. Geological profile of a highway trial embankment. 

Table 1. Construction history of the embankment. 

Stage Total fill 

thickness(m) 

Fill 

period(d) 

Rest 

period(d) 

1 2.2 0-18 18-29 

2 3.1 29-44 44-63 

3 3.3 63-80 80-present 

3.2. Numerical Model and Soil Parameters 

The finite element mesh of the numerical model 

is shown in Figure 3. The model is 160 m long  

 

and 20 m deep, 375 elements totally. EF is 

assumed to be drained as vertical drainage 

installed below the embankment in the ground. 

AE and DF are assumed to be impervious 

boundary. A constant ground water level which 

is 2 m below ground is applied on the 

boundaries of AB and CD. Because of the 

relatively low permeability of underlying soft 

clay, BC is also assumed to be impervious 

boundary. Construction of the embankment is 

simulated by a surcharge load. Previous 

numerical studies have shown that the Young’s 

modulus E and the saturated permeability ks are 

the most important factors in the consolidation 

of the unsaturated soil. In this study, the 

observed data of ground settlement and pore 

water pressure are used to estimate these two 

parameters. The logarithm of E and ks are 

adopted in the optimization to reduce the 

numerical errors. The prior distribution and 

ranges of log(E) and log(ks) are listed in Table 2. 

 

Table 2. The initial ranges and distribution of estimated 

variables 

Parameter Unit Distribution 
Upper 

bound 

Lower 

bound 

log(E) kPa Uniform 2.7 3.3 

log(ks) m/min Uniform -4.5 -7.5 

4.  Results and Discussion 

The field data of settlement and pore water 

pressure of consolidation are used to estimate 

model parameters. Observed data during 

construction (80 days) are used in this back 

analysis, then the calibrated parameters are used 

to predict the settlement and pore water pressure 

after construction finished which is called 

validation period. The population size of 

AMALGAM is 200 for each generation and the 

maximum number of generation is set as 30. 

Therefore, the total number of samples is 6000. 

 
Figure 3. Finite element mesh and boundary conditions of the numerical model 
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4.1. Characteristics of Pareto Front 

The two objective functions converge to a Pareto 

front after 20th generation. The Pareto front of 

the last generation has a sharp rectangular shape 

which indicates that the model can 

simultaneously meet both two objectives 

adequately. Figure 4 presents the trade-off of the 

f1− f2 bi-objective Pareto front for the model. All 

the numerical simulated solutions are marked as 

black triangle points. The Pareto solutions of the 

last generation are marked as blue circles.  

Figure 4. Pareto optimal solutions, Pareto extremes and 

compromise solution 

4.2. Results of Back-Analysis and Prediction 

The three Pareto extreme points (P1,  P2 and 

P0) are selected from the Pareto solutions. P1,  P2 

represent the optimal solutions of single 

objective back-analysis. The knee point P3 is the 

compromise solution of multi-objective back 

analysis. For extremes P1, P2, and compromise 

solution P0, the corresponding parameters are 

listed in Table 3. As is shown in Table 3, the 

back estimated parameters from single objective 

back analysis are different from the compromise 

solution. Both E and ks are smaller from multi-

objective back analysis. 

 

Table 3. Optimal parameters obtained from back-analysis 

Parameters unit P1 P2 P0 

E kPa 1501 1987 1186 

ks m/min 10-5 1.45*10-6 2.7*10-6 

 

The simulated settlement is compared with 

the filed observation as shown in Figure 5. It can 

be seen that the estimated settlement by P1 

simulates much better than the one by P2, but the 

predictions of validation are both worse than P0. 

RMSEs of the validation period with respect to 

P1, P2 and P0 are 15.64 cm, 25.73 cm and 6.63 

cm respectively. The result illustrates when only 

one observed information is used, the 

predictions of validation are not very well. 

However the parameters of compromise solution 

can simulate the settlement reasonably during 

validation period. 

Figure 6 shows the comparing of pore water 

pressure using three kind of solution. The model 

bias is relatively large during both construction 

period and validation period when Pareto 

extreme P1 is used. Simulations of construction 

period and prediction of the validation are both 

acceptable. RMSEs of the validation period with 

respect to P1, P2 and P0 are 15.42 kPa, 2.23 kPa 

and 2.23 kPa respectively.  

 

 
Figure 5. Comparison of measured and predicted settlement 

using Pareto extremes 

 

 
Figure 6. Comparison of measured and predicted pore water 

pressures using Pareto Conclusion 
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5. Conclusion 

This paper presented a Pareto multi-objective 

optimization-based back-analysis method for 

foundation engineering. Major conclusions are 

listed below. 

1．The trade-off of Pareto front base on the 

Pareto optimal theory exhibits a rectangular 

shape, illustrating that compromise solution can 

be obtained. 

2．The soil parameters obtained by single 

objective back-analysis method cannot simulate 

well on the other objectives. The prediction of 

compromise solution by multi-objective back-

analysis is acceptable with the RMSEs of the 

validation period are relatively small.  
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