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Abstract. This paper investigates the spatial variability characteristics of geologic profiles, including variations in thickness of 
marine clay deposits and rockhead levels, based on borehole data obtained from four sites in Hong Kong. The numbers of 
boreholes are approximately 100 in two cases, while the other two cases comprise more than 300 boreholes each. The large 
volume of data allows comprehensive statistical analyses to identify the spatial correlation/variability in subsurface profiles 
using the Restricted Maximum Likelihood (REML) method. The Matérn Autocorrelation model is adopted for its flexible 
functional form, with the parameters optimized using the Differential Evolution algorithm, in order to maximize the log 
likelihood value in REML. This technique is used to evaluate the spatial variability characteristics of geologic profiles, including 
parameters such as the spatial dependence and scale of fluctuation at the four sites. The effects of irregular sampling pattern, 
sample domain scale and sampling density on these parameters are also discussed based on the analyses. In addition, the 
existence of faults in two of the sites is found to significantly affect the spatial variability of rockhead level, as indicated by the 
reduced scales of fluctuation and spatial dependence in areas intersected by faults.  
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1. Introduction 

The inherent spatial variability of soil properties 
and geologic profiles is one of the primary 
sources of geotechnical uncertainties that can 
exert significant impacts on designs and 
constructions in geotechnical engineering. 
Misunderstanding or ignoring spatial variability 
in the soil properties can lead to substantial risks 
in projects, as this may cause oversight of certain 
mechanisms in the behaviour of the geotechnical 
structures. To characterise the spatial variations 
of soil/rock properties, a number of researchers 
have discussed the use of the exponential, 
spherical or Gaussian autocorrelation models 
(e.g., Lark and Cullis, 2004; Minasny and 
McBratney, 2007; Pardo-Iguzquiza and Chica-
Olmo, 2008; Santra et al. 2011). Some of them, 
however, have questioned the effectiveness of 
these models in providing accurate estimates of 
spatial variability features. Moreover, many 
previous studies have been conducted on 
regularly-spaced datasets, while studies on 
irregular sampling patterns are relatively limited.  

In this paper, information of geologic 
profiles (thickness of marine clay deposits and 

level of moderately weathered granite) obtained 
from irregularly-spaced boreholes is analysed to 
reveal their spatial variability characteristics.  
The Matérn function (Matérn, 1960) is adopted 
to model the autocorrelation structures, owing to 
the flexibility of its functional form. Parameters 
of the Matérn function are optimized using a 
heuristic algorithm, known as the Differential 
Evolution, to maximize the log-likelihood value. 
This paper also discusses the impacts of sample 
domain size, sampling density and the existence 
of geologic features, such as faults, on the 
variability characteristics of geologic profiles.  

2. Objectives of the Study 

Borehole data obtained from four different sites 
in Hong Kong have been used for spatial 
variability studies. The main objectives of the 
current study are: 

1. to characterise the spatial variability of 
the level of moderately decomposed 
granite/volcanic rocks and thickness of 
marine clay deposits at the sites; 
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2. to identify the effects of sample domain 
scale and sampling density on the 
spatial variability characteristics, under 
irregular sampling patterns; and 

3. to identify the effects of geological 
faults on the spatial correlation of 
rockhead levels. 

3. Site Description and Data Processing 

Figure 1 shows the locations of the four study 
sites. The borehole records were obtained from 
geotechnical investigation reports of previous 
government projects in the areas, which were 
archived in the Civil Engineering Library of the 
Hong Kong Government. For the KLR site, the 
focus of the study is on the thickness of soft 
marine clay deposits, which posed engineering 
challenges to the design and construction of 
foundations and retaining walls. For the three 
other sites (HUH, CWE and CHE), the focus is 
on the level of moderately decomposed 
granite/volcanic rocks, referred to as Grade III 
material (GEO, 1988) and commonly taken as 
the ‘rockhead level’ in the local practice. In 
addition, several geological faults have been 
reported to intersect the sites of CWE and CHE. 
 

 
Figure 1. Site locations of the four cases:    Kowloon 
Reclamation (KLR);    Hung Hom Station (HUH);    
Cheng Wang Estate (CWE);    Cheung Hong Estate (CHE). 

 
Table 1 shows the sampling information for 

each of the four cases. To identify the effects of 
sample domain scale on the spatial correlation, 
two domain scales are specified for each site. 

The entire site is referred to as the “regional” 
scale area, where subsets of data are extracted to 
form the “local” scale area, so that similar 
sampling properties prevail in the two different 
domain scales. Also, for each case, different 
percentages of borehole data from the entire 
dataset were randomly extracted as a series of 
sub-datasets with lower sampling density, in 
order to identify the effects of sampling density 
on the spatial correlation characteristics of the 
geologic profiles. In addition, to understand the 
effects of faults, two local scale blocks were 
extracted from each of CWE and CHE, with 
geological fault crossing Block 1 but no faults 
reported in Block 2. Details of these analyses 
will be presented in later sections of the paper.  

 
Table 1. Sample domain scale and sample size for each case 

            Items 
Case No.  

Sample Domain 
Scale (m×m) 

Sample Size
 

KLR Regional  400×700 100 
Local 200×400 69 

HUH Regional  250×1400 88 
Local 120×800 52 

CWE Regional  600×600 312 
Local 400×300 207 

CHE Regional  1400×900 425 
Local 800×500 250 

4. Autocorrelation Model by REML 

The four cases involve approximately 100-450 
boreholes with their locations irregularly spaced 
over the site. To ensure stationarity of the data, it 
is important to estimate and remove the trend in 
the data, such that the spatial correlation features 
are not masked by this deterministic component. 
In many previous studies, the trend component is 
determined by regression analysis using linear or 
polynomial functions (e.g., Campanella et al. 
1987; Dasaka and Zhang, 2012), and the 
residuals are then analysed and presented using 
method of moments or semivariograms. The 
resulting autocorrelation function or semi-
variograms are then fitted, typically with 
exponential, spherical or Gaussian functions.  

In the current work, the Restricted 
Maximum Likelihood (REML) method (Stein, 
1999; Lark and Cullis, 2004) is applied to 
simultaneously determine the optimal 
deterministic trend component and estimate the 
autocorrelation properties of residuals by 
maximizing the log-likelihood shown in Eq. (1):   
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where the observed values Z consist of 
deterministic trend component and residuals. K is 
the autocorrelation function matrix, M is the 
design matrix, then W=MTK-1M and Q=I-MW-1MTK-1.  

An appropriate polynomial order (but not the 
coefficients) of the trend is first determined 
based on the variation of raw data. To reduce the 
computational demands, relatively low-order 
(�3rd order) polynomials are specified for trend 
components. Meanwhile, the Matérn model, 
which has a flexible functional form, is adopted 
to simulate the autocorrelation structure, as well 
as the corresponding autocorrelation distance 
parameter ‘r’, the smoothness parameter ‘��’ and 
spatial dependence ‘s’, as shown in Eq. (2):     
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where h is the separation distance, Kv is a 
modified Bessel function of the second kind of 
order �, and � is the gamma function. The 
Matérn function represents a generalized 
function with its shape controlled by the 
smoothness parameter, ��. For example, it 
corresponds to the exponential function when � = 
0.5, and is equivalent to the Gaussian function 
when � approaches infinity (Minasny and 
McBratney, 2007). In the current study, 
parameters of the Matérn function are optimised 
using the Differential Evolution (DE) (Storn and 
Price, 1997) algorithm, in order to maximize the 
log-likelihood value. The DE is conceptually 
similar to other evolutionary algorithms, which is 
not prone to converging at local maxima/minima, 
and is recently applied in other engineering 
problems (e.g. Leung et al. 2015).  

5. Results and Discussions 

5.1. Effects of Sample Domain Scale on Spatial 
Variability Characteristics 

Previous studies (e.g. DeGroot and Baecher, 
1993) described that under regular sampling 

patterns, the spatial variability characteristics of 
soil properties vary with the scale of the 
sampling site, with a larger sample domain scale 
associated with a larger scale of fluctuation. In 
the current study, the four cases are analysed to 
identify the effects of sample domain scale on 
spatial variability features of rockhead levels and 
thickness of marine clay deposits, under irregular 
sampling patterns. For each case study, the entire 
site was considered as the “regional” scale site, 
and a relatively small subcase was extracted as 
the “local” scale site. During the data extraction 
process, each local scale domain was ensured to 
possess similar sampling property (e.g., sampling 
density and COV of sample distance) to the 
corresponding regional scale.  

The above-mentioned REML approach with 
the Matérn model was applied to estimate the 
spatial variability of each subcase. By comparing 
the results of regional scale and local scale of 
each case, the differences in the scale of 
fluctuation values ‘�’ and the spatial dependence 
values ‘s’ reflect the impacts of the sample 
domain scale on spatial variability characteristics. 
The results are summarized in Table 2, and the 
autocorrelation curves for all regional scale and 
local scale cases are shown in Figure 2. 

  
Table 2. Spatial variability characteristics of four cases with 
regional and local domain scales 
            Items 
 
Case No. 

Polynomial 
order of 
Trend 

Scale of 
fluctuation 

(�) (m) 

Spatial 
dependence  

(s) 

KLR Regional Linear 23.9 1.0 
Local Linear 22.3 1.0 

HUH Regional Quadratic 94.4 0.86 
Local Quadratic 89.2 0.76 

CWE Regional Quadratic 171.6 0.75 
Local Quadratic 96.2 0.46 

CHE Regional Quadratic 216.4 0.95 
Local Quadratic 136.9 0.88 

 

 
Figure 2. Autocorrelation curves of four cases with regional 
and local domain scales. 
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Figure 3 shows the influence of sample 
domain scale on the scale of fluctuation value �, 
and spatial dependence value s.  It is observed 
that values of � and s are more similar in the two 
domain scales for KLR and HUH, but vary 
significantly for CHE and CWE.  This may be 
attributed to the fact that CHE and CWE are 
crossed by geological faults. These local features 
may not be revealed fully in the ‘regional’ scale 
where the entire dataset is included in the 
analyses of spatial variability. The influence of 
faults will be discussed further in Section 5.3. 

Based on the results of the four cases, the 
domain scale affects the spatial variability 
characteristics, and the impacts are substantial 
when local geological features are identified.  It 
is therefore important that local scale effects are 
considered separately in these situations. 

 

 
Figure 3. Scale of fluctuation � , and spatial dependence 
value s, of four cases with regional and local scales. 

5.2. Effects of Sampling Density on Spatial 
Variability Characteristics 

Previous studies involving regular sampling 
patterns concluded that the scale of fluctuation 
generally increases with the individual sample 
spacing (Cafaro and Cherubini, 2002; Dasaka 
and Zhang, 2012). This section investigates the 
effects of sampling density on the spatial 

variability characteristics under irregular 
sampling patterns, which are common in 
geotechnical exploration programs.  

Borehole data from two cases, namely KLR 
and HUH, are analysed for this purpose. For each 
of the two cases, subsets of different percentages, 
ranging from 40% to 90%, of the original dataset 
were extracted randomly to form sub-datasets, 
which have similar domain scales and therefore 
lower sampling densities compared to the entire 
dataset. For each subset percentage (40%-90%  
with an interval of 10%), 420 repetitions are 
performed, resulting in a total of 2520 
realizations for each of KLR and HUH. Since 
each realization consists of a random population 
of data extracted from the original dataset, the 
mean sampling densities are different even 
among realizations with the same subset 
percentage.    

The REML analyses with DE optimisation 
of the Matérn function were conducted for the 
2520 realizations of both cases, and the resulting 
estimates of scales of fluctuation � are shown in 
two different forms in Figures 4 and 5.  
  

 

 
Figure 4. Probability density distributions of �  against 
average borehole spacing for KLR (top) and HUH (bottom). 

Figure 4 plots the values of �  against 
average borehole separation distances in the 
realizations, also represented in contours and 3-D 
plots of the probability density distributions 
(variations in s are not substantial). For both 
KLR and HUH, there is no obvious relationship 
between the estimated �  (of marine clay 

      KLR                       HUH                        CWE                         CHE 

       KLR                       HUH                        CWE                         CHE 
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thickness and bedrock level, respectively) and 
average borehole spacing.  Instead, a large 
proportion of the estimated � is concentrated in a 
relatively narrow range. 

As the realizations involve smaller 
percentages of the original dataset, a wider 
distribution of � estimates can be expected. This 
is illustrated in Figure 5, which also shows the 
approximate boundaries of the 10th, 25th, 75th 
and 90th percentiles of �  estimates for each 
subset percentage of KLR, normalized by the � 
value estimated using the complete dataset (� 100). 
The results may be interpreted as the impacts of 
imperfect accessibility to the dataset on 
subsequent estimates of spatial variability 
characteristics. For example, if the analyst only 
had access to half (0.5) of all the borehole 
information, there would be roughly a 50% 
chance that the estimated �  value would fall 
between 0.9 and 1.35 times of �100, or 80% 
chance that the estimated �  value falls between 
0.75 and 1.75 times of � 100.  

 

 
Figure 5. Estimates of �, normalized by � value of full 
dataset, with different subset percentages at KLR. 

 
Figure 5 may be interpreted from a different, 

though less rigorous, perspective. Comparing the 
distribution of � estimates for the KLR dataset, it 
may be postulated that if the number of 
boreholes are doubled (from 0.5 to 1.0), there is 
an approximately 50% chance that the revised � 
estimate will differ within the range of +11% to  
-26%, or 80% chance that the revised value will 
differ by +33% to -43%. However, it should be 
noted that this is strictly correct only when the 
original dataset is sufficiently large. Further 

work is required to investigate the validity of this 
proposition. 

5.3. Effects of Geological Faults on Spatial 
Variability Characteristics 

Geological faults often form discontinuities 
which may have a significant influence on the 
mechanical behaviour, such as the strength and 
deformation of soil and rock masses. In order to 
enhance the understanding of the impacts of 
geological faults on spatial variability of Grade 
III rockhead levels, four blocks were extracted 
from the local scale sites of CWE and CHE. 
Each case contained two blocks with the same 
sample domain scale and a similar sampling 
density. The borehole location plots and location 
of the blocks for each case are illustrated in 
Figure 6. 
 

 
Figure 6. Extraction of blocks for study of effects of faults in 
CWE and CHE. 

One NW-SE fault cuts through the northwest 
corner of the CWE site, while CHE is intersected 
by a fault in the western area. As shown in 
Figure 6, Block 1 of the two cases are designed 
to be intersected by the faults, while Block 2 is 
assumed to be free of influence by faults. Since 
the two blocks in each case have similar domain 
scales and sampling densities, by comparing the 
results from the two blocks of each case, the 
impacts of the faults can be illustrated.  

Block 1 

Block 2 

Fault 

Case CWE 

Block 1 Block 2 

Fault 

Case CHE 
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Table 3 shows the comparisons of spatial 
variability characteristics of the two blocks for 
both cases.  According to these results, faults 
have significant impacts on the spatial variability 
structure, and are associated with reductions in 
scale of fluctuations �  and spatial dependence 
value s, which imply higher levels of 
uncertainties in the rockhead levels. Together 
with discussions in Section 5.1, it is recom-
mended that ‘local’ scale analyses be performed 
separately whenever local geological features are 
identified at the project site.  

Table 3. Effects of geological faults on spatial variability 
characteristics 

 Items 
Case No. Geology 

Scale of 
Fluctuation 

(�) (m) 

Spatial 
Dependence  

(s) 

CWE Block 1 Fault 80.6 0.58 
Block 2 No Fault 147.4 0.69 

CHE Block 1 Fault 93.4 0.73 
Block 2 No Fault 122.5 0.89 

6. Conclusions 

The spatial variability characteristics of Grade III 
rockhead levels and thickness of marine clay 
deposits are studied using the borehole data 
collected from four sites in Hong Kong. Effects 
of the sample domain scale, sampling density 
and geological faults on spatial variability 
characteristics have been discussed based on a 
series of analyses. The following summarizes the 
current work and the conclusions:  
� The REML approach is coupled with the 

Matérn model, with parameters optimized 
using the Differential Evolution algorithm. 
This leads to a robust technique to estimate 
the autocorrelation structure of the dataset. 

� The spatial variability of geologic profiles 
is affected by the sampling domain scale.  
This is likely due to the fact that details of 
local geological features are not revealed 
when a large domain scale is considered. 
On the contrary, there is not an obvious 
relationship between the scale of fluctuation 
and sampling density. 

� Geological faults can affect the spatial 
variability characteristics of bedrock levels. 
In particular, scale of fluctuation and spatial 
dependence reduce with existence of faults, 
which imply a higher uncertainty that 
should be taken into consideration in 
engineering practice. 
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