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Abstract 

Recent studies demonstrated that the duration of inactivity 

(sedentary state) is independently associated with increased 

risk of cardiovascular disease. Our goal was to develop the 

technology that can measure the amount of inactivity in real 

time, remind a person that a preprogrammed period of 

inactivity has occurred and encourage a period of activity, 

and provide web-based feedback with tailored information to 

the participant and investigators. Once it was developed, we 

carried out a pilot study in a group of sedentary overweight 

women. The objective of the study was to assess potential of 

the mobile app to reduce inactivity in our target population. A 

randomized crossover design was employed with study 

subjects randomly assigned to a 4-week each “message-on” 

and “message-off” periods. Out of 30 enrolled subjects, 27 

completed the study. The average age of particpants was 

52±12; BMI: 37±6; 47% were white and 47% were African 

American. Overall, inactivity was significantly lower (p<0.02) 

during “message-on” periods (24.6%) as compared to the 

“message-off” periods (30.4%). We conluded that mobile app 

monitoring inactivity and providing a real-time notification 

when inactivity period exceeds healthy limits was able to 

significantly reduce inactivity periods in overweight sedentary 

women. 
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Introduction 

Cardiovascular disease (CVD) is the leading cause of death in 

women in the USA. The risk factors contributing to CVD 

include obesity (strongly associated with insulin resistance), 

diabetes, inflammation, and dyslipidemia. Prevalence of CVD 

is lower in women than in men; however, women with 

diabetes carry a higher risk for CVD. Studies suggest that 

women with diabetes mellitus (DM) without known CVD 

have a greater mortality than women without DM but with 

known CVD.[1] Exercise reduces obesity and visceral 

adiposity, increases peripheral muscle glucose utilization, and 

increases insulin sensitivity.  

The US federal guidelines recommend a daily moderate-

intensity physical activity for 30 minutes. Despite these 

recommendations, the prevalence of obesity and diabetes 

continues to increase, and it is predicted that US obesity may 

reach 42% by 2030. In addition to the well established link 

between physical activity and lower CVD risk, it is now 

becoming evident that the duration of inactivity (sedentary 

state) is also associated with increased risk. The risk 

associated with being sedentary is independent of the amount 

of physical activity; i.e., the effects of too much sitting rather 

than too little exercise also impact CV risk.[2] Studies have 

generally shown that people admitting to a higher number of 

hours of sitting have greater risk for developing diabetes, 

cardiovascular disease, and all-cause mortality.[3] Thus it is 

plausible that reducing the amount of sedentary time may 

reduce CVD and diabetes risk. Furthermore, the data suggest 

that even active individuals would benefit from reducing their 

hours of inactivity. This may be particularly important in 

women who have greater barriers to exercise.[4] 

Our goal was to develop the technology that can measure the 

amount of inactivity in real time, remind a person that a 

preprogrammed period of inactivity has occurred encourage a 

period of activity, and provide a web-based feedback with 

information tailored to the participant and investigators. Once 

it was developed we carried out a pilot study in a group of 

sedentary overweight women. The objective of the study was 

to assess potential of the mobile app to reduce inactivity in our 

target population.  

Materials and Methods 

For inactivity monitoring we employed a physical activity 

tracking device (Fitbit) and an Android smartphone with 

digital data plan. Fitbit uses a three-dimensional accelerometer 

to monitor physical activity including number of steps. Fitbit 

is a miniature wearable device which communicates with a 

smartphone via Bluetooth connection to transmit the physical 

activity data. The physical activity data are then relayed by a 

smartphone to a Fitbit database hosted by the company, which 

provides developers with API to access the user data by 

custom applications. 

System Design 

 

Figure 1 – Mobile App Design 

The inactivity monitoring system consists of two separate 

programs hosted on the same server – a step monitoring app 

that collects data from the Fitbit users and stores it in our 

database, and another monitoring program that generates 
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tailored text messages in certain situations. Both programs 

were developed in C# using the Fitbit API. 

The step monitoring website receives POSTed XML updates 

from the Fitbit server whenever the Fitbit device syncs. Each 

Fitbit account has a subscription service activated that tells it 

where to POST the XML file. The XML file is sent to our site 

by Fitbit automatically for each registered user account. The 

Fitbit device syncs every 10-15 minutes when it is in the 

range, which defines the maximal frequency of updates 

received by our server in real time. Each post provides an 

update on the number of steps made by a particular user in an 

incremental manner. The step counts starts from zero every 

day  at 00:00am. 

When the site receives the XML file it records the time and 

number of steps which are queried for the user using the Fitbit 

API. It then checks to see if there have been less than 15 steps 

in the past hour. If there were, and no blackout conditions 

apply, it will send a tailored text message to the user’s phone 

informing that sedentary period exceeded healthy limits, and 

encourages the user  to take a break from the sedentary 

position. The tailored message provides suggestions from the 

message library on ways to have short physical activity breaks 

in an office environment or at home, depending on the time of 

the day. 

The monitoring program has four different execution modes 

depending on the argument(s) passed. One of those modes is 

the sync monitor. The sync monitoring program goes through 

all users and checks their last sent record, which is the last 

time they synced. If they have not synced for an hour or more, 

it should send them a text message saying so, unless such a 

message was sent in the past hour. This mode runs every 15 

minutes. This mode addresses instances when connection 

between Fitbit and the cell phone is lost. 

The second mode is the exercise link program, which sends a 

link to relevant exercise education materials from the database 

to every user in the database every time it is run. It should 

cycle through all the links in the table in order and goes back 

to the first one after it gets to the end. The current link is 

stored in the database. This program is scheduled to run at 

8am every Saturday and Sunday. This mode promotes user 

engagement in healthy lifestyle activities by empowering the 

user with helpful information during weekends when users 

have more time to review educational messages.  

The third mode is the daily report program, which sends a 

summary of the user’s steps from the previous day. It uses the 

Fitbit API to query a user’s total steps from the previous day. 

This mode provides useful feedback on a daily basis helping 

users monitor their activity level and adjust it when necessary.  

The final mode is the no sync text. This program checks 

whether or not a user has synced in the last 24 hours. If not, 

the user is sent a text message telling them this and 

encouraging them to reestablish connection. This mode allows 

to identify potential technical issues in a timely manner. 

There are blackout conditions for which no messages are sent 

to the patient. The first blackout condition is if the user has 

texted “S[X]”, – where X is the number after S – so that the 

mobile app stops sending text messages for the next X hours. 

If the user texts “Okay”, it does not send texts for the next 1 

hour. They also do not receive texts if there are blackout times 

corresponding to the current time set in the database for that 

day. Blackout hours were entered for each patient at 

enrollment based on their personal preferences. This mode 

addresses specific user preferences in terms of their schedule 

when they cannot use the phone. 

The design of the system has been informed by two focus 

groups conducted in overweight sedentary women at the 

beginning of the development process. The app specifications 

tailored participants’ suggestions voiced in the focus groups. 

 

Figure 2 – Text Messaging Algorithm 

Evaluation Design 

A randomized crossover design was used to evaluate potential 

impact of the mobile app on the inactivity level (Figure 3). For 

this pilot we enrolled overweight sedentary women who met 

the following criteria. 

Inclusion criteria: 

• Adult women with BMI > 30 kg/m2 who are inactive 

for > 3 hours on an average day 

Exclusion criteria: 

• Pregnant per participant’s information 

• Inability to walk 

• Medical reasons to limit activity; e.g., unstable cardiac 

conditions such as angina or heart failure 

• Poorly controlled hypertension, SBP >160 mm Hg, 

DBP >100 mg Hg (whether or not they are on 

antihypertensive agents) 

No clinical care was provided by the research team. 

Participants were recruited by flyers and from previously 

conducted focus groups that were designed to provide 

feedback on the devices and messages that were used in the 

study. Almost all the focus group participants expressed 

interest in being in the study.  

During the first visit the participants had their weight, height, 

and BP measured and blood drawn for fasting glucose and 

insulin. A questionnaire was administered to capture 

demographic and major clinical conditions to ensure that 

activity is possible and advisable using the American 

Association of Sports Medicine criteria.[5,6] Participants also 

completed a number of questionnaires that capture their level 

of activity/inactivity at work and during leisure time, as well 

as their readiness toward starting to increase activity. All study 

subjects received a Fitbit One and a smartphone. They were 

instructed on the use of these devices. Digital data plan and 

phone service were provided with the smartphone for all 

participants for the duration of the study. During the first 2 

days (Day -2 to Day 0) participants were asked to use the 

devices and become comfortable with them and they were 

encouraged to contact the coordinator if they had any 

questions. The first 2 days were a regular work days and 

formed a baseline period of activity and inactivity. 

Participants were randomized to one of the two groups (Group 

A or B). Group A participants had the inactivity reminder 

system activated for time period 1 (4 weeks duration), and that 

function was inactivated for the second 4 weeks of the study. 

Group B had the inactivity reminder system inactivated for the 

first 4 weeks, and activated for the second 4 weeks of the 
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Table1 – Inactivity analysis: inactivity is expressed as fraction of the day from 8:00 am to midnight 

 Inactivity of Message-off period Inactivity of Message-on period 
P-value 

 Mean SD Min Max Mean SD Min Max 

Total (N=27) 0.3044 0.1853 0.1200 0.9000 0.2456 0.1394 0.0700 0.6400 0.0207* 

Group A (N=15) 0.3213 0.2274 0.1200 0.9000 0.2153 0.1366 0.0700 0.5200 0.0037* 

Group B (N=12) 0.2833 0.1204 0.1500 0.5600 0.2833 0.1393 0.1500 0.6400 0.9824 

Table2 – Analysis by steps from 00:00 am to midnight 

Steps of Message-off period Steps of Message-on period 
P-value 

Mean SD Min Max Mean SD Min Max 

Total 5977.03 2108.79 2490.6 11109.9 5684.37 2148.4 2537.85 12402.61 0.5902 

Group A 5614.77 1855.12 2620.55 9655 6199.11 2062.1 2969.21 9386.21 0.3303 

Group B 5771.37 2552.4 2537.85 12402.6 5699.43 2224.36 2490.6 11109.89 0.8501 

 

study. At the end of the study (Day 56), the biometric 

measurements and questionnaires were repeated. 

In addtion to tailored text messages generated by the mobile 

app, the participants were allowed to see all the measurements 

of activity that are routinely captured and displayed by the 

commercial Fitbit website. This includes the number of steps 

per day, the number of steps climbed, distance walked, and 

calories burned.  

At the end of the study, participants were asked their views on 

the devices, messages, and the effect of these on their 

perceptions or knowledge about activity and inactivity, the 

impact of these technologies on their readiness to be active, 

and their thoughts on whether they would be willing to 

continue using these devices/software for longer durations. 

This information will be used to improve mobile app design 

for a larger study. 

The primary outcome of interest was the number of episodes 

of prolonged inactivity (> 2 hours duration) per day during the 

time period that the inactivity reminder was active compared 

to not active (time Period 1 vs 2). 

 

Figure 3 –Study duration and number of study visits required 

of research participants. 

Results 

Overall results were positive. Out of 30 enrolled subjects, 27 

completed the study. The average age of particpants was 

52±12, with average BMI of 37±6.; 47% of the participants 

were white and 47% were African American. There was no 

significant difference in baseline characteristics between 

Group A and B.  

The inactivity was calculated as percent of consecutive 2-hour 

slots between 8am and midnight (total of 8 2-hr slots per day) 

during which the number of steps did not exceed 20 (Table 1). 

Overall, inactivity was significantly lower (p<0.02) during 

“message-on” periods (24.6%) as compared to the “message-

off” periods (30.4%). For Group A, the mean period of 

inactivity as a percentage was 21.5% during the “message-on” 

period, and during the “message-off” period inactivity 

increased to 32.1% (p<0.004), indicating a decrease in 

inactivity when receiving text messages from the system. 

Group B, which received no tailored messaging during the 

first 4 weeks, showed no change when it was switched to 

messaging in the subsequent 4 weeks, with a mean inactivity 

period of 28.3% for both the “message-on” and “message-off” 

periods. 

An analysis of the step count revealed that Group A had a 

higher average daily number of steps during “message-on” 

period (6199.1±2062.1) as compared to the “message-off” 

period (5614.8±1855.1). A similar but less pronounced 

tendency was documented in Group B with mean number of 

daily steps going from 5771.4±2552.4 during “message-off” 

period to 5699.4±2224.4 during “message-on” period. 

After completion of the 8-week follow-up period, two focus 

groups were conducted with the study participants. A majority 

of the participants expressed high acceptance of the mobile 

app and indicated willingness to use it in the future. 

Discussion 

A mobile app monitoring level of inactivity in real-time has 

been successfully introduced in this study. The impact of 

tailored messaging generated by the mobile app in response to 

prolonged periods of inactivity has been studied in overweight 

sedentary women using randomized crossover design. The 

results of the study demonstrated a significant impact of 

tailored messaging on inactivity. Comparison between 

“message-off” and “message-on” periods showed that there 

was statistically significant reduction in inactivity duration 

when the study particpants were receiving text messages 

indicating that sedentary periods exceeded healthy limits and 

encoraging the study subjects to move. Further analysis 

demonstrated that significant reduction in inactivity occurred 

only in Group A which receved tailored messaging during the 
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first 4 weeks of wearing Fitbit. Participants in Group B who 

started receiving tailored messages only after 4 weeks of 

wearing Fitbit did not demonstrate decrease in inactivity after 

they were switched to tailored messaging. This conforms to 

previously described phenomenon of technological imprinting 

when initial patterns of new technology use are maintaned 

regardless of the subsequent changes in this technology.[7-9] 

Any change in user behavior afterward requires additonal 

retraining.[10,11] Our results underscore the importance of 

introducing fully functional mobile apps including tailored 

messaging from the very beginning of the intervention aimed 

to reduce inactivity. 

Recent studies have demonstrated the importance of patient-

centered delivery of the medical care tailored to individual 

needs, preferences, and values of the patients.[12-14] In 

concordance with these findings, successful implementation of 

the mobile app described in this study can be attributed to 

tailoring its specifications to preferences of the target audience 

and employment of participatory design principles from the 

beginning of the mobile app’s development.[15-17] Another 

factor affecting high acceptance of the mobile app is that 

smartphones have become a ubiquitous appliance widely used 

in our target population.[18,19] High utility of mobile phones 

for health empowerment and engagement has also been 

demonstrated previously.[20,21]  

Conclusion 

A mobile app monitoring inactivity and providing a real-time 

notification when inactivity period exceeds healthy limits was 

demonstrated to significantly reduce inactivity periods in 

overweight sedentary women. The proposed approach is 

warranted for further investigation in larger group of subjects 

using randomized clinical trial design.  
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