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Abstract 

The National Surgical Quality Improvement Project (NSQIP) 

is widely recognized as “the best in the nation” surgical 

quality improvement resource in the United States.  In 

particular, it rigorously defines postoperative morbidity 

outcomes, including surgical adverse events occurring within 

30 days of surgery. Due to its manual yet expensive 

construction process, the NSQIP registry is of exceptionally 

high quality, but its high cost remains a significant bottleneck 

to NSQIP’s wider dissemination.  In this work, we propose an 

automated surgical adverse events detection tool, aimed at 

accelerating the process of extracting postoperative outcomes 

from medical charts. As a prototype system, we combined 

local EHR data with the NSQIP gold standard outcomes and 

developed machine learned models to retrospectively detect 

Surgical Site Infections (SSI), a particular family of adverse 

events that NSQIP extracts. The built models have high 

specificity (from 0.788 to 0.988) as well as very high negative 

predictive values (>0.98), reliably eliminating the vast 

majority of patients without SSI, thereby significantly 

reducing the NSQIP extractors’ burden. 
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Introduction 

The American College of Surgeons (ACS) National Surgical 

Quality Improvement Project (NSQIP) is widely recognized 

as “the best in the nation” surgical quality improvement 

resource in the United States [1]. NSQIP helps member 

hospitals to track outcomes associated with surgical patients, 

by collecting data on over 150 variables, including 

preoperative characteristics, intraoperative factors, and 

postoperative morbidity occurrences. In particular, 

postoperative morbidity outcomes are rigorously defined 

surgical adverse events occurring within 30 days of surgery, 

such as surgical site infection (SSI), urinary tract infection 

(UTI), and acute renal failure (ARF). NSQIP uses collected 

data elements to calculate relative performance regarding 

postoperative morbidity and mortality and to compare each 

member hospital’s performance with benchmarking, which is 

risk stratified, including providing an observed to expected 

(O/E ratio) for every surgical adverse event [2]. With this 

feedback, member hospitals are able to focus attention and 

resources to areas of opportunity  for improving the care of 

patients, which may also result in achieving reduced length of 

stay and readmission rates [3].  

Unfortunately, less than 20% of hospitals in the United States 

currently participate in NSQIP, in large part due to its 

associated costs to implement. In addition to the participation 

fee, hospitals must employ a formally trained surgical clinical 

reviewer (SCR). An SCR ensures the reliability of clinical 

data abstraction, selects operation cases following NSQIP 

inclusion criteria, manually reviews and extracts data 

elements, and documents surgical postoperative occurrence 

outcomes. This manual yet expensive approach leads to high-

quality clinical data, but the associated cost remains a 

significant bottleneck to NSQIP’s wider dissemination.  

An SSI is an infection occurring after surgery in the part of 

the body where surgery took place. While most surgical 

patients do not experience an SSI [4], SSIs are very expensive 

and morbid. According to the depth and severity of infection, 

SSIs are categorized into superficial, deep, and organ/space. 

Definitions for SSIs have been standardized by the Centers for 

Disease Control and Prevention (CDC) and are used by 

NSQIP SCR to identify and document each SSI category [5-

6].  

Previous work has explored risk factors associated with SSI, 

but few studies have focused on the detection of SSI. Most 

papers examining detection have relied heavily on 

administrative data or claims databases (such as age, gender, 

principal diagnosis, and billing information about medications 

and procedures) [7-8]. Since EHR data contains more detailed 

and richer clinical data (e.g. vital signs, lab results, and social 

history), compared with claims data it would provide 

additional significant indicators and signals to SSI and thus 

enhance the detection performance. In addition, most studies 

are procedure-specific, only processing SSIs following certain 

types of operation, such as hip and knee arthroplasty [9-10], 

instead of the current approach which is broadly inclusive of 

different types of surgery. To help reduce the labor and cost in 

reviewing patient records for postoperative surgical 

occurrences, we hypothesized that we could leverage both 

electronic health record (EHR) data  and historic NSQIP 

registry data to develop and validate an automated approach 

with supervised machine learning algorithms to detect NSQIP 

occurrence outcomes. In particular, we focused on the 

postoperative SSI occurrences to develop a classifier of three 

SSI categories (superficial, deep, and organ/space) and the 

total SSI, and to reduce the SCR’s burden by eliminating the 

vast majority of patients associated with surgeries that did not 

result in SSI. 
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Figure 1 - Overview of Materials and Methods

Materials and Methods 

Our overall methodological approach for this study included 

four steps as outlined in Figure 1: (1) identification of the 

patient cohort and associated patient EHR data, (2) data 

preprocessing, (3) iterative supervised learning model 

development, and (4) evaluation of the final models using 

gold standard outcome data from the NSQIP registry. 

Institutional review board approval was obtained and 

informed consent waived for this minimal risk study. 

Data Collection and Patient Cohort Identification 

The University of Minnesota Academic Health Center 

Information Exchange platform includes access to the clinical 

data repository (CDR) which contains University of 

Minnesota Medical Center (UMMC) clinical data. UMMC 

has been a member of NSQIP since 2007 and has used the 

inpatient instance of Epic since April 2011. CDR and NSQIP 

registry, two different data sources, were linked through the 

patient medical record number and the date of surgery. 

Subjects with no records in the EHR were eliminated. The 

patient cohort was divided into two datasets: data of patients 

with surgery from April 2011 to the end of 2012 (model 

development set) and data of patients with surgery in 2013 

(evaluation set). The former dataset was used as the training 

set for model development. The evaluation dataset was held 

out fully for the overall evaluation of the developed models. 

Table 1 describes the detailed demographic information. From 

April 1, 2011, through December 31, 2013, a total of 6258 

procedures with 405 SSIs were collected. The period of April 

2011 to the end of 2012 comprised 3996 procedures and 278 

SSIs (6.95%  rate). About 79% procedures were patients no 

more than 65 years old, and 21% were patients more than 65 

years old. Approximately 83.8% were white, 8.6% were 

black, and 7.6% were other race/ethnicity and unknown. The 

year of 2013 comprised 2262 procedures and 127 SSIs (5.6% 

rate), with similar patient characteristics, as shown in Table 1. 

The clinical data utilized included six data types: 

demographics, diagnosis codes, orders, lab results, vital signs, 

and medications. Demographics included each patient’s 

gender, race, and age at the time of surgery. Diagnosis codes 

consisted of related ICD-9 codes generated during the 

encounter and hospital stay at the time of surgery from 

coding, as well as the diagnoses from the past medical history 

and problem list. Orders related with SSI diagnosis and 

treatment were also gathered from the EHR,  including 

imaging orders, infectious disease consultation orders, and 

procedures with incision and drainage. The most recent lab 

values and vitals results before surgery and those during the 

postoperative 30-day window (since surgical adverse events 

defined as occurring within 30 days after surgery) were 

collected. Medications utilized for this analysis included 

antibiotics from the third day after surgery onwards.  

Another two important data measures included were 

American Society of Anesthesiologists (ASA) physical status 

classification and surgical wound classification. ASA 

classification from 1 to 6 indicates a patient’s status from 

normal healthy to declared brain-dead; the surgical wound 

classification is used for postoperatively grading of the extent 

of microbial contamination, indicating the chance a patient 

will develop an infection at the surgical site. We dichotomized 

the wound classification as the bottom two (no or mild 

disturbance) versus the remaining levels (significant 

disturbance). 

Data Preprocessing 

EHR data of interest were collected, cleaned, and analyzed 

next. Identifying and removing outliers, and correcting 

inconsistent data were the very first tasks of data 

preprocessing. How to transform clinical data into meaningful 

features was our main interest. Most clinical data, such as lab 

test results and vitals, tended to be longitudinal with repeated 

measures. Traditional methods to summarize those variables 

by calculating the moments (mean and standard deviation) or 

extremes tended not to be sufficient to describe the temporal 

behavior of such variables. To better summarize individual 

tests, we explored other features like the change of values
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Table 1 - Characteristics of patients and cases of surgical site infection (SSI) from cohorts 

   4/2011-2012    2013 

Characteristic 

No. of 

procedure 

No. 

of  

SSI 

Superfi-

cial SSI 

Deep  

SSI 

Organ/ 

Space 

SSI 

 No. of 

procedure 

No. 

of  

SSI 

Superfi- 

cial SSI 

Deep  

SSI 

Organ/ 

Space 

SSI 

Total  3996 278 140 52 86  2262 127 47 35 45 

Encounter type            

  Inpatient 3018 265 147 47 83  1352 108 36 32 40 

  Outpatient 978 13 5 5 3  910 19 11 3 5 

Age group            

  < 65 3160 210 112  41 67  1569 90 28 28 34 

  ≧65 836 68 38 11 19  693 37 19 7 11 

Gender            

  Male 1530 122 56 19 47  974 56 21 15 20 

  Female 2466 156 84 33 39  1288 71 26 20 25 

Race            

  White 3366 226 115 45 66  1881 110 38 31 41 

  Black 269 23 10 5 8  142 8 4 1 3 

  Other 361 29 15 2 9  239 9 5 3 1 

during an “elevating period”. An elevating period is a time 

period during which the measurement in question is near-

monotonously increasing from a low level (trough point) to a 

high level (peak point). For patients with SSI, some lab 

results, like serum glucose (GLC), platelet count (PLT), and 

white blood cells (WBC), have significant increases in the 

measurement from the third day after operation.  

As shown in Figure 2, GLC increased in three time periods: 

(I) day 3~7, GLC increased from 116 to 128; (II) day 7~9, 

from 104 to 140; and (III) day 15~28, from 87 to 148. Such 

elevation may indicate the onset of SSI. To capture the 

elevating period, a feature defined as the postoperative 

increase from a trough to its nearest peak was included in our 

tentative model. In the case of multiple elevating periods, the 

feature was computed by using the period with the highest 

peak. For measures where low values could indicate SSI, a 

“descending period” can be defined analogously.  

 

Figure 2 - GLC values within 30 days before and after 

surgery 

Figure 3 depicts the flowchart of the algorithm to compute 

this feature. The algorithm first searches for the maximum 

value (pm) from all results at least two days after the operation 

({pi, i=0, …,n}), (e.g., in Figure 2, point B is the maximum 

GLC value, which was measured nineteen days after the 

operation). Then the algorithm proceeds by  searching for the 

trough point backward from point B. The algorithm is robust 

in its filtering of the abnormal point that temporarily breaks 

the rule of monotone. For example, in Figure 2, the elevating 

period is        
 

from day 15 to 19, however, there is an abnormal point A 

which breaks the monotone increasing trend between day 15 

and 17; to overcome the problem and identify the real trough, 

the algorithm further compares day 15 and day 17 in order to 

determine whether the criterion of monotone increasing is 

satisfied.   

For other data like antibiotic use and specific orders, we 

created binary variables to indicate whether a relevant element 

was observed. For example, a value of 1 for Interventional 

Radiology signifies that an abscess drainage order was placed 

for a patient; while a value of 0 signifies that no such test was 

ordered. 

Model Development 

To build our SSI detection model, we utilized multivariate 

logistic regression models.  We constructed one model for 

total SSI and one model for each of the three SSI subtypes. 

Binary variables were entered as dummy indicator variables 

and continuous variables were entered unmodified. We used 

stepwise construction to select significant features and Akaike 

Information Criterion (AIC) for model selection. 

Evaluation 

In assessing detection of surgical adverse event outcomes like 

SSI, since these events are relatively rare, overall detection 

accuracy percentage is not an optimal criterion for evaluating 

model validity. Instead, we report specificity, as well as the 

the area under the curve (AUC), in evaluation of our 

automated detection system. Our aim was to maximize the 

specificity under the constraint that the negative predictive 

value remains above 98%. This aim is reflective of our 

original expectation of actual use of the detection models: to 

assist a NSQIP chart  extractor to eliminate patients who 

clearly did not suffer the adverse event and then to accelerate 

the process of data abstraction from clinical charts. 
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Figure 3 - Finding the postoperative increase in GLC 

Results 

Significant Variables  Selected 

Tables 2 through 5 show the results for the multivariate 

detection models for the three kinds of SSI and the total SSI, 

selected by AIC. The two most common variables included 

were diagnosis codes (the ICD-9 codes of SSI is 998.xx) and 

antibiotic use. Superficial SSI occurs just at the skin incision 

and thus relatively easily diagnosed. Therefore, imaging 

diagnostic orders tend to be unnecessary. Infection is 

sometimes diagnosed with microbiology cultures, however, 

frequently this diagnosis is based on the physical examination 

only. Actually only cultures ordered or not is a signal of SSI. 

According to table 3 and table 4, we can find that  abscess 

culture, fluid culture and wound culture are significant  factors 

for detecting deep and organ/space SSI. Since these two kinds 

of  SSIs  occur deep within or under the wound, imaging 

orders for both diagnosis and treatment are frequently 

required. 

We also found the postoperative elevating  period of GLC,  

for superficial  and PLT for organ/space,  to be indicative  of 

clinical  suspicion. Clinically these lab values can be altered in 

the setting of infection. For a unit increase in postoperative 

increase of GLC, we expect to see approximately a 0.0112  

increase in log-odds of superficial SSI. Similarly, for a unit 

postoperative increase of PLT, approximately a 0.0115 

increase in the log-odds of organ/space SSI is expected.  

Table 2 - Significant indicators for detecting superficial SSI 

Significant variables Estimate P-value 

Diagnosis codes 2.1126 <0.0001 

Wound culture ordered 2.1941 <0.0001 

Antibiotic use 1.1321 <0.0001 

Encounter type (inpatient) 1.6007 0.0010 

ASA Classification (significant 

disturbance) 

0.4342 0.0058 

Abscess culture ordered 1.5020 0.0050 

Postoperative increase of GLC 0.0112 0.0687 

Table 3 - Significant indicators for detecting deep SSI 

Significant Variables Estimate p-value 

Diagnosis codes 3.1959 <0.0001 

Antibiotic Use 2.2276 <0.0001 

Abscess culture ordered 1.2880 0.0868 

Gram stain ordered 0.8040 0.0427 

Imaging treatment ordered 1.5445 0.1107 

Imaging diagnosis ordered 0.6254 0.0981 

Tissue culture ordered 1.6516 0.1010 

Table 4 - Significant indicators for detecting organ/space SSI 

Significant Variables Estimate p-value 

Imaging treatment 1.3999 <0.0001 

Imaging diagnosis 1.2090 <0.0001 

Antibiotic Use 1.1662 <0.0001 

Abscess culture ordered 2.3041 <0.0001 

Fluid culture ordered 1.4204 0.0003 

Preoperative PLT 0.00332 0.0135 

Drainage culture ordered 1.3760 0.0711 

Diagnosis code 0.8259 0.0667 

Postoperative increase of PLT 0.0115 0.0606 

Table 5 - Significant indicators for detecting total SSI 

Significant Variables Estimate p-value 

Diagnosis codes 5.3940 <0.0001 

Antibiotic use 1.3672 <0.0001 

Abscess culture ordered 3.2565 <0.0001 

Wound culture ordered 2.2926 <0.0001 

Imaging diagnosis ordered 0.8741 <0.0001 

Fluid culture ordered 1.2909 <0.0001 

Encounter type (inpatient) 1.0185 0.0037 

ASA Classification 

(significant disturbance) 

0.4258 0.0031 

Preoperative PLT 0.00214 0.0440 

Post maximum pain 0.0775 0.0957 

Model Performance 

Four detection models exhibited excellent specificity to 

eliminate the majority of non-SSI patients, which greatly 

accelerate the process of extracting postoperative SSI 

occurrences. Table 6 presents the negative predictive value 

(NPV) for each of the SSI identification models. The highest 

specificity 0.988 was for detecting deep SSI at NPV equals to 

0.99, and the lowest 0.787 was for detecting total SSI at NPV 

equals to 0.99. AUC values for the four models were 0.820, 

0.898, 0.886 and 0.896, respectively.  

Table 6 - Negative predictive value  and specificity for four 

SSI models 

                               NPV Specificity 

Superficial SSI 0.980 1.000 

 0.985 0.987 

 0.990 0.900 

Deep SSI 0.980 1.000 

 0.985 1.000 

 0.990 0.988 

Organ/space SSI 0.980 1.000 

 0.985 0.999 

 0.990 0.974 

Total SSI 0.980 0.935 

 0.985 0.888 

 0.990 0.787 
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Discussion  

The current research is a pilot study to examine the feasibility 

of automatically detecting postoperative SSI occurrences 

based on EHR data. The aim of this study is to assist a NSQIP 

SCR to eliminate patients who clearly did not suffer the 

adverse event. Therefore, a very high NPV is desired, which 

could assist in the reliable identification of patients without 

postoperative SSI. From the modeling results, we can see that 

all four models perform very well (with specificity ranging 

from 0.788 to 0.988) in eliminating the majority of patients 

without SSI based on the NPV equals to 0.99. Considering the 

nature of NSQIP SCR’s work, SCRs still need to review all 

clinical charts, even if the positive predictive value for a 

patient is 0.9 or higher, since they need to extract the clinical 

characteristics of patients with SSI. Therefore, achieving high  

NPV, and thus allowing SCRs to eliminate patients, rather 

than achieving a high positive predictive value, is the main 

focus of this research. 

Among selected potential indicators, a few of them were 

found to be quite significant with very small p-values. Only 

the indicators that had p-value less than 0.0001 were 

employed in the logistic regression modeling, however, this 

did not improve the detection performance. Other modeling 

methods, like Random Forest and Support Vector Machine, 

were employed; however, logistic regression models were 

found to outperform these methods for detection of all types 

of postoperative SSI events.  

The current study was limited by the fact that it was 

conducted with only complete cases over three years. This 

may have limited our ability to fully refine and optimize the 

automated detection model. In the future, more procedures 

will be included, and the treatment of missing data will be 

studied. 

Large quantities of meaningful information are stored at the 

clinical notes, such as imaging reports and culture results, 

which we did not utilize in this study. For example, a positive 

abscess culture result could be recorded as “On day 2, isolated 

in broth only: Bacteroides fragilis group”. However, we 

merely considered whether the diagnostic and therapeutic 

imaging orders or cultures were placed, we did not use the 

actual results. Natural language processing (NLP) has played 

an important role in detecting adverse events [11-12]. In our 

future research, we will apply NLP techniques to extract 

additional important information from clinical notes.  

Conclusion 

In this study, to accelerate the process of extracting 

postoperative SSI outcomes from medical charts and reduce 

the workload of NSIQP SCR, an automated postoperative SSI 

detection model based on supervised learning was proposed 

and validated. The models exhibited good performance, they 

reduced the SCR’s burden by reliably eliminating the vast 

majority of patients with no SSI. The significant factors of 

detecting SSI identified by our models are in line with clinical 

knowledge. In addition, some useful patterns, (e.g. 

postoperative increase of PLT and GLC), were extracted from 

the longitudinal lab results.  
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