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Abstract 

Social media sites, such as Twitter, are a rich source of many 

kinds of information, including health-related information. 

Accurate detection of entities such as diseases, drugs, and 

symptoms could be used for biosurveillance (e.g. monitoring 

of flu) and identification of adverse drug events. However, a 

critical assessment of performance of current text mining 

technology on Twitter has not been done yet in the medical 

domain. Here, we study the development of a Twitter data set 

annotated with relevant medical entities which we have 

publicly released. The manual annotation results show that it 

is possible to perform high-quality annotation despite of the 

complexity of medical terminology and the lack of context in a 

tweet. Furthermore, we have evaluated the capability of state-

of-the-art approaches to reproduce the annotations in the data 

set. The best methods achieve F-scores of 55–66%. The data 

analysis and the preliminary results provide valuable insights 

on identifying medical entities in Twitter for various 

applications. 

Keywords: 

Social media, data set generation, medical entity recognition. 

Introduction 

The volume of data on social media sites, such as Twitter, is 

so vast that it would almost be surprising if it did not contain 

useful medical information. If we could successfully mine 

even a small percentage of this, there would be many potential 

uses, including biosurveillance (e.g. monitoring of seasonal 

flu) and identification of potential adverse drug events. 

Previous work exists on biosurveillance based on emergency 

department notes [1], news data [2], and search data [3], while 

additional work exists on the detection of adverse effects 

extracted from forum data [4-6] and Wikipedia [7]. 

While there has been some work on medical text mining in 

social media (i.e. identification of relevant tweets for adverse 

drug events [8]), a critical assessment of performance of 

current text mining technology has not been performed. It has 

already been established that Twitter itself presents unique 

challenges for text mining in the open domain [9,10]. 

In this work, we have developed an annotated data set from 

Twitter feeds that can be used to train and evaluate methods to 

recognise mentions of diseases, symptoms, pharmacologic 

substances in social media, and particularly microblogs. 

Furthermore, we have evaluated the performance of existing 

state-of-the-art entity recognition approaches on this data set. 

Overall, methods based on conditional random fields allow 

high precision entity recognition, while additional work is 

required to improve the recall. 

Materials and Methods 

This section presents the development of the Twitter data set 

and the annotation process, as well as the methods used to 

automatically reproduce the annotation. 

Data Collection And Filtering 

We obtained our data using Twitter Stream API from 

13/05/2014 to 28/05/2014, collecting 43 million tweets in 

total. An inspection of random samples indicated that most 

tweets do not contain medical entities. We pre-filtered tweets 

using a list of medical terms. We considered three types of 

entities: diseases, symptoms, and pharmacologic substances to 

match the particular entities we were targeting for annotation. 

The list of these biomedical entities comes from the Unified 

Medical Language System (UMLS) [11] Metathesaurus, 

which integrates over 100 biomedical terminologies and 

ontologies. The concepts in the Metathesaurus are assigned 

one or more semantic types from the UMLS Semantic 

Networki [12]. We downloaded the UMLS version 

UMLS2014AA and used the default installation. Within this 

network, we selected the following semantic type mappings: 

• T047 (Diseases or Syndrome) for diseases, 

• T184 (Sign or Symptom) for symptoms, 

• T121 (Pharmacologic Substance) for pharmacologic 

substances. 

From the Metathesaurus, we only retained concepts linked to 

one of the preceding semantic types, and then extracted the 

union of terms corresponding to these concepts.ii Furthermore, 

only terms in English and non-obsolete entries were kept. 

Table 1 shows statistics for each entity type. Disease and 

pharmacologic substances contain a large number of concepts 

and terms, while the list of symptoms is comparatively small. 

Table 1 – Statistics of the concepts and terms extracted from 

the UMLS for the three entity types. 

Entity 

Concept-

term pairs Unique terms

Unique 

concepts 

Disease 201,916 201,013 46,993

Pharm. Subs. 279,261 278,390 120,330

Symptom 19,927 16,865 3,850

 

                                                           
i UMLS Semantic Network site: http://semanticnetwork.nlm.nih.gov 
ii We joined the relevant Metathesaurus tables (‘MRCONSO’ and 
‘MRSTY’) to determine this information. * The first and second authors contributed equally to this paper 
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We filtered the Twitter data to keep the volume manageable. 

Only tweets with two or more entity types (e.g. a symptom and 

disease) were kept, ensuring the filtering is fairly precise 

(while potentially reducing recall). The lists of UMLS terms 

extracted, as described above, contain very frequent terms that 

are primarily used in a non-medical sense, such as said and 

water. To avoid a large number of false positives in the 

filtering stage, we used the frequency of UMLS terms in 

filtered tweets from the previous step and ranked them in 

decreasing order of frequency. We then manually removed 

common terms with a non-medical primary sense from the top 

200 terms in each type. 

We further removed duplicates in the filtered tweets and 

removed non-English tweets using LANGID.PY [13]. This 

filtering pipeline ultimately yielded 11,647 tweets. To 

investigate whether our filtering (particularly our requirement 

of the presence of two entity types) erroneously excluded 

relevant tweets, we examined 1,000 randomly selected tweets. 

In this sample, we found no relevant tweets—that is, tweets 

containing biomedical entities of interest—which would have 

been excluded, suggesting that this pre-filtering methodology 

is fairly reliable for including all possibly relevant data. 

Data Set Annotation Procedure 

Four annotators with no medical training annotated the data 

set with entities from the three semantic types, using BRAT 

[14]. We created the guidelines iteratively as described here  

in chronological order. 

We prepared an initial set of guidelines based on manual 

examination of a small subset of the data which was not used 

for later annotation. We then had all four annotators use these 

initial guidelines to annotate the same set of 100 tweets as a 

calibration set. 

We checked the inter-annotator agreement on the calibration 

set and found that it was too low to be appropriate for what we 

would like to consider a high-quality data set. On the basis of 

discussions between the annotators, we then refined the 

guidelines to attempt to resolve frequently observed points of 

ambiguity in the calibration set. A subsequent round of 

annotation with the new guidelines improved the inter-

annotator agreement, but still not to a level we considered 

acceptable. At this point we moved to a system of having all 

tweets annotated by two annotators, then merging the 

annotations and having the annotators resolve all 

disagreements in discussion. 

This double annotation methodology led to a higher-quality 

data set with very respectable figures for inter-annotator 

agreement as shown below. The cost, of course, was that we 

were able to obtain less data per hour of annotation time. In 

practice we found the merging and discussion process was 

generally fast (roughly 20% of the annotation time itself), 

meaning that overall annotation efficiency was reduced by a 

factor of around 2.4 by the double annotation methodology. 

However, for future iterations of the data set, we will leave 

open the option of augmenting this high quality data set with a 

lower-quality data set annotated only by a single annotator 

(possibly assisted by automatic pre-annotation). 

Since we settled on double-annotation, the relevant 

comparison for inter-annotator agreement is to calculate 

agreement on a subset of the data, which has been annotated 

twice in the manner previously described. That is, the four 

annotators were grouped into two pairs, and each pair 

annotated and merged the same subset of 100 tweets using the 

methodology described above. We then calculated agreement 

figures between the two sets of annotations, obtained using 

BratEval
iii [15]. 

Table 2 – Inter annotator agreement for each one of the entity 

types. 

Entity Precision Recall F1 

Disease 0.8400 0.8750 0.8571 

Pharm. Subs. 0.9500 0.8261 0.8837 

Symptom 0.8246 0.8393 0.8319 

Inter annotator agreement, as shown in Table 2, is reassuringly 

high, particularly for such a potentially ambiguous task, and 

displayed similar levels of agreement to other biomedical 

annotation tasks [16]. Most of the disagreements were terms 

inadvertently missed by the annotators, and in a few cases the 

words were arguably non-medical terms, which can 

sometimes be difficult to distinguish. For instance, terms like 

chill or weak often carry a non-medical meaning. Other 

disagreements  included different interpretations of the 

subtleties of the guidelines, such as whether pill was 

sufficiently specific to be included. 

Annotation Guidelines 

After the two rounds of annotation calibration, we settled on a 

final set of annotation guidelines. These stipulated that we are 

interested in annotating three kinds of entities: pharmacologic 

substances, diseases, and symptoms. In addition to traditional 

entities, which correspond to noun phrases, we also broadened 

the scope of the annotation to allow for short phrases headed 

by verbs (such as I coughed all morning) and adjectives (such 

as felt light-headed), which indicate diseases or symptoms. If 

the part-of-speech of the head-word of an annotated item is 

not a noun, the annotation was marked as an adjective or verb 

as appropriate in a separate attribute. 

We also found that in many cases a concept being mentioned, 

which may have looked superficially medical, was unlikely to 

truly refer to a medical concept. In particular, mentions may 

be metaphorical, figurative, or purely humorous, and in these 

cases annotators were instructed to apply the ‘figurative’ 

attribute. There was also another slightly distinct class of 

items, one in which the terms have an informal and non-

clinical meaning in addition to the clinical one. If the non-

clinical meaning is clearly being used, annotators were to 

apply the ‘non-medical’ attribute, such as in depressed about 

my exam results. 

The guidelines also instruct annotators to annotate the most 

specific entity possible (e.g. codeine syrup rather than syrup) 

and to include as many tokens as possible as long as they are 

part of a fixed expression referring to a particular kind of 

entity (e.g. disgusting would not be part of the entity in 

disgusting codeine syrup). It was also specified that entities 

which do not distinguish anything more specific than the base 

entity category should not be annotated, as the very general 

information in these is unlikely to be specific enough to be 

useful in downstream applications. In addition, it was also 

permitted to have overlapping annotations, so while pain 

medication would most sensibly be annotated as a 

pharmacologic substance, the token pain within it should also 

be annotated as a symptom. 

Correctly identifying medical concept mentions and 

categorising them is sometimes a difficult task for annotators 

without formal medical training as there is a large terminology 

space. So it may be difficult to determine whether a particular 

token refers to a valid concept (e.g. Should prune juice be 

                                                           
iii BratEval site: https://bitbucket.org/nicta_biomed/brateval 
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considered a pharmacologic substance? Is dextromethorphan a 

real drug name?), or which of two categories it should refer to. 

In particular, the division between the disease and symptom 

categories can be very uncertain in many cases. For example, 

it may not be clear initially whether amnesia is a disease or a 

symptom. So, the annotators were advised to refer to the 

UMLS in cases of uncertainty, essentially using the UMLS as 

a substitute for in-depth domain knowledge. In particular, the 

UMLS semantic type is important, so generally the semantic 

types should obey the same mapping as described in ‘Data 

collection and filtering’ (for example, disease entities should 

have semantic type ‘T047’). 

Even if the UMLS was not the perfect resource for making 

these decisions, it is in widespread usage (incorporating many 

standardised terminologies), and at least provides a common 

basis for decision-making, ensuring consistency of the 

annotations. In some cases, the context may make it clear that 

a strict interpretation of UMLS semantic type, as described 

above, is not appropriate; in these cases, annotators were free 

to apply their own more appropriate categorisation instead. 

It is of course difficult to codify every possible annotation 

decision in a static set of guidelines. Inevitably, certain 

borderline cases had to be decided on the basis of the 

annotators’ intuitions in ways that are difficult to encode 

specifically. However, the procedure of double annotation that 

we adopted and the high inter-annotator agreement we 

achieved at least suggests that the annotations are reasonably 

internally consistent, and thus presumably repeatable.  

Data Set Statistics 

The final data set contains 1,300 annotated tweets in 13 files 

with 100 tweets each. As shown in the following table, 

symptom is the most frequent type with no significant 

difference between disease and pharmacologic substance. We 

can see that entities are typically composed of a single token 

for symptoms, while diseases and pharmacologic substances 

more frequently span multiple tokens. 

Table 3 – Statistics for the entities in the data set. Entities 

annotated as non-medical have not been considered. 

Entity No Entities Avg. length Avg. Tokens 

Disease 253 10.40 ± 5.83 1.41 ± 0.62

Pharm. Subs. 233 9.83 ± 4.35 1.39 ± 0.58

Symptom 764 6.66 ± 2.96 1.13 ± 0.40

Table 4 shows the number of non-medical and figurative 

terms annotated. The number of pharmacologic substances 

and symptoms that are not medically related are significantly 

larger; it seems these terms are more often used informally, 

rather than with their medical definition. In addition, almost 

10% of the symptom mentions are used figuratively.  

Table 4 – Number of non-medical and figurative entities. 

Entity Non-medical Figurative 

Medical 

Figurative 

Disease 1 (0.40%) 5 (1.98%) 4 (1.58%)

Pharm. Subs. 20 (8.58%) 2 (0.86%) 2 (0.86%)

Symptom 122 (9.65%) 124 (9.81%) 44 (3.48%)

Table 5 – Part-of-speech of the annotated entities. Entities 

annotated as non-medical have not been considered. 

Entity Noun Adjective Verb 

Disease 246 (97.2%) 7 (2.8%) 0 (0.0%)

Pharm. Subs. 233 (100.0%) 0 (0.0%) 0 (0.0%)

Symptom 454 (75.5%) 262 (20.7%) 48 (3.8%)

Almost all entities annotated are nouns as noted in Table 5. It 

is logical that pharmacologic substances are nouns. There are 

only a few mentions of diseases that appear as adjectives (e.g. 

blind, obese, or overweight). For symptoms, over 20% appear 

as adjectives (e.g. breathless, hungry, or sick) and a smaller 

quantity appear as verbs (e.g. fainted, coughing, or shaking). 

Table 6 shows the top 10 terms by frequency per entity type. 

There is a large number of individual posting on Twitter and 

we can identify multiple topics in our data set, which shows 

the possibilities of exploiting Twitter data and the complexity 

of extracting relevant signals from it. Some of these terms 

denote concerns about diseases that affect a large part of the 

population (e.g. diabetes) but also highlight recent 

breakthroughs in medicine (e.g. a new malaria vaccine). We 

also find mentions of recreational drugs (such as marijuana 

and cannabis), which are not related to any specific news 

item. In addition, there are mentions like heroin linked to 

news when the tweet was posted (e.g. NYPD officers to carry 

heroin overdose antidotes).  Furthermore, we find a large 

number of symptoms that are not linked to any specific 

disease, which could be monitored as signals for 

biosurveillance. 

Table 6 – Top most frequent terms per entity type. 

Disease  Phar. Sub.  Symptom  

diabetes 14 marijuana 12 tired 136

heart disease 10 cannabis 12 pain 93

stroke 10 alcohol 11 hungry 61

cold 8 heroin 8 stress 50

asthma 6 pain meds 7 headache 36

malaria 6 vitamin c 4 sore 15

allergy 4 chill pill 4 sick 14

migraine 4 malaria vaccine 4 cough 13

aids 4 caffeine 4 exhausted 12

obesity 4 calcium 4 hangover 11

Named Entity Recognition 

After annotating a data set, we investigated how applicable 

standard approaches to named entity recognition (NER) would 

be to this data. This indicates how unique the data is, and 

helps us to predict how difficult it will be to reliably reproduce 

these annotations automatically on unseen data, which is our 

ultimate goal. Three methods were used to annotate the data 

set with the three entity types. 

The first uses MetaMap [16], which is developed at the US 

National Library of Medicine that maps spans of text to 

UMLS Metathesaurus concepts and is considered state-of-the-

art for this task. It uses parsing to identify spans of text in 

which entities could appear and then smart dictionary 

matching to identify the concepts [16]. We used MetaMap 

2013, with its default configuration, to perform experiments 

with and without word sense disambiguation (WSD) [18]. 

MetaMap output was filtered to keep only concepts belonging 

to the three semantic types under consideration, and the output 

was converted to BRAT standoff format for evaluation. 

In addition to MetaMap, we considered two systems based on 

machine learning (ML). Firstly, we created a custom NER 

tagger for this data set, called ‘Micromed’ (since it tags 

medical concepts in microblog posts), to provide an in-house 

solution. It uses conditional random fields (CRF) [19] as its 

underlying machine learning algorithm. CRFs are frequently 

used in state-of-the-art named entity recognizers, including 

those in the biomedical domain. For its CRF implementation, 

Micromed uses CRFSuite [20]. The features were derived 
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from those commonly used in NER, and tuned somewhat to 

this particular task: 

• Part-of-speech tag and relative position in a context 

window of three tokens each side 

• Token surface form and relative position, in a context 

window of two tokens each side 

• Token prefix and suffix character N-grams of all 

lengths up to eight 

• Whether the token appears in a list of synonyms for 

concepts with the appropriate semantic type extracted 

from UMLS 

• (In some configurations) whether MetaMap annotates 

the token as a concept with that semantic type 

Since the goal was to evaluate how similar the task was to 

standard NER, we did not add particularly radical features. 

For tokenising and POS-tagging, we used TweetNLP [21]. We 

trained a CRF model for each category (diseases, 

pharmacologic substances, and symptoms), treating them as 

distinct annotation tasks. The output of the CRF engine was 

converted to BRAT standoffiv format for evaluation. 

Secondly, we used the Stanford NER tagger (SNER) [22] as 

another strong baseline to study how difficult the task is for 

existing NER tools and help identify effective features. This 

also underlyingly uses a CRF.   We reformatted annotations 

into SNER format and applied the limited default features to 

train taggers for each of the three categories, which included 

character n–grams and word tokens in fixed context windows 

(the primary feature difference from Micromed being the 

absence of custom lookup lexicons).  

Results 

To compare the performance of the annotation methods, we 

used two different evaluation profiles. Exact match requires a 

given entity from the classifier output to have the same start 

and end span as the reference entity to be considered a match. 

Partial match considers entities as matching if there is any 

overlap at all between the entity produced by the classifier and 

the gold standard. After counting matches, we calculated 

precision, recall, and F1 in the usual way. Entity annotations 

marked as non-medical were ignored in training and testing. 

Statistical significance of the results shown in Table 7 was 

computed using a two-sample t-test with randomization over 

the cross-validation folds. 

                                                           
ivBrat standoff format: http://brat.nlplab.org/standoff.html 

Machine-learning methods were trained and evaluated using 

13-fold cross validation, based on 13 sections of the data set, 

each containing 100 tweets. That is, at each of the 13 

iterations, 1200 tweets (12 sections) were used for training, 

while the remaining 100 tweets were used for evaluation. 

MetaMap, however, was simply applied to the whole data set, 

so the results are comparable. We evaluated Micromed, both 

with and without features based on MetaMap (the former case 

is denoted “+Meta”), to evaluate how well it could perform 

without relying on an external tool with a significant 

overhead. Results of the overall methods are presented in 

Table 7. 

MetaMap results without WSD have much higher recall, but 

poorer precision. Entities missed include terms that are not in 

the UMLS (e.g. painkillers addiction) or terms in the UMLS 

that are not in the categories of interest (e.g. cold as symptom). 

False positives include non-specific terms annotated by 

MetaMap (e.g. drugs), which are excluded by the annotation 

guidelines, terms bearing a non-medical meaning (e.g. I’m 

sick and tired of negativity), and WSD mistakes (e,g. cannabis 

was annotated as plant instead of substance).  

The ML methods usually outperforms MetaMap. SNER’s 

accuracy is lower over Disease but substantially higher over 

Pharmacologic Substances and Symptom. Micromed has 

higher F-score again, with statistically significant increases 

over SNER except for Symptom. SNER has lower recall since 

it lacks the implicit domain knowledge from the UMLS-

derived features of Micromed and Micromed+Meta (including 

MetaMap). We know, from Table 1, that the Symptom 

category has a smaller vocabulary; thus, relevant information 

can be learned from the training data alone. Moreover, some 

symptom entities, which SNER detects, are missed by 

Micromed; in many cases, these are not in the UMLS (e.g. 

magnesium-deficient). The increase in recall of partial match 

compared to exact match is not especially significant, except 

for Symptom. 

Discussion 

The data set was annotated with high inter-annotator 

agreement. Extra considerations were required for Twitter 

compared to biomedical literature, e.g., the Figurative 

attribute and extending the concept of entities beyond nouns, 

which might make traditional NER approaches perform 

poorly. 

MetaMap was not trained on this data set as the other two 

methods were, but still shows a competitive performance with 

higher recall, while Micromed and SNER are generally more 

precision-biased and have a higher F-score overall. The 

  Disease  Pharm. Substance  Symptom 

 Method Prec Rec F1  Prec Rec F1  Prec Rec F1 

Exact 
Match 

MetaMap +WSD 0.4123 0.5850 0.4837  0.2264 0.5150 0.3145  0.5337 0.5604 0.5467 

MetaMap 0.3437 0.7876 0.4786  0.2225 0.7785 0.3460  0.4644 0.7635 0.5775 

Stanford NER 0.7917 0.3071 0.4312   0.8952 0.3565 0.4946*  0.7526 0.5763 0.6509* 

Micromed 0.7987 0.5020 0.6165*†  0.8142 0.3948 0.5318*  0.7193 0.6028 0.6559* 

Micromed +Meta 0.8049 0.5217 0.6331*†  0.8205 0.4120 0.5486*  0.7220 0.6041 0.6578* 

Partial 
Match 

MetaMap +WSD 0.4457 0.6299 0.5220  0.2642 0.5957 0.3660  0.4424 0.6150 0.5146 
MetaMap 0.3437 0.7876 0.4786  0.2225 0.7785 0.3460  0.4644 0.7603 0.5766 
Stanford NER 0.7917 0.3071 0.4312  0.8952 0.3565 0.4946*  0.7603 0.6013 0.6696* 
Micromed 0.7987 0.5020 0.6165*†  0.8142 0.3948 0.5318*  0.7439 0.6234 0.6783* 
Micromed +Meta 0.8049 0.5217 0.6331*†  0.7220 0.6041 0.6578*  0.7450 0.6234 0.6788 

Table 7 – Results of all automatic annotators over all entity types. Statistical significance at p < 0.01: * vs MetaMap; † vs SNER.
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difference in performance of the methods is scientifically 

interesting in what it tells us about the nature of the data set. 

MetaMap is widely used for medical NER due to the 

respectable performance it achieves over research articles and 

clinical text. MetaMap has not been tuned for Twitter data and 

was outperformed in this work by ML-based classifiers, which 

could be effectively trained on a relatively small in-domain 

corpus. SNER even lacked in-domain knowledge, while 

Micromed used mostly standard NER features. This difference 

between MetaMap and ML methods suggests that the data set 

here has different characteristics to NER tagging in other 

domains.  

The difference may also reflect different design considerations 

to be considered to tune MetaMap to work with Twitter data. 

In our work, the current performance of Micromed, as well as 

its lower computational costv are likely to be advantageous in 

processing large volumes of social media data. The 

computational cost must, of course, be low if we hope to 

process a significant fraction of a high-volume data stream in 

real time. In addition, the smaller number of false positives 

generated by a higher precision system should lead to greater 

acceptance by users of the system output. Since the volume of 

data available in social media is relatively large with a high 

degree of redundancy with respect to overall trends, slightly 

lower recall is less of a concern in these applications. 

Conclusion 

In this work, we have presented the development of a Twitter 

set annotated with medical entities, showing that it is possible 

to perform high-quality annotation despite the complexity of 

medical terminology and the lack of context in a tweet. We 

have made the dataset publicly availablevi to encourage further 

research. Furthermore, we have evaluated the capability of 

some state-of-the-art approaches to reproduce the manual 

annotations. The approaches demonstrate reasonable accuracy 

(with interesting variations between the methods), although 

further work is needed to identify additional features that 

might improve the performance of the annotators. We have 

focused on creating a data set and evaluating state-of-the-art 

annotators. We plan to use these annotators to process a live 

data stream from Twitter or some other source for 

biosurveillance and detecting adverse drug reactions. 
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