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Abstract

Medical Cyber-Physical Systems (MCPS) are currently a
trending topic of research. The main challenges are related to
the integration and interoperability of connected medical
devices, patient safety, physiologic closed-loop control, and
the verification and validation of these systems. In this paper,
we focus on patient safety and MCPS validation. We present a
formal patient model to be used in health care systems
validation without jeopardizing the patient’s health. To
determine the basic patient conditions, our model considers
the four main vital signs: heart rate, respiratory rate, blood
pressure and body temperature. To generate the vital signs we
used regression models based on statistical analysis of a
clinical database. Our solution should be used as a starting
point for a behavioral patient model and adapted to specific
clinical scenarios. We present the modeling process of the
baseline patient model and show its evaluation. The
conception process may be used to build different patient
models. The results show the feasibility of the proposed model
as an alternative to the immediate need for clinical trials to
test these medical systems.
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Introduction

In the health care domain, traditional clinical scenarios are
seen as closed-loop systems in which the caregivers are the
controllers, medical devices act as sensors and actuators, and
patients are the “physical” plants. Medical Cyber-Physical
Systems (MCPS) modify this vision by introducing additional
computational entities that help the caregiver control the
“plant”, i.e., decision support [1].

Due to the insufficient understanding of human body
dynamics in response to any treatment, MCPS development is
more complex than traditional systems [1]. Since patient
safety is the main concern of an MCPS, they must be carefully
tested before being released to the market. However, to allow
a MCPS to be directly tested with real patients, it is necessary
to have an alternative solution for developers to identify
critical errors and prevent serious harm to test patients.
Therefore, a pre-validation step must be added to the
validation process to anticipate the identification of these
errors.

Nowadays, MCPS designers, more specifically the
manufacturers of medical devices, use documents provided by

regulatory agencies related to health, such as the FDA'. They
specify standards for safety and performance to minimize
design risks and to ensure the effectiveness of products.

The importance of having a formal patient model is the
capability of generating relevant test cases to validate an
MCPS. This process aims to examine if the therapies provided
by these systems are adequate and ensure patient safety by
adapting their behavior given the patient's current state [2].

The concept of a virtual patient described by Agur [3] is
related to a complex set of mathematical models and a set of
parameters that represent the dynamics of biological,
pharmacological, and pathological processes in the body of a
patient under medication. In the literature, we can find some
related work about computational modeling of patients. For
instance, Jiang et al. [2] provide an environment for closed-
loop testing, whose patient model, specifically a formal model
of the human heart, is the control center of a cardiac
pacemaker system. The goal is to evaluate the device’s
operation safety and effectiveness based on the patient
condition.

Other recent research is presented by Van Heusden et al. [4],
which proposes an artificial pancreas model for patients with
type 1 diabetes mellitus based on control theory. Its goal is to
improve glucose control in such patients. One of its
advantages is that it incorporates the patient's medication
(insulin) reaction.

Lastly, Khan et al. [S] present a glucose control system to
prevent hypoglycemia as a consequence of medication
administration. In this work, the patient model (i.e., an
artificial pancreas) establishes a relationship between certain
vital signs such as heart rate and skin impedance in the blood
glucose level control.

The aforementioned patient models either focus on variables
of interest for specific clinical scenarios or neglect the
relationship between the four human being's vital signs: heart
and respiratory rates, blood pressure, and body temperature.
Therefore, the absence of these aspects contradicts the actual
behavior of human beings. So, these models have limited
applicability to other scenarios.

In this paper, we propose a formal patient model to be used as
a basis for developers to validate MCPS solutions without
risking compromising patients' health if the system fails. Our
model provides parameters to define patient profiles, and
correlates the main vital signs to simulate the patient's health
condition. The vital signs are represented by statistical
regression models which were integrated to provide the
patient's model dynamics.

! United States Federal Food and Drug and Administration -
http://www.fda.gov/
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The key feature of the baseline patient model is the ability to
be adapted to various specific clinical scenarios, promoting
reuse. The main contribution of this paper is to present the
conception process used to develop the baseline patient model
of the model-based architecture proposed by Silva et al. [6].

Materials and Methods

The vital signs and physiological parameters provided by our
patient model are based on thresholds. They are generated by
regression models. We established the parameters that defined
the thresholds in accordance with Clinical Guidelines, such as
[7-9]. These clinical guidelines also were used to help
identify the probable regression model predictor variables for
each vital sign considered in our baseline patient model. Also,
we applied some rules on the real patient data obtained from
the MIMIC II Clinical Database v2.6, whose access was
authorized by the PhysioNet.org [10]. This data set contains
clinical data from Intensive Care Unit (ICU) patients and the
rules were applied to characterize the population of interest for
study. The baseline patient model conception process consists
of: (1) Statistical analysis and (2) Computational modeling.

Statistical Analysis

We used the same database to characterize a population of
individuals. We applied inferential statistical techniques such
as a Generalized Linear Model (GLM) to obtain regression
models. These models are used to predict the observed signs
to be incorporated in the baseline patient model.

In the GLM, is assumed that the response variable follows the
exponential family distribution, and the predicted values are
calculated from a link function [11].

The population contained 38,141 observations from 2,245
patients, in which approximately 37.4% were female and
62.6% male. From this population, we obtained a sample with
one observation of each patient in the moment they were
admitted to the ICU. We present a summary of the process to
characterize the population of interest and sampling procedure
in Figure 1, whose sample size represents only approximately
0.001% of total population. Table 1 presents descriptive
statistics about the data set extracted from this process.

Table 1 — Statistics of the Population of Interest

Variable Mean S V' Min.  Max.
Dev.

hr 86863 14473 0167 4200  150.00

sbp 115447 20403 0177 6200  205.00

rr 17552 5619 0320 800  38.00

pt 36926 0879  0.024 3170  41.44

gl 120.631 30444 0235 47.00  188.00

weight 83.727  20.826 0.249 33.00  200.00
height 169.781 10.427 0.061 12450 231.10

* Coefficient of Variation; Std. Dev. = Standard Deviation,
Min = minimum, Max. = Maximum.

We selected eight variables for the statistical analysis: gender,
weight and height as demographic variables; heart rate (/r),
respiratory rate (77), systolic blood pressure (sbp), and body
temperature (pf), as vital signs; and blood glucose level (g/), as
a physiological parameter. It is worth mentioning that a
variable for diastolic blood pressure was not used in this
analysis because it depends on sbp variable. The strong
correlation between these variables may cause a
multicollinearity problem [12].

Given that the population of interest was defined and one
sample was obtained, we extracted four regression models,

one for each vital sign in study. The regression models were
evaluated using the following statistical measures: (a)
determination coefficient (R%); (b) square of the linear
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Figure 1 — Process to characterize the population of interest
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correlation coefficient (R°") between response variable and
adjusted values. Both measures were used to indicate the data
variability explained by the regression model. Table 2 presents
the results for each model, with confidence level of 95%.

Table 2 — Metrics to Evaluation of the Regression Models

Regression Model R’ R

GLM _HR 0.310 0.332
GLM SBP 0.477 0.511
GLM RR 0.414 0.489
GLM PT 0.480 0.480

R’ = Determination Coefficient, R = COR(y, f1)
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As human beings have many variables to be observed, and
different individuals react differently to the same drug [13],
we believe the results are satisfactory.

It is noteworthy that to predict the respiratory rate we used a
Normal Inverse Model in the form of Equation (1) with
canonical link function defined in Equation (2):

1

p=p 2 1)

where u is the mean frequency of respiratory rate that we want
to model and

4 4 7
ﬁ:ﬁ0+zﬂiXi+Zﬁ5jX5j+zﬁka' @
i=1 j=2 i=6
is the systematic component where S, corresponds to the
intercept and S, ; to the coefficients of the variables Ar, sbp,
pt, gl and group, as well as the interactions between hr-sbp
and hr-gl, respectively. The group variable is used according
to the patient classification, given the values of the other
predictor variables. Therefore, the Xj; variable assumes the
value / according to the j value that specifies the patient
group, and the value 0 for all other possible j values.

The usage of the Normal Inverse Model means that the higher
the value of the systematic component, the lower the value of
the average estimated respiration rate. Hence, higher values of
variables with positive coefficients lead to lower values of rr.
On the other hand, higher values of variables with negative
coefficients, lead to higher values of rr.

For the remaining regression models, we used a Gamma
Linear Regression Model given by Equation (3), whose
variance function is more restrained than the Normal Inverse
Model:

a=i 3)

Where p is the mean frequency of vital signs that we want to
model; in this case hr, sbp and pt. Since the workflow to
create regression models for all vital signs is similar, these
regression models were omitted.

Computational Modeling

To design the baseline patient model we used the AOD
paradigm, i.e., a design methodology based on components
called actors [14]. This methodology represents a formal
model of concurrency in which an actor is a computational
agent that has an independent thread of control and
communicates through asynchronous message exchange. We
used the Prolemy II modeling tool, which is an extensible
AOD-based software framework that supports exper-
imentation, to build the models. Its emphasis is in concurrent
components, using well-defined computation models that
govern the interaction among these components [15].

The baseline patient model considers the four main vital signs:
heart rate (hr), respiratory rate (rr), arterial blood pressure
(bp) and peripheral body temperature (pf). This patient model
consists of the integration among the regression models that
represent each one of these vital signs. Such regression models
in the AOD paradigm may be modeled as shown in Figure 2,
whose regression model is for respiratory rate (GLM_RR).

We integrated the regression models to the baseline patient
model (see Figure 3) to allow interaction among them and
provide the behavioral dynamics to the patient's model. Thus,
the user may change the value of a specific vital sign during
simulation and automatically the values of other vital signs
will be modified according to their respective regression
models.

We present part of the elaborated model that incorporates the
patient characteristics and the regression models of the four
vital signs in Figure 3a. We have highlighted the following
key elements: (1) the patient model configuration parameters,
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Figure 2 — GLM RR for the Patient Model

including the Continuous Director element that determines
their execution semantics; (2) the substructure of the model
that specifies the vital signs’ initial values and physiological
parameters represented in the model; (3) the elements labeled
by the GLM <vital sign> pattern that denote the regression
models for each vital sign modeled. The model parameters are
the basis for generating the values for the vital signs provided
by the patient model. Moreover, the specifications of the
thresholds of each vital sign allow the developer to manipulate
them during the simulation, to represent different health
conditions for the patient's model. Consequently, the behavior
analysis of the MCPS may be carried out for various
situations.

We present the second part of the baseline patient model in
Figure 3b. The highlighted elements are: (4) the parameters
that define thresholds for each signal so that these signals
remain within the range of values considered in the conception
of regression models; (5) the logic used to identify which vital
sign was changed by the user at a given time during the model
simulation; (6) the component developed to select the model's
correct output according to user intervention; and (7) ports
that provide the patient model communication interfaces with
the medical devices models for data acquisition from these
devices.

Notice that the patient model only has output ports for vital
signs and physiological parameters. To receive feedback
control actions from actuator models, input ports must be
added to the patient model through the Ptolemy II framework.
Additionally, the patient model must be adapted to represent
the pharmacokinetic model's dynamic behavior corresponding
to the drug type to be administered.

Results and Discussion

We used Diagnostic Plots to assess the regression models. In
Figure 4 we present the envelope (Normal Q-Q Plot), leverage
points, influential points and residuals versus fitted values plot
for rr. Due to space constraints, we omit the results from the
other vital signs.
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(b) Submodel to provide information to the medical devices’
models

Figure 3 — Baseline Patient Model
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Figure 4 — Diagnostic Plots for the GLM_RR
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Envelope plots are useful to check the regression models’ fit.
Leverage points may interfere in adjusted values close to them
and regression coefficients estimate. Influential points may
interfere in the model parameters’ estimated values. The
residuals versus fitted values plot is useful to assess the
assumptions of the regression model (e.g., any visible trends
would show a dependence of errors on the predictor variable).

After analyzing the diagnostic plots of each regression model,
we concluded that the obtained models reasonably explain the
vital sign they represent. Thus, the regression models were
statistically validated. This means that the synthetic data
generated by the patient computational model are compatible
with the sample used in statistical analysis. The simulation of
the proposed patient model in a specific clinical scenario is out
of the scope of this paper.

Conclusion

In this paper, we presented a formal model to provide context
information (e.g., profile and vital signs) of a patient, the so-
called baseline patient model. We used regression models to
generate a set of vital signs (heart rate, respiratory rate, blood
pressure and body temperature) that compose the patient
model.

The use cases of this patient model are to simulate patients’
health conditions to support testing of MCPS. With its
extension, it will be possible incorporate it to the context of
specific clinical scenarios. This will provide the developer an
important tool to identify failures in the system, and will also
assist health experts in the strategy planning in the treatment
of patients. However, its extension depends on the experience
of the MCPS developer, as well as the knowledge of the
medical expert that may help in this process.

Our solution can adapt and be used in a variety of clinical
scenarios. These scenarios can simulate different medical
contexts, helping in the validation process of medical systems.
The approach applied to build the baseline patient model may
be used to create different patient model types, but will require
the use of different samples or clinical data sources.
Furthermore, it might be necessary to define other patient use
cases to validate the MCPS given that the patient model
presented was built using only data of ICU patients.

A potential limitation of this patient model is its restriction to
the input values for predictor variables. Whenever these
values exceed their thresholds, the accuracy of the regression
models used to generate the synthetic data for vital signs
might decrease.

In the future, we will show how to extend the patient baseline
model for specific clinical scenarios. This will require the
incorporation of dynamics of the action of drugs in the
patient's body to the model. Thus, the medical device models
may act on patients' behavior, causing it to react to such
actions. Lastly, we will request that health experts perform
external validation of the patient model.
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