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Abstract 

Medical Cyber-Physical Systems (MCPS) are currently a 

trending topic of research. The main challenges are related to 

the integration and interoperability of connected medical 

devices, patient safety, physiologic closed-loop control, and 

the  verification and validation of these systems. In this paper, 

we focus on patient safety and MCPS validation. We present a 

formal patient model to be used in health care systems 

validation without jeopardizing the patient's health. To 

determine the basic patient conditions, our model considers 

the four main vital signs: heart rate, respiratory rate, blood 

pressure and body temperature. To generate the vital signs we 

used regression models based on statistical analysis of a 

clinical database. Our solution should be used as a starting 

point for a behavioral patient model and adapted to specific 

clinical scenarios. We present the modeling process of the 

baseline patient model and show its evaluation. The 

conception process may be used to build different patient 

models. The results show the feasibility of the proposed model 

as an alternative to the immediate need for clinical trials to 

test these medical systems. 

Keywords:  

Baseline Patient Model; Statistical Analysis; Simulation; 

Testing; Medical CPS. 

Introduction 

In the health care domain, traditional clinical scenarios are 

seen as closed-loop systems in which the caregivers are the 

controllers, medical devices act as sensors and actuators, and 

patients are the “physical” plants. Medical Cyber-Physical 

Systems (MCPS) modify this vision by introducing additional 

computational entities that help the caregiver control the 

“plant”, i.e., decision support [1]. 

Due to the insufficient understanding of human body 

dynamics in response to any treatment, MCPS development is 

more complex than traditional systems [1]. Since patient 

safety is the main concern of an MCPS, they must be carefully 

tested before being released to the market. However, to allow 

a MCPS to be directly tested with real patients, it is necessary 

to have an alternative solution for developers to identify 

critical errors and prevent serious harm to test patients. 

Therefore, a pre-validation step must be added to the 

validation process to anticipate the identification of these 

errors. 

Nowadays, MCPS designers, more specifically the 

manufacturers of medical devices, use documents provided by 

regulatory agencies related to health, such as the FDA1. They 

specify standards for safety and performance to minimize 

design risks and to ensure the effectiveness of products. 

The importance of having a formal patient model is the 

capability of generating relevant test cases to validate an 

MCPS. This process aims to examine if the therapies provided 

by these systems are adequate and ensure patient safety by 

adapting their behavior given the patient's current state [2]. 

The concept of a virtual patient described by Agur [3] is 

related to a complex set of mathematical models and a set of 

parameters that represent the dynamics of biological, 

pharmacological, and pathological processes in the body of a 

patient under medication. In the literature, we can find some 

related work about computational modeling of patients. For 

instance, Jiang et al. [2] provide an environment for closed-

loop testing, whose patient model, specifically a formal model 

of the human heart, is the control center of a cardiac 

pacemaker system. The goal is to evaluate the device’s 

operation safety and effectiveness based on the patient 

condition. 

Other recent research is presented by Van Heusden et al. [4], 

which proposes an artificial pancreas model for patients with 

type 1 diabetes mellitus based on control theory. Its goal is to 

improve glucose control in such patients. One of its 

advantages is that it incorporates the patient's medication 

(insulin) reaction.  

Lastly, Khan et al. [5] present a glucose control system to 

prevent hypoglycemia as a consequence of medication 

administration. In this work, the patient model (i.e., an 

artificial pancreas) establishes a relationship between certain 

vital signs such as heart rate and skin impedance in the blood 

glucose level control. 

The aforementioned patient models either focus on variables 

of interest for specific clinical scenarios or neglect the 

relationship between the four human being's vital signs: heart 

and respiratory rates, blood pressure, and body temperature. 

Therefore, the absence of these aspects contradicts the actual 

behavior of human beings. So, these models have limited 

applicability to other scenarios. 

In this paper, we propose a formal patient model to be used as 

a basis for developers to validate MCPS solutions without 

risking compromising patients' health if the system fails. Our 

model provides parameters to define patient profiles, and 

correlates the main vital signs to simulate the patient's health 

condition. The vital signs are represented by statistical 

regression models which were integrated to provide the 

patient's model dynamics.  
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Variable Mean 
Std. 

Dev. 
CV

 a

 Min. Max. 

hr 86.863 14.473 0.167 42.00 150.00 

sbp 115.447 20.403 0.177 62.00 205.00 

rr 17.552 5.619 0.320 8.00 38.00 

pt 36.926 0.879 0.024 31.70 41.44 

gl 129.631 30.444 0.235 47.00 188.00 

weight 83.727 20.826 0.249 33.00 200.00 

height 169.781 10.427 0.061 124.50 231.10 
a 

Coefficient of Variation; Std. Dev. = Standard Deviation,          

Min = minimum, Max. = Maximum. 

Regression Model R
2
 R

2*

GLM_HR 0.310 0.332 

GLM_SBP 0.477 0.511 

GLM_RR 0.414 0.489 

GLM_PT 0.480 0.480 

2

R = Determination Coefficient, )ˆ,(
*2

µyCORR =
 

The key feature of the baseline patient model is the ability to 

be adapted to various specific clinical scenarios, promoting 

reuse. The main contribution of this paper is to present the 

conception process used to develop the baseline patient model 

of the model-based architecture proposed by Silva et al. [6].  

Materials and Methods 

The vital signs and physiological parameters provided by our 

patient model are based on thresholds. They are generated by 

regression models. We established the parameters that defined 

the thresholds in accordance with Clinical Guidelines, such as 

[7-9].  These clinical guidelines also were used to help 

identify the probable regression model predictor variables for 

each vital sign considered in our baseline patient model. Also, 

we applied some rules on the real patient data obtained from 

the MIMIC II Clinical Database v2.6, whose access was 

authorized by the PhysioNet.org [10]. This data set contains 

clinical data from Intensive Care Unit (ICU) patients and the 

rules were applied to characterize the population of interest for 

study. The baseline patient model conception process consists 

of: (1) Statistical analysis and (2) Computational modeling.  

Statistical Analysis 

We used the same database to characterize a population of 

individuals. We applied inferential statistical techniques such 

as a Generalized Linear Model (GLM) to obtain regression 

models. These models are used to predict the observed signs 

to be incorporated in the baseline patient model.   

In the GLM, is assumed that the response variable follows the 

exponential family distribution, and the predicted values are 

calculated from a link function [11]. 

The population contained 38,141 observations from 2,245 

patients, in which approximately 37.4% were female and 

62.6% male. From this population, we obtained a sample with 

one observation of each patient in the moment they were 

admitted to the ICU. We present a summary of the process to 

characterize the population of interest and sampling procedure 

in Figure 1, whose sample size represents only approximately 

0.001% of total population. Table 1 presents descriptive 

statistics about the data set extracted from this process. 

Table 1 – Statistics of the Population of Interest 

We selected eight variables for the statistical analysis:  gender, 

weight and height as demographic variables; heart rate (hr), 

respiratory rate (rr), systolic blood pressure (sbp), and body 

temperature (pt), as vital signs; and blood glucose level (gl), as 

a physiological parameter. It is worth mentioning that a 

variable for diastolic blood pressure was not used in this 

analysis because it depends on sbp variable. The strong 

correlation between these variables may cause a 

multicollinearity problem [12].  

Given that the population of interest was defined and one 

sample was obtained, we extracted four regression models, 

one for each vital sign in study. The regression models were 

evaluated using the following statistical measures: (a) 

determination coefficient (R
2); (b) square of the linear  

 

Figure 1 – Process to characterize the population of interest 

correlation coefficient (R2*) between response variable and 

adjusted values. Both measures were used to indicate the data 

variability explained by the regression model. Table 2 presents 

the results for each model, with confidence level of 95%. 

Table 2 – Metrics to Evaluation of the Regression Models 
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