MEDINFO 2015: eHealth-enabled Health
LN. Sarkar et al. (Eds.)
© 2015 IMIA and 10S Press.

45

This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.

doi:10.3233/978-1-61499-564-7-45

Towards the Implementation of an openEHR-based Open Source EHR Platform
(a vision paper)

Pablo Pazos Gutiérrez®

* openEHR en Espafiol, Asociacion Chilena de Informdtica en Salud, CaboLabs

Abstract

Healthcare Information Systems are a big business. Currently
there is an explosion of EHR/EMR products available on the
market, and the best tools are really expensive. Many
developing countries and healthcare providers cannot access
such tools, and for those who can, there is not a clear strategy
for the evolution, scaling, and cost of these electronic health
products. The lack of standard-based implementations
conduct to the creation of isolated information silos that
cannot be exploited (i.e. shared between providers to promote
a holistic view of each patient's medical history).

This paper exposes the main elements behind a Standard-
based Open Source EHR Platform that is future-proof and
allows to evolve and scale with minimal cost. The proposed
EHR Architecture is based on openEHR specifications, adding
elements emerged from research and development
experiences, leading to a design that can be implemented in
any modern technology. Different implementations will be
interoperable by design. This Platform will leverage contexts
of scarce resources, reusing clinical knowledge, a common set
of software components and services.

Keywords:

Electronic Health Records; Open Source Software; openEHR;
Service Oriented Architecture; Data Collection.

Introduction

In this vision paper we present the basic components of an
Open EHR Platform that will be used in different scenarios as
a shared EHR core for country wide, federated, hospital and
clinic EHRs. The term "EHR core" will be use to reference an
implementation of the Platform using a specific technology
stack.

The main motivation behind this EHR Platform is to create an
open alternative to the closed/proprietary solutions currently
offered by EHR vendors. But also to create an EHR Platform
that is based on open standards and good design practices,
searching for a generic, reusable, scalable, extensible, web-
based, knowledge-driven, and future-proof solution.

This Platform is “open” in three ways:
1. open specification accessible for anyone.
2. open source tools and components.
3. free to use, adapt and extend.

This will help developers to create new tools and services
without the hassle of dealing with e-Health standards and clin-
ical knowledge (time consuming and costly tasks of any EHR
development), and enable developments in contexts of scarce
human & financial resources (small software companies, dev
teams in hospitals, etc.).

In the next sections the following topics will be presented:
design principles, architecture, components, services, and ide-
as pertaining to Platform development and use by client appli-
cations. Developers using services provided by the EHR Plat-
form, for shared data storage, querying and Clinical Decision
Support (CDS), will create these applications.

Current Status

Although this paper is about the vision and conception of a
new kind of EHR systems, we and other colleagues [1][2]
have been working in this area, including research, develop-
ment and training, mainly to understand the problem, delineate
a good solution, and validate it against functional prototypes
of the EHR Platform. The outstanding component we created
is the EHRServer [3]. It provides services of clinical data stor-
age and querying for clinical information, and this system can
actually be deployed and used. For Knowledge Management,
the Clinical Knowledge Manager [4] of the openEHR Founda-
tion is being used. There are also some proof-of-concept de-
velopments around a Demographic Server and a Rule Engine
that will soon be released.

Methods

This paper presents the core components of the proposed EHR
Platform, which is an extension/specialization of the openEHR
EHR Computing Platform [5], defined by the openEHR speci-
fications [6]. The extensions are based on research & devel-
opment, project development, integration of EHR, HIS and
other clinical information systems, and preparing training ma-
terials and case studies.

Design Principles of the Open EHR Platform

e Provide a minimum/common set of generic services

— Reuse: must support a wide range of client ap-
plications with the same set of components and
services, leveraging available resources.

— Pareto principle: the platform will provide the
20% of the functionalities of a full blown EHR
system to support 80% of the requirements for
any EHR system, keeping the Platform small
and manageable. The rest of the functionalities
should be added by developing client applica-
tions, and those might be customized for each
application (i.e. won’t suit as core functionali-
ties).

— Scope: The services will be focused on data
storage and querying, permitting data interpreta-
tion and manipulation to client applications.

— Standardization: the EHR Platform will imple-

ment open standards to reach interoperability,
so developers do not need to do that work.

46 P. Pazos Gutiérrez / Towards the Implementation of an openEHR-based Open Source EHR Platform

e Modifiability and Extensibility: the metadata-based
configuration of the Platform will allow new data
structures, data queries and rules to be added without
modifying the database structure or source code.

e C(Clinical data consolidation:

— The storage services of the Platform collect and
consolidate clinical information from different
client applications into a loosely centralized
platform, thus facilitating a unique EHR, per pa-
tient, that is complete and ubiquitously accessi-
ble.

— Consolidated data will be on a Cloud-ready
Platform using a distributed approach, avoiding
monolithic systems and one-point-of-failure.

e Secure:

— Clinical and demographic/identification data are
physically separated, allowing secondary use of
anonymized clinical data.

— All communications between client applications
and the EHR Platform will be encrypted. On
each communication, the client will be authenti-
cated and permissions will be verified. Client
apps should comply with security rules, and
good security practices will be encouraged.

— Modifications to the data in the EHR will be
done only by authenticated and authorized client
applications, and those should ensure correct
authentication and authorization for their users
(this item should be included in the Platform
rules of use).

— No data is actually modified or deleted;
amendments, corrections or deletions all gener-
ate new versions of the data.

Knowledge Management (KM)

The KM process is grounded on four main artifacts: 1) clinical
record structures, 2) terminology, 3) rules, and 4) processes.
Those are defined as computable expressions that can be cre-
ated and updated, using modeling tools [7], by Domain Ex-
perts (physicians, nurses, and allied health professionals).
These experts, who are closer to the end users of the EHR,
will play the role of Clinical Knowledge Modelers that are in
responsible for defining the structure and behavior of the
EHR, and how it will evolve over time.

The openEHR specifications [6] define two kinds of artifacts:
archetypes and templates. Archetypes are units of content (da-
ta structures, constraints and terminology) that specify to one
health concept, in a processable and self-contained artifact,
that has global validity (e.g. Blood Pressure, Prob-
lem/Diagnosis, Clinical Evolution, Glasgow Coma Scale,
Body Mass Index, etc.). Templates defined by specific clinical
documents, valid in local contexts, refer to many Archetypes,
and can use all the Archetype structure or just part of it.

Open EHR Platform Architecture

The Open EHR Platform Architecture is constituted by com-
ponents with well-defined responsibilities, and provides ser-
vices to other and client applications. This is based on the
openEHR architecture [8].

|—evaluate

EHR Server Rule Engine

external
references

—~
—vetrieve
Knowledge -~
Manager

Figure I - Open EHR Platform Architecture

Four main components are defined to manage information and
provide services for: 1) clinical data (EHR Server), 2) demo-
graphic and identification data (Demographic Server), 3) rules
to enable CDS (Rule Engine), and 4) Clinical Knowledge
(Knowledge Manager). The latter is where all of the metadata,
authored by Domain Experts, is stored and made available for
the rest of the components: clinical document and administra-
tive data structures, terminologies, rules and workflows.

Due to the narrowed scope of the Platform, a User Interface
(UI) for the end-user ought to be provided by client applica-
tions developed over the EHR platform. This is why the term
“EHR platform” rather than “EHR system” may better suit
this work.

Services

Each sub-system of the EHR Platform architecture will pro-
vide a set of services related to their responsibilities. Below
we describe the major services and internal components of
each sub-system.

Figure 2 - Knowledge Manager Component

The KM sub-system will handle the artifacts created by the
KM process. These artifacts are the heart of the whole EHR
Platform, if some of those change or new artifacts are added,
the data and behavior of the Platform will change, giving the
Platform the “future-proof” label. There are four main compo-
nents:

e Archetype and Template Repository: stores artifacts
that define the data structure and low-level constraints
of each clinical document in the EHR.

e Terminology Server: provides services around termi-
nologies, classifications, thesauri, dictionaries, and
mappings/relationships between them. Archetypes and
Templates will use these terminologies.

e Rule Repository: manages rules that will be executed
by the Rule Engine.

P. Pazos Gutiérrez / Towards the Implementation of an openEHR-based Open Source EHR Platform 47

Figure 3 - EHR Server Components

The EHR Server is responsible for the safekeeping of clinical
records and providing services to change the EHR and query
for clinical data.

Document Management: Provides services to validate, create
and update clinical information in the EHR of each patient,
allowing the management of the internal organization of the
clinical records in a directory structure (e.g. by episode or
health problem).

Querying: Enables client applications such as EMRs and
mHealth apps to access clinical information from the EHR.
Queries are specified in an abstract declarative way, based
on structures defined by openEHR archetypes [9]. Queries do
not depend on specific database technologies, so there is the
need to implement a crosswalk between EHR Server queries
and database query language such as SQL or XQuery. In this
component, queries will be created by Domain Experts and
end-users [10], exported & imported and executed against a
specific DB technology. So EHR queries can be shared
between different implementations of the EHR Server. The
results of a query will be returned in standard open formats
such as XML and JSON, and organized in different ways: full
clinical documents or data points, grouped by data type or by
clinical document type, contextualized to time points or inter-
vals.

Audit: Enables the management, evaluation and control of
changes to the EHR of a patient, allows the detection of prob-
lems such as wrongly organized, deleted or modified clinical
information.

Figure 4 - Demographic Server Components

The Demographic Server is responsible for the management
of varying entities such as persons, organizations, groups, de-
vices, systems, their relationships and roles. All of these enti-
ties will be referenced from the EHR records, and all refer-
enced entities should be stored in the Demographic Server.
This sub-system will act as a Master Patient Index and Human
Resource Index (but will not include information about con-
tracts, payments, etc. that will be handled by third party appli-
cations). The Identity Quality Management includes function-
alities to help detect errored, corrupted and duplicated entities
in the demographic repository, and manage the repository au-
dit to evaluate and control changes made by external applica-
tions.

Figure 5 - Rule Engine Components

Rules are declarative units of logic that are evaluated against
data, that execute actions based on conditions, and can return
values. The rule execution will be triggered by events such as
a user clicking a button or selecting a value from a list (e.g. a
medication to create a prescription) or system events such as
batch jobs executed at certain times. The data to evaluate the
rules will come from the EHR Server (clinical data) or the
Demographic Server (age range, sex, geographic location),
and can be input data (provided by the triggered event), or rule
variables (resolved when the rule is executed, e.g. querying
the EHR for data). There is a proposal from the community to
express rules and guideline-based workflows using a similar
syntax to the one used in archetypes [11], this is called the
Guideline Definition Language (GDL) [12].

The Rule Engine is in charge of loading rules from the
Knowledge Manager, Resolve Referenced Values (e.g. query-
ing the EHR Server), and Rule Execution that controls the rule
logic and return values.

Customization and Extension: a better way

Since our goal is to design a low cost environment to create
EHR systems, the Platform we envision will have an extreme
level of modifiability, and this is a design requirement. To
reach this objective we need to forget some of the traditional
practices currently used to develop software for healthcare. In
the traditional way we might be able to create an EHR, but we
might not be able to maintain it. So, considering that the cost-
lier and longer phase in software development is maintenance
and evolution [13], and EHRs are long-term projects, thus for
really effective EHR Systems we need to cut the maintainabil-
ity cost to the minimum.

The Platform architectural design and the use of metadata to
describe the system data structures (archetypes, templates,
terminology) and behavior (rules, processes) allows a huge
level of modifiability to adapt the EHR to new requirements,
while maintaining the stability of the core EHR system. This
is achieved because there is no need to modify source code or
database schemas to make changes to the Platform, so no new
bugs are introduced at the code level. To implement this, a
mix of open standards, a Service Oriented Architecture
(SOA), current technologies and techniques (Model-View-
Controller, Object-Relational Mapping and dynamic lan-
guages) should also be applied.

Making changes and adding new features for end-users will be
done over client applications, e.g. improving EMR UI or add-
ing a feature, such as tagging patient records, so the core of
the system, the EHR Platform, is not affected by these chang-
es.

For example, on the EHR Server, extensions will be added in
three main forms:
1. New archetypes and templates will define the structure
of new clinical records,

2. New queries will define new ways of accessing the
data stored in the EHR,

48 P. Pazos Gutiérrez / Towards the Implementation of an openEHR-based Open Source EHR Platform

3. New rules will add behavior, to execute actions under
certain conditions, using the data from the EHR.

Deployment

The proposed platform can be offered by a “Software as a
Service” (SaaS) model, or software vendors and medical insti-
tutions can create their own local deployments. Either way,
the platform is focused on providing high availability and da-
ta/metadata backup, two basic requirements for any shared
EHR system. To provide this, some redundancy is needed;
therefore more than one instance of each sub-system should be
deployed.

The platform is designed to support this by providing syn-
chronization services between different instances of the same
sub-system. E.g. two instances of EHR Server will synchro-
nize data when one instance receives a commit of a clinical
document, so queries can be executed in both instances, also
providing better performance. This also works when scalabil-
ity is needed. When the EHR Platform needs to support more
applications and users, store and retrieve more data, etc., the
service level of the platform should neither deteriorate nor
disturb other users. Adding more instances of the Platform
sub-systems will let it to scale horizontally without huge in-
vestments.

Thinking about long-term viability of a project of this kind,
offering SaaS as a hosted solution for software development
companies can help to fund the EHR Platform maintenance
and evolution. This strategy is implemented by a lot of Open
Source projects, accompanying that with paid extensions and
value-added services.

Developing Applications

The core set of services provided by the Open EHR Platform
will enable developers to focus on creating client applications
without starting from scratch, and solve the same problems
again and again. Moreover, they get standardized data
structures using communication protocols and syntaxes they
are familiarized with like REST/SOAP, JSON/XML, without
the hassle of implementing the standards themselves, so they
create out-of-the-box interoperable applications.

Client applications can be classified into three categories: data
input apps, data display apps and mixed. Vital Signs monitors
and study result reporting are examples of “data input”
applications, because they function to send/commit data to the
EHR. Reporting tools are an example of “data display”
applications that mainly will query the EHR. EMRs [14] are
examples of mixed input/output. It is worth mentioning that
when a deployed platform supports several applications, all
the clinical documents committed to the EHR by the “data
input” apps will be available to the “data display” apps with
permission to query the EHR Platform, enabling the
implementation of a truly shared EHR.

To help developers adopt the EHR Platform and the method-
ology to create client applications proposed in this paper, we
visualize the creation of helper tools such as Software Devel-
opment Kits, libraries for different programming languages
and learning materials. Some work around this area has al-
ready been done. The first is a framework to develop EHR
systems called EHRGen [15]. We have also worked in a mul-
ti-level methodology and a set of tools to automatically gener-
ate User Interfaces for Clinical Information Systems over dif-
ferent technologies (HTMLS, Java, .Net), from openEHR Ar-
chetypes and Templates [16].

As an example, using the services provided by the EHR Plat-
form, client applications can implement features like: brows-
ing through the patient’s medical history, generate clinical and

public health reports about population’s health with different
aggregations (by age range, sex, geographic location, etc.),
calculate for different indicators (e.g. number of births per
year), sending notifications under certain circumstances to the
patient, family, health care team, management team or
healthcare authorities (e.g. execution of rules that notify when
new test results are available, or when a diagnosis of a certain
decease was added to the EHR of a patient), Clinical Decision
Support features like alerts, recommendations, reminders, ref-
erence material, etc. (rules are executed, and based on context
data, a correspondent result is returned, e.g. give an alert if the
patient is allergic to the medications that is about to be pre-
scribed).

Validation of the proposed architecture

The validity of the proposed architecture can, and should, be
evaluated against standards and specifications, first against
international ones, to satisfy generic requirements, methodol-
ogies, needs and rules, and then against local compliances that
define more specific requirements. Since the architecture is
the most generic and abstract definition of a complex system,
it should not be evaluated against requirements related to low
level designs, with a bigger amount and more specific re-
quirements), and the use of specific technologies. After the
architecture is adapted to a low level designs and mapped to a
specific technology stack (this is called Implementation Tech-
nology Specification, ITS for short), those more specific arti-
facts can be evaluated to more specific requirements and rules.
Considering the aforementioned ideas, it would be useful to
define some guidelines about how to validate the proposed
architecture. The actual validation would be a good area for
further investigation. Presented below is a list of varied stand-
ards and specifications that should (*) or might (+) be used as
validation guidelines. In some cases just part of the standard
would apply because it is too specific and the validation of the
architecture should be done in a very broad, generic and ab-
stract way, because that is the nature of a Software Architec-
ture. After these, local standards and specifications might also
apply.

Introduction, Terminology, Requirements and Architecture:
(*) ISO 18308: Requirements for an electronic health record
architecture.

(*) openEHR Specifications [6]

(+) IHE IT Infrastructure Profiles [17]

(+) ISO 20514: Electronic health record -- Definition, scope
and context

(+) ISO 14292: Personal health records -- Definition, scope
and context

(*) ISO 14639: Capacity-based eHealth architecture roadmap -
- Part 1: Overview of national eHealth initiatives

(+) ISO 14265: Classification of purposes for processing per-
sonal health information

(+) ISO 21298: Health informatics -- Functional and structural
roles

(+) ISO 22790: Health informatics -- Functional characteris-
tics of prescriber support systems

Healthcare record definition and sharing:
(*) ISO 27790: Document registry framework
(*) ISO 13128: Clinical document registry federation

(+) ISO/HL7 27932: Data Exchange Standards -- HL7 Clini-
cal Document Architecture, Release 2

P. Pazos Gutiérrez / Towards the Implementation of an openEHR-based Open Source EHR Platform 49

(+) ISO 12773-1: Business requirements for health summary
records -- Part 1: Requirements

(+) ISO 12773-2: Business requirements for health summary
records -- Part 2: Environmental scan

(+) ISO 13119: Clinical knowledge resources -- Metadata

Healthcare Records and Healthcare Data Communication:

(*) ISO 13606-1: Electronic health record communication --
Part 1: Reference model

(*) ISO 13606-2: Electronic health record communication --
Part 2: Archetype interchange specification

(*) ISO 13606-3: Electronic health record communication --
Part 3: Reference archetypes and term lists

(*) ISO 13606-4: Electronic health record communication --
Part 4: Security

(*) ISO 13606-5: Electronic health record communication --
Part 5: Interface specification

Conclusion

We are confident that creating a truly Open EHR Platform will
enable e-Health developments and long term EHR projects,
that are impossible today due the lack of resources. The proof-
of-concept prototypes already developed are attracting atten-
tion from the academy and the industry, and we are very close
to the delivery of EHR Platform sub-systems in a production-
ready state. As time passes, we are also designing and devel-
oping tools that will benefit software developers in the crea-
tion of openEHR-based applications that will be compatible
with the Platform. Such applications could produce a highly
scalable backend for shared EHR systems, thus allowing their
applications to share a common/stable set of services and easi-
ly evolve through time.

References

[1] Koray Atalag, et al., Assessment of Software Maintainabil-
ity of openEHR Based Health Information Systems - A
Case Study in Endoscopy, eJHI 2012; Vol7(1):e5

[2] Koray Atalag, et al., A Standards-based Approach to De-
velopment of Clinical Registries - Initial Lessons Learnt
from the Gestational Diabetes Registry, HINZ 2014.

[3] EHRServer: open source, openEHR based, Shared EHR
System project. https://github.com/ppazos/cabolabs-
ehrserver (accessed on Dec 22nd 2014)

[4] Clinical Knowledge Manager by Ocean Informatics
http://ckm.openehr.org/ (accessed on Dev 22nd 2014)

[5] What’s openEHR?
http://www.openehr.org/what_is_openehr (accessed on
Dec 22nd 2014)

[6] openEHR Specifications
http://www.openehr.org/programs/specification/releases/1.
0.2 (accessed on Dec 22nd 2014)

[7] openEHR Modeling Tools
http://openehr.org/downloads/modellingtools

[8] Beale, T., Heard, S., openEHR Architecture Overview,
openEHR Foundation, 2008.
http://openehr.org/releases/1.0.2/architecture/overview.pdf

[9] Chunlan Ma, Heath Frankel, Thomas Beale, Sam Heard,
EHR Query Language (EQL) — A Query Language for Ar-
chetype-Based Health Records, MEDINFO 2007, pp.397-
401 (2007)

[10]Shelly Sachdeva, Subhash Bhalla, Visual Query Language
for Archertype-Based Electronic Health Records Data-
bases, Journal of Information Processing, Vol.20 No.2,
pp.438-450, 2012.

[11]Thomas Beale, Sam Heard, Archetype Definition Lan-
guage, openEHR Foundation 2008.
http://www.openehr.org/releases/1.0.2/architecture/am/adl.
pdf (accessed on Dec 22nd 2014)

[12]Rong Chen, Iago Corbal, Expressing and Sharing Clinical
Decision Support Rules Using openEHR Archetypes,
MEDINFO 2013.

[13]Schach, R. (1999), Software Engineering, Fourth Edition.

[14]Electronic Medical Record definition
http://www.healthit.gov/providers-
professionals/electronic-medical-records-emr (accessed on
Dec 22nd 2014)

[15]Pablo Pazos, EHRGen: Generador de Sistemas
Normalizados de Historia Clinica Electronica Basados en
openEHR, Congreso Argentino de Informatica y Salud
2012.

[16]Arianne Palau, Laura Cuadrado, Pablo Pazos, Generacion
automatica de interfaces de usuario para sistemas de

informacion clinicos basados en una metodologia multi-
nivel, INFOLAC 2014.

[17]IHE IT Infrastructure Profiles

http://wiki.ihe.net/index.php?title=Profiles#IHE IT Infras
tructure_Profiles

Address for correspondence

Pablo Pazos Gutiérrez
Clinical Informatics Consultant
pablo.pazos@cabolabs.com

