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Abstract 

The objective of this paper is to evaluate the extent to which 
early determination of diagnosis-related groups (DRGs) can 
be used for better allocation of scarce hospital resources. 
When elective patients seek admission, the true DRG, 
currently determined only at discharge, is unknown. We 
approach the problem of early DRG determination in three 
stages: (1) test how much a Naïve Bayes classifier can 
improve classification accuracy as compared to a hospital’s 
current approach; (2) develop a statistical program that 
makes admission and scheduling decisions based on the 
patients’ clincial pathways and scarce hospital resources; and 
(3) feed the DRG as classified by the Naïve Bayes classifier 
and the hospitals’ baseline approach into the model (which we 
evaluate in simulation). Our results reveal that the DRG 
grouper performs poorly in classifying the DRG correctly 
before admission while the Naïve Bayes approach 
substantially improves the classification task. The results from 
the connection of the classification method with the 
mathematical program also reveal that resource allocation 
decisions can be more effective and efficient with the hybrid 
approach. 
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Introduction 

Several recent studies have highlighted the challenges facing 
many OECD (Organization for Economic Cooperation and 
Development) countries with rising pressure on healthcare 
systems due to increasing demand and expenditures for 
healthcare [1]. As a countermeasure, cost-containment policies 
such as diagnosis-related groups (DRGs) were introduced [10] 
and are evaluated continuously [11]. When hospital resources 
such as beds, diagnostic devices, human resources and 
operating room availability become scarce, the coordination of 
patient care and patient flow becomes a challenge. The 
problem is even more complicated when detailed information 
about patients who seek hospital admission is captured in an 
unstructured form or is likely to be incomplete in early stages 
of care. 

DRG-based reimbursement of patient services 

Within DRG systems, patients are classified into groups with 
homogeneous clinical characteristics and resources required 
during treatment. After the treatment, patients' health 
insurance pays a fixed amount for treatment depending on the 
assigned DRG. Within this context, uncertainties in care 
delivery information play an important role in the effective 

planning of healthcare processes. In early stages of care, the 
patients' DRG is unclear, because of potentially missing 
information and unstructured documentation of patient 
information using free-text [6]. This introduces a significant 
challenge to the hospital’s operations management when 
assigning patients to scarce hospital resources while economic 
objectives such as contribution margin maximization are 
pursued [5]. 

The role of hospital information systems to improve 
hospital-wide patient scheduling decisions 

By structuring patient information that is documented when 
patients seek admission, hospitals can leverage this 
information to better predict patients’ resource requirements. 
When information about each patient’s DRG, resource 
requirements, and clinical pathway [12] is made available 
before admission, a hospital can potentially improve the 
effectiveness and the efficiency of resource allocation 
decisions. 

In this paper, we investigate whether machine learning 
methods can increase the classification accuracy of an 
inpatient's DRG as compared to the current approach of using 
a DRG grouper. In particular, our focus is to classify the 
patient’s DRG before admission in order to improve 
admission decisions via novel statistical models. 

We analyze inpatient data from one year consisting of more 
than 16,000 records from a 350-bed hospital. Our results show 
that, in general, machine learning approaches can substantially 
increase early DRG classification accuracy, especially for 
elective patients who contact the hospital before admission. 
Moreover, we demonstrate that machine learning techniques 
combined with mathematical programming can lead to 
improved resource allocation decisions. 

The remainder of this paper is structured as follows. In the 
next section, we present two approaches demonstrating how 
early DRGs can be classified. The first classification approach 
can be seen as the current approach used by our study site, 
while the second one uses a Naïve Bayes classifier. We then 
develop a statistical model for patient admission and 
scheduling under several constraints, such as precedence 
constraints between clinical activities and resource constraints. 
The results section describes the data that we employed in our 
analysis and presents results of the classification and resource 
allocation task followed by a discussion. In the final section, 
we summarize our results and provide directions for further 
research. 
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Methods 

In the following, we present two DRG classification 
approaches and a model for combining and planning patient 
flow with admission decisions. 

Early DRG classification techniques 

Current approach using a DRG grouper 

To determine a DRG at discharge, typically, a simple 
flowchart-based method is used. The method is implemented 
in a commercial software called DRG grouper. Figure 1 
illustrates the DRG-grouping. 

 

 
Figure 1 – DRG grouping using a DRG grouper, see 

Schreyögg et al. [9] 

Before the execution of the DRG grouper, parameter values 
such as the primary and secondary diagnoses, clinical 
procedures, age, gender, as well as weight in the case of 
newborns, have to be entered into the software. Diagnoses are 
coded using the International Statistical Classification of 
Diseases and Related Health Problems (ICD). The first 3 
letters of an ICD code correspond to DRGs. The algorithm 
first determines one of 23 Major Diagnostic Categories 
(MDC). These are defined by the primary diagnosis (i.e. the 
reason for the hospitalization). However, if the primary 
diagnosis is imprecisely documented, an error DRG will be 
returned. On the other hand, if the patient has a 
transplantation, for example, a Pre-MDC (a DRG with high-
cost procedures [2]) is returned. After determining the MDC, 
clinical procedures and co-morbidities lead to the patient's 
DRG which can be categorized into surgical, medical and 
other DRGs. Finally, within these categories, the age of the 
patient, or the weight in the case of newborns, may lead to a 
different DRG-subtype. 

When sufficient information is available, there is valid reason 
to use a DRG grouper not only at discharge, but at any stage 
of care in order to obtain real-time information about the 
patients’ DRGs. Therefore, we assume that in every stage of 
care of a patient and in particular before admission that 
sufficient information is available to classify the patient’s 
DRG. 

Naïve Bayes Classification 

Let D  be the set of all DRGs, A  the set of attributes (e.g. 
gender, free-text diagnoses) and I  be the set of labeled 
patient instances. The naïve Bayes classifier assumes that all 
the attributes are conditionally independent given the 
inpatient's DRG Dd ∈ . Under this assumption, the prior 
probability )(dp  of each DRG d  is learned from the training 
data by maximum likelihood estimation, i.e. )(dp  is set equal 
to the proportion of training examples which belong to the 

class d . Similarly, the conditional likelihood of each value 

aiv ,  given instance Ii∈  and attribute Aa∈  of each DRG 

Dd ∈  is learned from the training data by maximum 
likelihood estimation. This means that )|( , dvp ai  is set equal 
to the proportion of training examples of class d  which have 
value aiv ,  for attribute a  in instance i . Afterwards, the 

classifier assigns the DRG *
id  to the test instance i  by 

employing Equation (1): 
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Resource allocation model 

In what follows, we present our resource allocation model 
which is an extension of Gartner and Kolisch’s [5] patient 
flow problem with fixed admission dates. We further extend 
their model by taking into account admission decisions. 

Planning horizon, patients and activities 

We have a set of days in which patients can be scheduled and 
which represents our planning horizon. We have a set of 
patients who seek admission and can be planned during the 
planning horizon. The patients have a target admission date 
and a set of activities to be scheduled within the set of days. 
For example, an activity can be a computer tomography scan, 
a surgery or a therapy. Within each patient’s set of activities, 
we have a specific activity which we denote as the discharge 
activity and which is the final activity of the patient during 
his/her stay in the hospital. 

Time windows, clinical pathways, contribution margin 

Each patient’s activity has a time window in which it can be 
scheduled. Once we schedule the discharge activity, the 
hospital receives a length of stay-dependent contribution 
margin. The clinical pathway of each patient is represented by 
precedence relations; each of them can be assigned an integer 
time lag, which means that the successor activity cannot be 
scheduled until a certain (waiting) time after the predecessor 
activity has elapsed. This is necessary to capture recovery 
times, for example. 

Resources, resource capacity and resource requirement 

We split hospital resources into a set of day resources and 
overnight resources as follows: Day resources represent, for 
example diagnostic devices or the operating room; while 
overnight resources represent beds since they are typically 
allocated for at least one night. On the supply-side, each 
resource has a day-dependent capacity while on the demand-
side, each patient’s activity has a resource requirement. An 
activity can require multiple day-resources on the same day, 
such as when a surgical activity requires the surgery room and 
the surgeon. Also, an activity does not necessarily require the 
same amount of time from two distinct resources. For 
example, a surgical activity may require 100 minutes of 
surgery room time (including set up time, surgery time, 
cleaning time, etc.) while the actual time required from the 
physician may be no more than 80 minutes. Naturally, the 
documentation task executed by the surgeon follows the 
surgery and has to be executed before the patient’s discharge. 

Capacity requirement of overnight resources is typically 
measured in terms of bed utilization. An overview of all 
parameters is provided in Table 1 in the Technical Appendix. 
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Decision variables 

Our mathematical model uses binary decision variables to 
decide whether or not a clinical activity is executed on a day 
within the activity’s time window. Another set of decision 
variables decides whether the admission of a patient should be 
avoided. These decision variables inform a decision maker 
whether or not patients provide the hospital enough of a 
contribution margin to schedule them along their clinical 
pathway. 

Objective function and constraints 

Our mathematical model (its algebraic formulation is shown in 
the Technical Appendix) maximizes the overall contribution 
margin of all admitted patients in the hospital by assigning 
each patient to a discharge date within that patient’s discharge 
time window, see Objective Function (2). Constraints (3) 
ensure minimum time lags between clinical activities. Note 
that if we have a time lag of 0 days, the predecessor and 
successor activity, for example a magnetic resonance 
tomography and a neurosurgery procedure, respectively, can 
be performed on the same day. Incorporating the admission 
variables into the constraints ensures that the constraints are 
satisfied if the patient is not admitted. Constraints (4) depict 
the limited capacity of day resources. For each resource and 
day, capacity demands that all activities performed on that day 
must not exceed resource capacity. Note that the dimension of 
resource capacity can be, for example, time or slots in a 
master surgical schedule or minutes available by a physical 
therapist. Constraints (5) denote the resource constraints for 
overnight resources. For each patient, the bed allocation starts 
with the patient’s admission date and the discharge activity 
releases the bed. Naturally, a patient’s resource requirement 
only sums if he is admitted. Constraints (6) ensure that a 
patient's activity is scheduled at most one time within the 
activity’s time window. However, once the activity is 
scheduled, all of the activities corresponding to that patient are 
scheduled, as required by Constraints (7). Finally, expressions 
(8)-(9) are the decision variables and their domains. 

A bed allocation example 

Suppose we have a planning horizon which consists of 7 days 
and we have two patients to be admitted and scheduled within 
the planning horizon. Assume that both patients have the 
actual DRG F21C which means “other surgical procedures 
with cardiovascular diseases, without complex procedure, 
without complex skin transplantation and myocutaneous flap 
surgery of the lower limb admission”. The property of the 
contribution margin function of this DRG reveals that on day 
6, it has its maximum. Before that length of stay (LOS), the 
patient’s LOS is below the low LOS trim point. Accordingly, 
the hospital receives a deductible if the patient is discharged 
before that day. If the patient’s LOS is between the low and 
high LOS trim point, the contribution margin function is 
monotonicly decreasing due to LOS-dependent costs for 
activities such as bed cleaning. We assume that the clinical 
pathway of the patient requires a minimum time lag of 5 days 
between surgery and discharge. As a consequence, the time 
window of the discharge activity has a lower bound for the 
LOS, which is 5. Since the planning horizon is 7 days, the 
discharge time window is between 5 and 7 days. We assume 
that we have one overnight resource and no day resource. The 
overnight resource is required by both patients. Therefore, 
only one patient can be admitted and thus, only one admission 
decision variable is equal to 1. Table 2 in the Technical 
Appendix gives the algebraic solution of the bed allocation 
example. 

Results and Discussion 

In the following, a computational and economic analysis of 
the scheduling problem is provided. 

Data and instance generation 

We evaluated our model using data from a mid-sized hospital 
in the vicinity of Munich, Germany. We joined the hospital 
data with data from the German institute for reimbursement in 
hospitals [8]. The latter contains information on the DRG 
attributes such as low and high length of stay (LOS) trim 
points, fixed revenue as well as per day reduction and 
addition. We learned the classifier from January 2011 until 
June 2011. We ran the simulation experiments from July 1, 
2011 until the rest of the year, where each day is solved 
independently. 

Classification results 

The classification results of our experiments reveal that the 
DRG grouper could not classify any of the patients’ DRG 
before admission. One explanation for this phenomenon is that 
the grouper cannot deal with free-text information. A more 
detailed analysis revealed that the “error-DRG” 960Z was 
always assigned to the patients. In contrast, the true positive 
rate of the Naïve Bayes approach was, on average, 25.3%. 

Contribution margin analysis 

Our contribution margin analysis revealed that scheduling 
patients using their DRG, as classified by Naïve Bayes, can 
substantially increase the hospital’s contribution margin, 
depending on the input parameters of the model and their 
uncertainty. Our results revealed up to 17% improvement in 
contribution margin, depending on the planning day. A more 
detailed analysis reveals that patients classified by the DRG 
grouper may not be admitted at all because they compete for 
scarce resources with those patients whose contribution 
margin is obtained using the Naïve Bayes-classified DRG. 

Discussion 

The connection between our early DRG classification and the 
patient admission and scheduling problem should be seen as 
preliminary results of a sensitivity analysis regarding the 
extent to which better DRG prediction leads to more effective 
resource allocation. These models and methods can now be 
embedded in a real-time decision support system that can 
inform a decision maker in a hospital about the value of early 
availability of information about patients to increase 
classification accuracy and, as a consequence, lead to better 
resource allocation decisions. This approach for early 
classification of patients’ DRG is not only applicable for 
elective patients but can also be used for emergency patients, 
as shown in [6]. 

Another result of our decision support system based on the 
mathematical model is that a decision maker can be better 
informed about patients who would be admitted or scheduled 
based on a hospital’s patient admission and scheduling policy. 
Furthermore, the decision variables of the model could also 
reveal that admitting and scheduling patients based on the 
model’s recommendations may lead to higher contribution 
margins. Identifying these opportunities can also be supported 
by the approach and tool discussed in this paper which can be 
included in the platform of Gartner and Padman [7]. 

Finally, these models and methods provide a rigorous, 
systematic and evidence-based approach to integrating and 
analyzing financial objectives of healthcare delivery 
organizations with operational decisions that are driven by 
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clinical requirements as well as planning and resource 
allocation constraints. 

Conclusion 

In this paper we have presented a novel approach to link 
classification methods with a discrete optimization model for 
the problem of scheduling elective patients hospital-wide. The 
objective is to maximize the contribution margin for elective 
patients using real-world data from a mid-sized hospital. The 
results show that if hospitals pursue an objective of making 
admission decisions based on DRGs, basic machine learning 
techniques such as Naïve Bayes can lead to more efficient 
resource allocation decisions as compared to the use of a 
hospital’s current approach using a DRG grouper. 

Several streams deserve further research. In order to make the 
model more applicable in hospitals, our goal is to incorporate 
overtime flexibility into the model and to consider more 
specific assignments of patients to a variety of resources, for 
example, human resources such as surgical teams. Following 
the approach of Gartner and Arnolds [3], we will also 
incorporate uncertain clinical pathways into the scheduling 
process. Preliminary results on a simplified model are shown 
in prior work [4]. Furthermore, we will evaluate other 
machine learning techniques such as decision trees, Bayesian 
networks and logistic regression in combination with the early 
DRG classification and resource allocation task. Another task 
is to break down the results into a length of stay analysis, and 
an evaluation of the confusion matrix in combination with 
admission and scheduling decisions. 

Technical Appendix 

Sets, indices, parameters and decision variables 

Table 1 provides an overview of the sets, indices, parameters 
and decision variables. 

Table 1 – Sets, indices, parameters and decision variables 

Set Description 
A  Activities, Attributes 

pA  Activities for patient Pp∈  

D  DRGs 

pE  Precedence relations 

P  Patients 
R  Resources 

dR  Day resources 
nR  Overnight resources 

T  Days 

iW  Time window for activity Ai∈  

Index/parameter Description 

pα  Admission date of patient Pp∈  

Aa∈  Attribute 

pb  Specialty requirement of patient 
Pp∈  

d  DRG 
*
id  DRG to which instance i  is assigned 

0min
, ≥jid  Minimum time lag corresponding to 

precedence relation pEji ∈),(  

iE  Earliest day to schedule activity Ai∈  

i  Instance 
Ai∈  Activity 
),( ji  Precedence relation between activity 

Ai∈  and jiAj ≠∈ :  

iL  Latest day to schedule activity Ai∈  
Pp∈  Patient 
)(dp  Prior probability of DRG d  

)|( , dvp ai  Conditional probability of DRG d  
given instance i ’s value of attribute a  

tp ,π  Contribution margin for patient Pp∈  
discharged at day 

p
Wt φ∈  

pφ  Discharge activity for patient Pp∈  

kir ,  Resource requirement of activity i  
from resource k  

Tt∈  Day 

aiv ,  Value of instance i ’s attribute a   

Decision variable Description 

tix ,  1 if activity i  is scheduled for day t , 0 
otherwise 

pz  1 if patient p  is admitted, 0 otherwise 

Mathematical program 
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{ } iti WtAix ∈∈∀∈ ,1,0,  (8) 

{ } Ppz p ∈∀∈ 1,0  (9) 

A bed allocation example 

An example with two patients is presented in Table 1. 

Table 2 – A bed allocation example for two patients 

t  1 2 3 4 5 6 7 

tx ,1φ
 - - - - 0 1 0 

{ }

∑ ∑
≥= =

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−

1,1

,min

,1
1

1

1

1
tb

Lt

E
xz
φ

φτ
τφ

 1 1 1 1 1 1 1 

tx ,2φ
 - - - - 0 0 0 
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In this example, we assume that we have a planning horizon of 
{ }7,...,2,1=T  days and that both patients 1=p  and 2=p  

have an admission date 121 ==αα  and a discharge time 
window of { }7,6,5

21
== φφ WW . Moreover, we assume that we 

have one overnight resource {}1=nR  and, for simplicity, no 

day resource { }=dR . The overnight resource is required by 
both patients. Accordingly, the bed requirements for both 
patients come up to 121 == bb . Assume, that patient 2=p  
cannot be admitted and therefore decision variable 02 =z . 
The table reveals that a bed is allocated for patient 1=p  from 
his admission in period 1=t  until his discharge in period 

6=t . In contrast, patient 2=p  does not allocate a bed since 
he is not admitted and, because of constraints (7) he is not 
discharged. 
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