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Abstract 

Treatment recommendation is a nontrivial task – it requires 

not only domain knowledge from evidence-based medicine, 

but also data insights from descriptive, predictive and 

prescriptive analysis. A single treatment recommendation 

system is usually trained or modeled with a limited (size or 

quality) source. This paper proposes a decision fusion 

framework, combining both knowledge-driven and data-

driven decision engines for  treatment recommendation. End 

users (e.g. using the clinician workstation or mobile apps) 

could have a comprehensive view of various engines’ 

opinions, as well as the final decision after fusion. For 

implementation, we leverage several well-known fusion 

algorithms, such as decision templates and meta classifiers (of 

logistic and SVM, etc.). Using an outcome-driven evaluation 

metric, we compare the fusion engine with base engines, and 

our experimental results show that decision fusion is a 

promising way towards a more valuable treatment 

recommendation.  

Keywords: 

Clinical decision support system, Decision fusion, Treatment 

recommendation. 

Introduction 

Clinical Decision Support (CDS) provides recommendations 

from organized medical knowledge and patient information to 

improve healthcare delivery. A variety of CDS systems have 

been proposed and implemented. From the perspective of 

methodology, some CDS systems are knowledge-driven, such 

as the computerization of clinical practice guidelines, and 

some are data-driven, such as the discovery of unknown 

patterns and trends in a large volume of patient data. From the 

perspective of analytics, some CDS systems are descriptive, 

such as getting the most frequently used drugs from similar 

patients, some are predictive, such as the estimation of clinical 

outcome for taking a certain drug, and some are prescriptive, 

such as a long-term planning for the optimal intervention at 

every possible patient state.  

Considering that each CDS system has its own strength and 

weakness, we might not only leverage a single CDS system, 

but also apply decision fusion technologies to combine 

multiple CDS systems’ results. Actually, in real life, it is 

natural to consult “several experts” before making a final 

decision. As it si said, two heads are better than one. The 

extensive benefits of decision fusion have been shown up in 

the Netflix Grand Prize in 2009 [1], which was an open 

competition to predict user ratings for films, and the winner 

combined the previous three teams’ results to achieve a 

10.09% improvement. In addition, the Heritage Health Prize 

in 2012 [2] was an open competition to predict how many 

days a patient would spend in a hospital in the next year. 

Again, fusion methods were widely used by both milestone 

winners and final winners in this competition. 

In literature, the research field of “decision fusion” is known 

under various names, such as multiple classifier systems, 

mixture of experts and ensemble learning [3]. A general 

solution of prior arts is the fusion of different (data-driven) 

learning algorithms with different parameter settings, e.g., 

trying various features and datasets. However, for clinical 

decision support, esp. in evidence-based medcine, not only the 

data-driven learning algorithms are useful, but also the 

knowledge-driven modeling techniques are greatly helpful. In 

this paper, we propose a decision fusion framework for a 

treatment recommendation system, which combines both 

knowledge-driven and data-driven approaches.  

To be convinced of the benefits of decision fusion, we need 

evaluation metrics, comparing the results from base decision 

engines with the results from our fusion engine. However, we 

observe that state-of-the-art evaluation metrics [4], such as 

precision, recall and RMSE (Root Mean Square Error), are 

not applicable for evaluating treatment recommendation 

systems, due to the partially observed ground truth. In 

machine learning, the term “ground truth” refers to the known 

facts about the training data set in terms of the learning tasks. 

Taking the Netflix Grand Prize as an example, the ground 

truth is the actual user ratings for films, while taking the 

Heritage Health Prize as another example, the ground truth is 

the actual days a patient would spend in a hospital in the next 

year. However, as far as for treatment recommendation, 

what’s the ground truth? A naïve answer might be the actual 

prescription in real data. But, is that right? Suppose that drug 

A was recommended by a decision engine, and the physician 

did choose drug A as the prescription, but unfortunately, the 

patient outcome of using drug A was bad. In this respect, 

could we mark the recommendation of drug A as correct? 

Another story is that drug B was recommended by an analysis 

module, but the physician chose drug C as the prescription, 

and the patient outcome of using drug C appeared good. Thus, 

could we mark the recommendation of drug B as incorrect? 

What if the patient outcome of using drug B becomes better 

than using drug C? Therefore, we call it the partially observed 

ground truth (i.e., not all decision options are completely 

observed with outcomes), and in this paper, we propose an 

outcome-driven measure for evaluating treatment 

recommendation systems. Here, we remark that the fusion 

itself has no impact on the “partialness” of the ground truth. 

Actaully, it is the “partialness” that brings challenges for 

evalution of treatment recommendation systems, including the 

base and fusioned ones. 

For experiments, we implement a decision fusion framework, 

which combines three base decision engines. The first engine 

is a knowledge-driven engine based on clinical practice 

MEDINFO 2015: eHealth-enabled Health
I.N. Sarkar et al. (Eds.)

© 2015 IMIA and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-564-7-300

300



guidelines (CPG [5]). The other two are data-driven engines, 

of which one is a descriptive analytics based on patient 

similarity (PSA [6]), and the other engine is a predictive 

analytics based on outcome prediction (PRE). Using different 

fusion algorithms (such as decision templates and meta 

classifiers), we compare the evaluation results and conclude 

that fusion does help to provide treatment recommedations in 

a more valuable way. 

Methods 

We first present a decision fusion framework, followed by the 

introduction of three base decision engines. Next, we describe 

the fusion engine with a variety of fusion algorithms. Finally, 

an outcome-driven evaluation metric is defined, which will be 

used to compare the fusion engine with base decision engines. 

Decision fusion framework 

As shown in Fig 1, we propose an open framework for 

decision fusion. A number of decision engines can contribute 

to the fusion framework. We implement a fusion engine that 

gets input from base decision engines. On the client side (such 

as the clinical workstation or mobile apps), we display the 

treatment recommendations from each of the component, as 

well as the final decision from the fusion engine. End users 

have the privilege to see the outcome from  all engines. 

The fusion engine has two phases. First is the training phase, 

where all the results from base decision engines will be fed 

into a fusion engine to learn a fusion model. Second is the 

testing phase, where an instance that uses the output of base 

decision engines as features is created, and the trained fusion 

model predicts the final outcome. Every base decision engine 

has been either trained well by its own data source (such as 

PSA and PRE) or modeled well by its own knowledge source 

(such as CPG). The training and testing phases are meant for 

the fusion, rather than any base decision engine. 

 

Figure 1 - The decision fusion framework 

Decision engine 

A decision engine itself provides treatment recommendations, 

but its methodology and analytical principles may differ from 

each other. Table 1 shows three different perspectives. The 

differentiation of decision engines results in the requirement 

to consult “several engines” before making a final decision. 

Technically, CPG [5] is a knowledge-driven decision engine, 

which computerizes the NICE clinical guideline for Type 2 

diabetes. At design time, guidelines are defined as standard 

(XPDL)-based business processes, where clinical conditions 

are represented using GELLO expressions. At run-time, a 

process engine would invoke a query adaptor to retrieve 

clinical data and a GELLO engine to evaluate clinical 

conditions whenever a decision-making is needed during the 

care process. Consequently, clinical recommendations are 

generated for lifestyle intervention and drug therapy, etc. For 

example, given a patient who is overweight and whose blood 

glucose is inadequately controlled by lifestyle interventions 

alone, CPG would recommend to start Metformin. 

Table 1 – Decision engines  

 Methodology Analytics Source 

PSA Data-driven Descriptive  An EHR dataset 

PRE Data-driven Predictive  An EHR dataset* 

CPG Knowldege-

driven 

Prescriptive  The NICE clinical 

guideline for Type 2 

diabetes 

 

Whereas, PSA [6] is a data-driven decision engine based on 

the patient similarity analytics that uses an EHR dataset from 

one of the largest hospitals in China and its affiliated 

community centers in order to manage type 2 diabetic 

patients. For example, given a patient encounter, the 

descriptive analytics of PSA reports that 75% similar patients 

take Metformin, while 15% similar patients take Insulin, and 

the rest take a combination of Insulin with oral anti-diabetic 

drugs. We employ various feature selection algorithms to 

identify the factors that affect physicians’ prescription 

decisions. Given a patient encounter, his/her clinical 

conditions are represented using a vector of selected features, 

and we would find out the K most similar prescription 

instances, where the similarity is measured by the Euclidean 

distance between the representing feature vectors. Finally, 

PSA outputs a list of frequently presented medication options 

(among the K most similar prescription instances), and each 

option is attached with its occurrence percentage. 

PRE is also a data-driven decision engine based on the 

outcome prediction analytics. The engine uses the same EHR 

dataset used by PSA but different features. For example, given 

a patient encounter, the predictive analytics of PRE reports 

that taking Insulin would get good outcome with support 

degree of 0.78, while taking Metformin would get good 

outcome with support degree of 0.54. Given a decision option, 

we collect the instances whose prescription is the same as the 

given decision option, and label its outcome as good or bad by 

comparing the next HbA1c test result after treatment with the 

current one. Thus, instances are grouped by different decision 

options, and we perform the feature selection (correlation 

based) and model training (logistic regression) per group 

separately. Then, given a patient encounter, for each decision 

option, his/her clinical conditions are represented using a 

vector of selected features, and we test it with the 

corresponding trained model. Finally, PRE outputs a list of 

decision options, and each option is attached with its support 

degree of good outcome.  

Fusion engine 

In the book [3], numerous methods for decision fusion have 

been presented. Based on the output of base decision engine, 

the fusion types are categorized into two: one is the fusion of 

label outputs, and the other is the fusion of value outputs. As 

described earlier, our base decision engines, CPG outputs 

labels, while PSA and PRE output values. It’s easy to 

transform the CPG outputs as values, by assigning the label 

(which CPG recommended) with value of 1, and others 

(which CPG did not recommended) with value of 0,  given a 
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patient at an encounter. Also, we can transform the PSA and 

PRE outputs as labels, but unavoidably, would have 

information loss. For instance, we could choose the most 

frequently presented medication option as the label for 

recommendation in PSA, and we could choose the decision 

option with the highest support degree as the label for 

recommendation in PRE. In this way we only keep the top one 

recommendation and ignore the lower ranked decision options 

– such a transformation from values to labels is not desirable. 

Consequently, our decision fusion framework is unified as a 

fusion of value outputs (and we will do a transformation from 

labels to values, if any base engine outputs labels). 

Next, we will present a formal definition for our fusion 

engine. Suppose E = {e1, …, en} be the set of base decision 

engines, O = {o1, …, om} be the set of decision options, vij(x) 

is the value that a decision engine ej gives to the decision 

option oi, for an instance x, 1<=i<=m and 1<=j<=n. The 

fusion engine will take the following matrix v(x) as an input, 

for each instance x.  
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For fusion algorithm, we first apply the approach of decision 

templates [7]. At training phase, we calculate a decision 

template DTi (as defined below) for each decision option oi, 

where Si is the set of training instances whose presecription is 

the same as the decision option oi with good outcome, and Ni 

is the number of Si. That is, DTi is the mean of values of all 

training instances who take the decision option and get good 

outcome. Here, we highlight that Si consists of training 

instances with good outcome, because our fusion is outcome-

driven, instead of just learning the physicians’ decisions (i.e. 

prescriptions, which do not always result in good outcomes). 

∑
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At testing phase, we calculate the squared Euclidean distance 

di(x) between a decision template DTi and v(x) for an instance 

x, where DTi(k, j) is the (k, j)th entry in DTi.  
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The fusion engine outputs a list of decision options, and each 

option is attached with its distance value. 

Besides decision templates, we also leverage various meta 

classifiers provided by Weka (a Java libarary for data mining 

[9]) to implement fusion algorithms. The main idea is to 

consider the values generated by base decision engines as new 

features, and feed them into a classifier for classification. 

Specifically, for each decision option oi, we learn a model Mi, 

and the training data consists of instances x whose 

prescription is the same as the decision option oi. The feature 

vector of x is <vi1(x), …, vin(x)>, with label of 1 for good 

outcome and label of 0 for bad outcome, where vij(x) is the 

value that a decision engine ej gives to the decision option oi, 

for 1<=j<=n. Thus, a variety of classifiers such as logistic and 

SVM (support vector machine) could be used for this meta-

classification problem to decide whether the decision option oi 

is a recommendation for an instance x. 

Evaluation metrics 

The motivation of decision fusion is “to do better” than base 

decision engines. This wish of “to do better” needs some 

evaluation metrics. As mentioned above, the often used 

metrics [4] such as precision, recall and RMSE are not 

applicable, when evaluating treatment recommendation 

systems, because we have only the partially observed ground 

truth – i.e., not all decision options are completely observed 

with outcomes. Formally, we denote q(x)∈O as the 

prescription of an instance x, i.e., q(x) is one of the decision 

option in O. Next, we denote t(x, q(x)) as the outcome of an 

instance x taking the prescription q(x), where t(x, q(x))=1 

means good outcome and t(x, q(x))=0 means bad outcome. 

Back to the output of engines. All engines ouput values, but 

the values have different meanings. For example, PSA outputs 

the percentage of similar patients who takes the same decision 

option, and PRE outputs the support degree of good outcome 

which takes the given decision option, while the fusion engine 

outputs the distance between the decision template and the 

given decision option. Therefore, a value itself contributes 

little for evaluation, but a ranked list ordered by values does 

mean a lot. In particular, a rank score is calculated according 

to the position of prescription in a ranked list, which avoids to 

be overlooked when it’s lowerly ranked.  

For a formal representation, we denote rj(x) = <p1, …, pm> as 

the ranked list of an instance x recommended by an engine ej 

∈ E∪{e0} where each pk ∈ O is a decision option in O, and 

the subscript k means its position at the ranked list. Here, the 

base decision engine set E is union of the fusion engine e0. 

We note that both PSA and PRE approach gets the 

recommended ranked list in descending order (because the 

more similar patients or the more supports, the better for 

recommendation), while our fusion algorithm of decision 

templates would get the recommended ranked list in 

ascending order (because the shorter distance, the better for 

recommendation).  

Next, we denote gj(x) as the rank score of an instance x, given 

an engine ej ∈ E∪{e0}. The following calculation means that, 

given a ranked list rj(x) = <p1, …, pm> as recommended by an 

engine ej, for any 0<=j<=n, the prescription q(x) = pk is 

located at the position k, if an instance x taking the 

prescription p(x) has good outcome, then gj(x)=(m-k)/(m-1), 

else gj(x)=(k-1)/(m-1). In particular, if the ranked list for 

recommendation does not contain the prescription, then its 

position is set as k=m. We note that, in spite of the partially 

observed ground truth (i.e. prescription with its outcome in 

real data),  this calculation takes all recommended decision 

options into account, with information loss as little as 

possible. 
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The score of an engine ej is calculated as 
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for any 0<=j<=n. Using this outcome-driven evaluation 

metric, we can directly compare the score g0 of our fusion 

engine e0 with other scores gj of base decision engines ej∈E. 
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Results 

Our experimental dataset is an EHR dataset from one of the 

largest hospitals in China and its affiliated community centers 

that manage type 2 diabetic patients. After anonymity, it 

consists of 3150 encounter instances of diabetic patients. 

Their prescriptions are categoried as 7 types of decision 

options: METFORMIN (metformin alone), ARFA (either 

insulin secretagogues or α-glucosidase inhibitors), TZD 

(either thiazolidinediones or DPP-IV inhibitors), BI (two oral 

anti-diabetic drugs), TRI (three oral anti-diabetic drugs), 

INSULIN (insulin alone), and COMBINED (insulin and oral 

anti-diabetic drugs). For the outcome of glucose control, we 

use the widely adopted clinical ranges (also cited in [8]): 

HbA1c <= 6.4: normal; 6.5 <= HbA1c < 7: well controlled; 7 

<= HbA1c<9: moderately controlled and 9 <= HbA1c: poorly 

controlled. Each patient’s prescription outcome is labeled by 

comparing the next HbA1c test result after prescription with 

the current one. The outcome is labeled 1 (good) if the HbA1c 

level moves into a lower range, or remains in the well-

controlled range, otherwise it is labeled as 0 (bad). In our 

dataset, there are 2574 instances of 3150 as labeled 1. 

Given an instance, different base decision engines use 

different feature vectors as the input. Specially, CPG has 19 

features, including overweight (BMI>24), old (age>70), etc. 

By feature selection, PSA identifies 39 features, such as 

average of glucose, value of HbA1c, and maximum value of 

HbA1c, etc. It’s interesting that CPG considers the age status 

(e.g. old if age>70), while PSA considers the age (e.g. age of 

72) and the age at the earliest diabetes diagnosis (e.g. age of 

45). A more complicated case is PRE, which has 7 learning 

models for the 7 types of decision options. For example, the 

METFORMIN model in PRE has 13 features,  while the 

ARFA model in PRE has 8 features. 

In spite of different input features,  the base decision engines 

have a uniform output format, i.e. vij, the value that a decision 

engine ej gives to the decision option oi, for an instance x, 

where e1=CPG, e2=PSA, e3=PRE, and o1=METFORMIN, 

o2=ARFA, o3=TZD, o4=BI, o5=TRI, o6=INSULIN, 

o7=COMBINED. 

Regarding the fusion engine as e0, it also follows the unified 

output format, and below is the sample output for an instance 

x. According to the real data, this instance x is prescribed  

o2=ARFA, as having good outcome. 

6164.0

4961.0

6454.0

5817.0

3196.0

2772.0

4286.0

5939.001.007

6674.009.006

5761.0005

6580.018.004

7489.001.003

6943.031.002

6068.04.011

FUSION

o

o

o

o

o

o

o

PREPSACPG

⇒  

The ranked list of x recommended by CPG is r1(x)=<o1>, 

PSA is r2(x)=<o1,o2,o4,o6,o7,o3,o5> in descending order, PRE 

is r3(x)=<o3,o2,o6,o4,o1,o7,o5> in descending order, and after 

fusion using algorithm of decision templates, it is 

r0(x)=<o2,o3,o1,o6,o4,o7,o5> in ascending order.  

The rank score of x given by CPG is g1(x)=(7-7)/(7-1)=0, 

because r1(x)=<o1> does not contain o2, and its position is set 

as k=m, where m = 7 is the number of decision options. It 

makes sense, since CPG does not recommend o2 which 

however results in good outcome in real data, and such a CPG 

recommendation gets the score of 0. For PSA, g2(x)=(7-2)/(7-

1)=5/6, because the position of o2 in r2(x) is k=2 and m=7. It 

also makes sense, since o1 is preferred by PSA than o2, and 

such a PSA recommendation cannot get the full score of 1, but 

only 5/6. Similarly for PRE, g3(x)=(7-2)/(7-1)=5/6. Here, we 

point out that, although PSA prefers o1 while PRE prefers o3 

for the top one recommendation, the prescription o2 is located 

at the same position k=2 in both PSA and PRE, so the rank 

scores g2(x) and g3(x) are the same. Finally, for fusion, 

g0(x)=(7-1)/(7-1)=1, because the position of o2 in r0(x) is k=1 

and m=7. It matches the practice that such a fusion 

recommendation is appreciated.  

Fig. 2 illustrates these treatment recommendation results, 

which could be integrated to the clinician workstation or 

mobile apps, and end users could have an overview about the 

engines’ opinions in a comprehensive way. 

 

Figure 2 – Treatment recommendation results 

To compare the evaluation results, we do 10-fold cross 

validation. That is, the total of 3150 instances is randomly 

partitioned into 10 equal size subsamples. Of the 10 

subsamples, a single subsample (of 315 instances) is retained 

as the validation data for testing, and the remaining 9 

subsamples (of 2835 instances) are used as training data.  

Table 2 – Evaluation results  

Treatment recommendation systems Rank score 

Decision 

engine 

CPG 0.6771 

PSA 0.6815 

PRE 0.6062 

Fusion engine Decision templates 0.6917 

Logisic classifier 0.6826 

SVM classifier 0.6773 

SVM classifier –s 3 0.6823 

Naïve Bayes 0.6776 

Naïve Bayes -K 0.6824 

 

As shown in Table 2, among base decision engines, PSA has a 

higher rank score (0.6815) than CPG (0.6771) and PRE 

(0.6062). After fusion, the engine of decision templates 

outforms all of the base decision engines, getting the highest 

rank score (0.6917). Also, the logistic classifier is promising 

and gets the rank score of 0.6826. Although we observe that 
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fusion engines using the default SVM classifier and Naïve 

Bayes have the rank scores lower than the base decision 

engine PSA, it’s not a big drop since using machine learning 

algorithms always require careful tuning. Actually, we set an 

option “–K” for Naïve Bayes, which indicates to use kernel 

density estimator rather than normal distribution for numeric 

attributes, the rank score improves from 0.6776 to 0.6824. 

Similarly, we set an option “–s 3” for the SVM classifier, 

which indicates to use the SVM type of Epsilon-SVR rather 

than C-SVC, the rank score improves from 0.6773 to 0.6823. 

Discussion 

Fusion is not a new topic in machine learning and data 

mining, and its great success has been shown in a series of 

KDD Cup competitions from 2007 to 2014, as well as other 

open competitions such as the Neflix Grand Prize in 2009 [1] 

and the Heritage Health Prize in 2012 [2]. However, related 

work mainly focuses on the fusion of different learning 

algorithms with different parameter settings, and pays little 

attention to the knowledge sources. Furthermore, the 

evaluation metrics used in prior arts are based on the ground 

truth, but we have only the partially observed ground truth in 

treatment recommendation. To address these problems, we 

have two contributions as presented in this paper. First is a 

decision fusion framework for treatment recommendation 

systems, which combines both knowledge-driven and data-

driven decision engines.  Second is an outcome-driven 

evaluation metric, which has no information loss while facing 

the partially observed ground truth. As for experimental 

results, the fusion engine gets better performance than base 

decision engines. 

Also, we realize our limitations. First, we assume that base 

decision engines output a uniform format. However, this 

assumption is challenged, if the labels (from different decision 

engines) are heterogenous. For example, suppose CPG just 

recommends using one of oral anti-diabetic drugs, but does 

not specify which one. Meanwhile, the decision options of 

PSA are still the 7 types: METFORMIN, ARFA, TZD, BI, 

TRI, INSULIN, and COMBINED. Now, one of oral anti-

diabetic drugs could be METFORMIN, ARFA or TZD, how 

to assign values for such  CPG recommendation? In our 

current work, CPG outputs label all the 7 types, and we do a 

simple transformation from these labels to the value of 1 or 0. 

Actually, we observe that normalization of heterogenous 

labels with values has not been mentioned or well addressed 

in previous work, because previous work is about multiple 

classifier systems, whose base engines are all classifiers to be 

trained for the homegenous labels. However, in our 

framework, we take both knowledge-driven and data-driven 

modules into account, which are heterogenous in nature. This 

situation would become more common, when facing the 

cloud-based decision services. We cannot assume each cloud-

based decision service outputs a uniform format, but we still 

want to leverage the fusion of those services towards a better 

final decision. Therefore, the normalization for fusion would 

be our ongoing work.  

Besides, in this paper, we only use three base decision engines 

of CPG, PSA and PRE for fusion. This is not enough, and we 

are planning to inclue more base decision engines involved 

towards an open (e.g. cloud-based) fusion platform. 

Moreover, we observe there is some contraindication 

information in the domain knowledge for treatment 

recommendation, e.g. you should not use statins for a woman 

becoming pregnant. Such contraindication information is hard 

to  discover for learning algorithms, but it can be easily 

represented by knowledge modeling. Our future work will 

develop some novel fusion algorithm to get more benefits 

from both knowledge and data.  

Last but not least, the so-called “partialness” of the ground 

truth deserves more investigation. For intervention in diabetes, 

we could regard the HbA1c value as partially observed, 

however, for a more nebulous topic, like antibiotics for fever, 

the partially observed ground truth may actually never have a 

known answer. 
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