
INITIATE: An Intelligent Adaptive Alert Environment

Borna Jafarpour
a
, Samina Raza Abidi

b
, Ahmad Marwan Ahmad

a
, Syed Sibte Raza Abidi

a

a
 NICHE Research Group, Faculty of Computer Science, Dalhousie University, Halifax, Canada

b
 Medical Informatics, Faculty of Medicine, Dalhousie University, Halifax, Canada

Abstract

Exposure to a large volume of alerts generated by medical

Alert Generating Systems (AGS) such as drug-drug interac-

tion softwares or clinical decision support systems over-

whelms users and causes alert fatigue in them. Some of alert

fatigue effects are ignoring crucial alerts and longer response

times. A common approach to avoid alert fatigue is to devise

mechanisms in AGS to stop them from generating alerts that

are deemed irrelevant. In this paper, we present a novel

framework called INITIATE: an INtellIgent adapTIve AlerT

Environment to avoid alert fatigue by managing alerts gener-

ated by one or more AGS. We have identified and categories

the lifecycle of different alerts and have developed alert man-

agement logic as per the alerts’ lifecycle. Our framework in-

corporates an ontology that represents the alert management

strategy and an alert management engine that executes this

strategy. Our alert management framework offers the follow-

ing features: (1) Adaptability based on users’ feedback; (2)

Personalization and aggregation of messages; and (3) Con-

nection to Electronic Medical Records by implementing a

HL7 Clinical Document Architecture parser.

Keywords:

Alert Fatigue; Alert Management Engine; Alert Management

Strategy; Semantic Web; HL7-CDA.

Introduction

In recent years, medical Alert Generating Systems (AGS),

such as vital signs monitoring devices, drug-drug interaction

systems, and clinical decision support systems, have become

prevalent in health-care environments. Extensive exposure to

a large volume of alerts, especially irrelevant alerts, over-

whelms users of these systems and causes alert fatigue. Alert

fatigue leads to ignoring vital alerts, longer response times,

anxiety in healthcare professionals and incorrect decisions [1].

Due to these undesirable effects, several attempts have been

made to address the issue of alert fatigue. Existing approaches

can be classified under two general categories: (a) Suppress-

ing alerts: the rules generating alerts in AGS are modified so

that irrelevant alerts are generated less frequently. For in-

stance, in drug-drug interaction systems, if route of admin-

istration is considered in the head of rule, several alerts per-

taining to nonexistent interactions will be avoided. In this ap-

proach, since the alert management strategy is implemented in

the AGS, it cannot be reused in other AGS. Moreover, this

approach is not readily applicable to situations where several

AGS are operating concurrently; and (b) Managing alerts: in

this approach, an alert management strategy is defined for

each type of alert. An alert management engine monitors the

generated alerts by the AGS and manages their lifecycles

based on their management strategy. Hence, alert fatigue is

prevented by less frequent and smarter generation of alerts as

they can only be raised when they are in critical stages of their

lifecycle and certain conditions are met. Since alert manage-

ment is performed externally, this alert management strategy

can scaled across multiple concurrent AGS.

In this paper, we present a novel alert management framework

featuring an Alert Management Strategy Language (AMSL)

represented as a Web Ontology Language (OWL) ontology;

and, coupled with an Alert Management Engine (AME) that

executes the alert management strategy based on patient in-

formation accessible from a Health Level 7 (HL7) compliant

Electronic Medical Records (EMR) using the Clinical Docu-

ment Architecture (HL7-CDA [2]). We have identified and

categorized the lifecycle of different alerts and have devel-

oped alert management logic as per the alerts’ lifecycle. Our

framework implements a set of unique features to address

alerts fatigue, such as a smart alert counter that filters out ir-

relevant alerts based on their time stamps, alert notification

adaptability based on users’ feedback, aggregation of alerts to

a unified alert, responding to the alert delivery medium and

possibility of connecting to commercial EMR systems. We

leverage semantic web technologies to represent the alerts and

to manage them.

Related Work

Approaches to avoid alert fatigue can be categorized into three

categories. In the first approach, the underlying rules generat-

ing the alerts are modified to limit the generation of irrele-

vant/repetitive alerts or to delay the notification of the alerts

until a point that the alert becomes critical. For instance, in

vital signs monitoring devices, generation of an alert regard-

ing high heart rate can be delayed until a certain amount of

time has passed since the heart rate has been more than a pre-

defined threshold [3]. In another example, Rule1 that repre-

sents theophylline–cimetidine interaction in a drug-drug inter-

action system is modified in terms of Modified_Rule1 so that

route of administration is taken into consideration to make the

rule fire less frequently and more accurately [4]:

Rule1: If (theophylline and cimetidine)� Alert (Name: theo-

phylline –cimetidine, Message: “….”)

Modified_Rule1: If (theophylline and (oral cimetidine)�

Alert (Name: theophylline –cimetidine, Message: “…”)

The approach to modify alert generation rules to address alert

fatigue has the following limitations: (1) the alert generation

logic is encoded within the rules, and hence, modifications to

the rules is local to the AGS and it cannot be reused by other

AGS; and (2) if several sources of alerts exist, each AGS rule

set needs to be modified which may eventually lead to incon-

sistencies across the multiple alert generation rules.

MEDINFO 2015: eHealth-enabled Health
I.N. Sarkar et al. (Eds.)
© 2015 IMIA and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License.
doi:10.3233/978-1-61499-564-7-285

285

The second approach to address alert fatigue is to allow the

AGS to generate the alerts, but subsequently filter the irrele-

vant alerts using an auxiliary alert management engine. To

filter irrelevant alerts, domain experts’ knowledge regarding

relevancy of alerts is captured in terms of a classifier. In this

approach, AGS users tag the alerts, as either relevant or irrel-

evant, in a normal no alert fatigue prevention setting. These

tags are, then, used by machine learning algorithms to train a

classifier to determine if an alert should be suppressed or pre-

sented to the user [5]. Disadvantage of this approach is the

need for a large vole of training data that cover the entire

breath of the alerts in different clinical scenarios, and the fact

that the decision logic of such classifiers cannot be interpreted

by healthcare professionals.

The third approach to avoid alert fatigue is to capture domain

experts’ knowledge in terms of an alert management language

and represent the lifecycle of an alert—i.e. describing when

and how often an alert should be shown to the user. Klimov et

al. [6] have defined a comprehensive language to define alert

lifecycles.

In our work, we pursue the third approach as it allows an ex-

plicit description of alerts and their lifecycles, which can be

used to develop generic AGS. In comparison to Klimov et al.

[6], our approach is different in the following ways: we define

the concept of a counter that filters the alerts based on their

currency—i.e. either the alerts are deemed too old to be rele-

vant or are regarded as too soon to the previous alert in order

for it to be meaningful. We also enhanced our framework by

adding a set of desirable features such as adaptability based on

user feedback, aggregation of messages, consistent alert man-

agement framework across several AGS operating concurrent-

ly, and connecting to EMR to be able to use patient infor-

mation in alert lifecycle definition.

INITIATE: an INtellIgent adapTIve AlerT En-

vironment

Our alert management framework shown in Figure 1 compris-

es the following components:

 (1) An OWL ontology that represent our Alert Management

Strategy Language (AMSL).

(2) Alert Management Engine (AME) that exposes RESTful

web services for AGS to submit their generated alerts. This

engine manages alerts based on the alert management

knowledge encapsulated in an instantiation of the AMSL. To

interpret the expressions that make use of lab test result and

medication conditions, this engine contains an HL7-CDA par-

ser that evaluates validity of expressions such as allopurinol

on hold and Synthroid dosage > 100mg, which are represent-

able in AMSL.

(3) CouchDB that is a NoSQL (JSON document based) data-

base storing the following items:

a. HL7-CDA documents each representing a patient medical

record.

b. Instantiation of the AMSL ontology stored as a

RDF/JSON document that represents the lifecycle of

alerts generated by the connected AGS.

c. Alert Status: each alert status represents how many times

and when a specific alert has been generated for a patient.

We will see an example of this later in the paper.

We used a document-based database to avoid normalizing our

ontology and HL7-CDA documents into a relational table in

order to store the documents as a whole.

Alert Management Strategy Language

In this section, we discuss AMSL, which is formalized using

an OWL ontology. Instead of describing the ontology struc-

ture, we discuss the grammar of AMSL in the grammar dis-

cussed in this section, where [] represents an optional element,

* represent an element that can be repeated from 0 to n num-

ber of times, and terminals are put between double quotes. An

alert management strategy is represented by a sextuple:

Alert � ([AGSName], AlertName, [LifeCycle],

[AlertConfig], PatientID*, UserID*).

UserID and PatientID show the list of users and patients that

use this strategy for this alert. AlertConfig and LifeCycle are

discussed in the rest of this section. AGSName names the AGS

that is the source of the generated alert.

LifeCycle

LifeCycle represents the lifecycle of alerts and is defined as

follows:

• LifeCycle � ([CfounterConfig], [SeverityConfig],

[ActivationExpression], [InactivationExpression]).

CounterConfig of a LifeCycle defines a counter that represents

the number of times an alert has been generated for a patient.

• CounterConfig � ([ResetDuration],

[DurationBeforeIncrease]).

Alerts that are too old are deemed to be irrelevant, and hence

should not be considered in the counter of that alert. The logic

is as follows: if the time when the alert was last generated is

more than ResetDuration, the counter for that alert is set to

zero. Likewise, alerts that are generated too close to the previ-

ous one may be irrelevant as well. To account for this situa-

tion, if the duration between the last time the counter was in-

cremented and the generation of the current alert is less than

DurationBeforeIncrease, the counter will not be increased. As

we will describe later, this counter is used in the calculation of

severity and evaluation of activation and inactivation condi-

tions.

• SeverityConfig� ([MinSeverity], [MaxSeverity],

[NumOfSteps]).

Severity of an alert during its lifecycle may change based on

its counter number. Severity changes from MinSeverity to

MaxSeverity in NumOfSteps steps as the counter increases.

For instance, if the severity configuration is (0,1,10), severity

of alert will linearly increase from 0 to 1 in 10 steps.

Figure 1 – Our Alert Management Framework

B. Jafarpour et al. / INITIATE: An Intelligent Adaptive Alert Environment286

To avoid alert fatigue, an alert generated for a patient can be

suppressed until the alert (or the patient) meets certain criteria.

Until these criteria have not been met, the alert will not be

activated (i.e. notified to the user). As an example, when a

patient enters a high value for the blood pressure it will lead to

generation of an alert. However, one high blood pressure val-

ue does not warrant immediate attention, as it may be a mis-

reading or inaccurate measurement, hence such an alert can be

suppressed, and only high blood pressure alerts that are gener-

ated within a specific time span may need medical attention.

Another mechanism to avoid alert fatigue is to inactivate

alerts that are not relevant anymore. An alert may be deemed

irrelevant because its purpose has been accomplished. For

instance, an active alert “Warfarin is recommended” can au-

tomatically become inactivated (i.e. hidden from user) when

the patient is prescribed Warfarin. AME uses

ActivationExpression and InactivationExpression in order to

activate or inactivate an alert. An expression is defined as fol-

lows.

• Expression � Condition | (Expression | Condition,

Operator, Expression | Condition).

• Operator � “or” | “and” .

Several types of conditions based on medications of a patient,

lab test results, counter of the generated alert, or its severity

may be defined:

• Condition � CounterCondition |

MedicationCondition | SeverityCondition |

LabResultCondition.

A CounterCondition is defined as follows:

• CounterCondition � (Comparator, Threshold).

• Comparator � “<” | “>” | “=” | “<=” | “>=”.

Activation and inactivation of alerts may be based on their

counter. For instance counter condition {“Comparator” : “>” ,

“Threshold” : 5} will be satisfied for a condition when its

counter is 6 or greater.

• SeverityCondition � (Comparator, Threshold).

As we discussed previously, severity of a condition may

change as the counter of the alert is changing. For instance,

the severity condition (<, 0.5) is satisfied if severity of the

generated alert is less than 0.5.

• MedicationCondition � (MedStatus | DosageChange

| (Comparator, Threshold), MedicationName |

MedicationCategory) .

• MedStatus � “active” | “onHold”.

We can define conditions based on medications that exist in

the health record of the patient. For instance, we can define a

medication condition that is satisfied when a specific medica-

tion is on hold. Upon satisfaction of this condition based on

patient record, the corresponding alert will be inactivated and

removed from the list of active alerts shown to the user.

• LabTestCondition � (“existence” | (Comparator,

threshold, unit) | TimesUpperLimit), labTestName.

Conditions based on lab test information of patients can also

be defined. This type of condition can check existence of a

specific lab test and whether its result is less or more than a

specific threshold. The TimesUpperLimit value shows how

many times value of the lab test result should be greater than

the upper normal limit so that the corresponding condition is

satisfied. For instance, {“existence”, “labTestName” : “TSH”}

will be satisfied if a TSH test result is present in the electronic

medical record of the patient.

AlertConfig

AlertConfig represents how alerts are communicated with the

user and aggregated in our framework. Receiving several

alerts in one communication can potentially reduce the alert

fatigue as relevant alerts are communicated and attended to-

gether.

• AlertConfig� (CommunicationMedium,

[AggregationConfig])

• CommunicationMedium � “SMS” | “e-mail” | “web-

dashboard”.

• AggregationConfig � (“non-aggregatable” |

(“aggregatable”, maxWait4Aggregation)).

CommunicationMedium represents the medium of communi-

cation for the generated alert. Alerts sent through a common

communication medium can be aggregated if they are

“aggregatable”. MaxWaitForAggregation shows the maxi-

mum amount of time that sending a message can be delayed

so that it can be aggregated with other messages. We will see

an example of AlertConfig and alert aggregation in the next

section.

Alert Management Engine (AME)

AME exposes RESTful web services that can be used by AGS

to submit their generated alerts. Each incoming alert is a quad-

ruple representing the AGS that has generated the alert, pa-

tient ID, the generated alert, and its time stamp. Incoming

alerts will be used to update the corresponding JSON docu-

ments in CouchDB that represent the history and status of that

alert-patient-user combination. In the rest of this section, we

describe components and capabilities of AME.

Alert Management Algorithm

Upon receiving and incoming alert by AME, the following

steps are performed in order to manage an alert:

1. Update alert’s time stamps in CouchDB.

2. Update the alert’s counter based on the time stamps.

3. Update alert’s severity based on the counter.

4. Evaluate conditions.

5. Evaluate expressions based on conditions.

6. Alter state of alerts based on satisfaction of Inactivation

and Activation Expressions.

7. Perform aggregation if possible.

HL7-CDA Parser

Medication and lab test conditions are evaluated based on

patients’ records. To connect to EMR, we assume patient rec-

ords are received in Clinical Document Architecture (CDA)

documents that is an XML based HL7 standard. HL7-CDA

documents represent a snapshot of the patients’ record at the

time of creation. HL7-CDA documents are transformed to

JSON and stored in CouchDB. HL7-CDA parser uses the Java

JSON library to evaluate medication and lab test conditions.

AME uses these evaluation results to calculate satisfaction of

medication and lab test results conditions.

Adaptability and Personalization

We enable personalization in our framework by allowing each

user-patient combination to have a separate configuration for

each alert. Adaptability enables an alert management engine

to tune its parameters in order to fit the needs of a specific

user. Existing AGS provide this capability by enabling users

to modify parts of the alert generation rules such as the

B. Jafarpour et al. / INITIATE: An Intelligent Adaptive Alert Environment 287

threshold for the blood pressure alert rules. Tuning AGS rules

can be time-consuming and requires extensive knowledge of

the AGS domain. We propose a mechanism to provide adapt-

ability based on user feedback. Users of AME can provide

two types of feedback: (1) an alert is being activated too fre-

quently for a patient, and (2) an alert is being activated less

frequently than necessary. This feedback can be used to tune

the alert lifecycle parameters accordingly in the following two

ways:

(a) Based on the received feedback, parameters that are re-

sponsible for the activation frequency of the alert are

multiplied by a pre-defined coefficient. For instance, if

the feedback is that an alert is being activated less fre-

quent than necessary, frequency parameters are modified

in the following way: resetDuration *= 1.05,

DurationBeforeIncrease *=0.95, MinSeverity *= 1/0.95,

steps = round (1/0.95 * step). Hence, our alert manage-

ment framework can adapt to users’ needs based on the

received feedback from them.

(b) If the user is knowledgeable about the internal workings

of AME, he can choose a specific lifecycle parameter

such as ResetDuration or MinSeverity to be modified

based on his feedback. As a result, that specific lifecycle

parameter is multiplied by a predefined coefficient. For

instance, if the user indicates that an alert is generated

more often than needed because of ResetDuration param-

eter, this value is multiplied by 0.8 so that the counter is

reset more often leading to less frequent activation of that

alert.

Aggregation

To understand how aggregation is performed, we go through a

simple example. Suppose that two alerts are of the same

AlertConfig as listed below:

{“AlertConfig”: { “Aggregatable” : “yes” ,

 “AggregationMedium” : “e-mail”,

 “maxWait4Aggregation” : “15m”}}

Imagine the following alerts are generated for two different

patients (PatientIDs = 12 and 33) and are supposed to be sent

to a specific physician (UserID = 7):

{“alert”: “Warfarin is recommended”,

 “patientID”: 33, “UserID”: 7, “Status” : “active”

 “DocumentID” : “1eb7ee96b33fa120c89”}

{“alert”: “patient at high risk of bleeding”,

 “patientID”: 12, “UserID”: 7, “Status” : “active”

 “DocumentID” : “9eb9ee96b88fa000c57”}

These two alerts are aggregated by creating the following

document in CouchDB by AME:

{“DocumentType” : “aggregatedAlert”

 “AlertDocumentIDs” : [“9eb9ee96b88fa000c57”,

 “1eb7ee96b33fa120c89”]}

Alert Lifecycle Categories

In order to define the lifecycle of alerts in the IMPACT-AF

project1, we defined 3 general categories of alert lifecycles,

made a template for each category, and fleshed out that tem-

plate for each alert in that category. In the remainder of this

section, we review these categories.

Category1: Cut Off Point Alteration

This category represents the lifecycle of alerts that compare

patient data to a pre-defined cut off value. To avoid alert fa-

1 http://impact-af.ca/

tigue, these alerts can be ignored until that patient’s value

passes an alternative cut off value. As an example, according

to the domain expert, output of the rule “IF bilirubin is great-

er than its upper normal limit THEN patient might have ab-

normal liver function” can be ignored until bilirubin is greater

than two times the upper normal limit:

{“ActivationExpression” :

 {“LabTestCondition” :

 {“ TimesUpperLimit” : 2,

 “ MedicationName” : “bilirubin”}}

Bolded values in the above example can be replaced to repre-

sent lifecycle of other alerts in this category. In the same fash-

ion, different alternative cut off values can be defined for dos-

age of medications

Category2: Medication and Lab Test based Lifecycles

By considering the type and dosage of medications taken by

patients, several irrelevant alerts can be suppressed. As an

example, according to the following rule, a heart rate below

60 bpm is considered abnormal: “If (heart rate < 60) � pa-

tient’s heart rate is abnormal”. However, this alert would be

of less clinical significant if it is not associated with taking a

rate control medication. Filtering low heart rate alerts that are

not accompanied by such a medication will potentially avoid

alert fatigue without compromising patients’ safety or unnec-

essarily interrupting clinicians’ workflow. We define the cor-

responding lifecycle as follows for this purpose:

{“ActivationExpression” :

 {“MedicationConditon” : {“MedStatus” : “active” ,

 “MedicationCategory” : “rate control”}}}

As long as the above expression is not satisfied, alert patient’s

heart rate is abnormal will not be shown to the user. Bolded

values in the above example can be replaced to represent

lifecycle of other alerts in this category. As another example

of this category, to avoid alert fatigue, alert pertaining to the

following rule should be inactivated when patient starts taking

warfarin: “If the patient has CHA2DS2-VASc score >= 2

THEN alert physician that Warfarin is recommended”. To

accommodate this alert fatigue prevention strategy, we define

the lifecycle of the above rule as follows:

{ “InactivationExpression” :

 { “MedicationConditon” :

 {“MedStatus” : “active” ,

 “MedicationName” : “Warfarin”}}}

Category3: Counter and Severity based Lifecycles

Some alerts can be suppressed until they are generated a cer-

tain number of times over a predefined period. For instance,

Canadian guideline for management of Atrial Fibrillation rec-

ommend tailoring dose of heart rate control medications to

bring resting heart rate of a patient to < 100 bpm. The corre-

sponding rule is implemented as follows in the IMPACT-AF

rule engine: “If (heartrate > 100) � patient’s heart rate is

uncontrolled.” Setting 100 as a cut point will probably fire too

frequent alerts if patient is right on the edge. When presented

this matter to the Cardiologist acting as the principal investi-

gator in the IMPACT-AF project, he suggested ignoring this

alert unless the average heart rate is more than 120 bpm over

72 hours with readings recorded at least 12 hours apart. If 24

hours passes and the rule engine does not generates any alerts,

we start counting again. To accommodate this alert fatigue

prevention logic, we defined the lifecycle of this alert as fol-

lows:

{“counterConfig” : {“ResetDuration” : “24h” ,

 “DurationBeforeIncrease” : “12h”},

 “ActivationExpression” : {“CounterCondition” :

”{“Comparator” : “>”, “Threshold” : 5}}}

B. Jafarpour et al. / INITIATE: An Intelligent Adaptive Alert Environment288

Evaluation

To evaluate AMSL, five general practitioners were given a 20

minutes presentation on purpose of this language, its role in

our framework, and several real world examples. Subsequent-

ly, participants were asked to assign an integer score from the

range 1 to 5 (score 1 means that physician does not agree with

the statement at all, and score 5 means that she completely

agrees with the corresponding statement). Table 1 represents

the percentage each score is chosen by the domain expert for

the corresponding statement.

Table 1- AMSL Evaluation Statements and Percentages Each

Score Is Give to each Statement2

Statements
Received Score

1 2 3 4 5

1.Purpose of AML ele-

ments are clear
0% 0% 0% 40% 60%

2. AML is easy to use 0% 0% 20% 60% 20%

3. AML can represent all

aspects of alert fatigue

prevention strategies

0% 40% 20% 20% 20%

4. All concepts in AML

are useful for alert fatigue

prevention

0% 20% 20% 40% 20%

Table 1 shows that majority of the participants find AMSL

clear, easy to use, useful for and capable of representing alert

fatigue prevention strategies. In the second part of the evalua-

tion, we asked a domain expert to design 10 patient scenarios

each composed of a sequence of 15 events making changes to

health record of a patient (e.g., addition of a blood work or

heart rate). Feeding these events to the IMPACT-AF rule en-

gine generated 63 alerts. AME suppressed 34 of these mes-

sages. The remaining 29 alerts were aggregated into 14 atomic

and composite alerts. We asked 5 general physicians to assign

a number from the range 1 to 5 to statements 1, 2 and 3 for

each aggregated alert, suppressed alert, and inactivated alert

respectively. Table 2 represents the percentage that each score

is given to the corresponding statement by domain experts.

Table 2 – AME Evaluation Statements and Percentages Each

Score Is Give to each Statement2

Statements
Received Score

1 2 3 4 5

1. Aggregation is correct 3% 3% 11% 20% 63%

2. Suppression is correct 0% 1% 7% 21% 71%

3. Inactivation is correct 0% 0% 6% 4% 90%

Table 2 shows that most of the aggregations, suppression, and

inactivation of messages have been performed successfully by

AME according to the participants.

Conclusion

In this paper, we proposed a novel alert management frame-

work that introduces unique features, such as: (1) a counter

that filters effects of alerts that are too old or too new to be

relevant, (2) alert severities that change by time, (3) possibil-

2 Score 1 means that physician does not agree with the

corresponding statement at all and score 5 means that he completely

agrees with it

ity of defining conditions related to patients medications and

lab test results, (4) adaptability based on users’ feedback, (5)

centralized management of alerts in case several AGS are

generating alerts concurrently, (6) aggregation of alerts (pos-

sibly from different AGS) to reduce the number of alerts

shown to the user, and (7) capturing communication medium

information.

Moreover, our review of the literature shows that most of the

alert management strategies are implemented for rule based

decision support systems. Since our alert management frame-

work is AGS dependent and does not make any assumptions

regarding alert generation mechanism, it can be used to avoid

alert fatigue in a variety of clinical decision support systems

that use alternative technologies, such as neural networks or

Bayesian belief networks.

An interesting future work is to explore the effects of alert

management in general, adaptation, and personalization of

alerts, in particular on patients’ safety. For instance, in cases

where physicians are heavily reliant on specific alerts for pa-

tients’ safety, unpredictability of alerts due to varying parame-

ters may potentially have perilous effects. In our framework,

we defined a minimum severity to avoid this scenario. Other

potentially dangerous scenarios should be identified and taken

into consideration.

Acknowledgement

This research is supported by a research grant from Bayer

Healthcare for the IMPACT-AF project

References

[1] McCoy AB, Thomas EJ, Krousel-Wood M, and Sittig DF.

Clinical Decision Support Alert Appropriateness: A Re-

view and Proposal for Improvement. Ochsner J . Ochsner

Clinic Foundation 2014: 14(2): 195–202.

[2] Dolin RH, Alschuler L, Boyer S, Beebe C, Behlen FM,

Biron P V, et al. HL7 clinical document architecture, re-

lease 2. J Am Med Informatics Assoc 2006; 13(1): 30–9.

[3] Graham KC, and Cvach M. Monitor alarm fatigue: stand-

ardizing use of physiological monitors and decreasing nui-

sance alarms. Am J Crit Care 2010: 19(1): 28–34.

[4] Van der Sijs H, Aarts J, Vulto A, and Berg M. Overriding

of drug safety alerts in computerized physician order en-

try. J Am Med Inform Assoc 2006: 13(2): 138–47.

[5] Imhoff M, Kuhls S, Gather U, and Fried R. Smart alarms

from medical devices in the OR and ICU. Best Pract Res

Clin Anaesthesiol 2009: 23(1): 39–50.

[6] Klimov D, and Shahar Y. iALARM: An Intelligent Alert

Language for Activation, Response, and Monitoring of

Medical Alerts. In: Riaño D, Lenz R, Miksch S, Peleg M,

Reichert M, ten Teije A, eds. Process Support and

Knowledge Representation in Health Care SE - 10.

Springer International Publishing, 2013; pp. 128–42.

Address for correspondence

Syed Sibte Raza Abidi, NICHE Research Group, Faculty of Comput-

er Science, Dalhousie University, E-mail: ssrabidi@dal.ca

B. Jafarpour et al. / INITIATE: An Intelligent Adaptive Alert Environment 289

