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Abstract 

Exposure to a large volume of alerts generated by medical 

Alert Generating Systems (AGS) such as drug-drug interac-

tion softwares or clinical decision support systems over-

whelms users and causes alert fatigue in them. Some of alert 

fatigue effects are ignoring crucial alerts and longer response 

times. A common approach to avoid alert fatigue is to devise 

mechanisms in AGS to stop them from generating alerts that 

are deemed irrelevant. In this paper, we present a novel 

framework called INITIATE: an INtellIgent adapTIve AlerT 

Environment to avoid alert fatigue by managing alerts gener-

ated by one or more AGS. We have identified and categories 

the lifecycle of different alerts and have developed alert man-

agement logic as per the alerts’ lifecycle. Our framework in-

corporates an ontology that represents the alert management 

strategy and an alert management engine that executes this 

strategy. Our alert management framework offers the follow-

ing features: (1) Adaptability based on users’ feedback; (2) 

Personalization and aggregation of messages; and (3) Con-

nection to Electronic Medical Records by implementing a 

HL7 Clinical Document Architecture parser.  
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Introduction 

In recent years, medical Alert Generating Systems (AGS), 

such as vital signs monitoring devices, drug-drug interaction 

systems, and clinical decision support systems, have become 

prevalent in health-care environments. Extensive exposure to 

a large volume of alerts, especially irrelevant alerts, over-

whelms users of these systems and causes alert fatigue. Alert 

fatigue leads to ignoring vital alerts, longer response times, 

anxiety in healthcare professionals and incorrect decisions [1]. 

Due to these undesirable effects, several attempts have been 

made to address the issue of alert fatigue. Existing approaches 

can be classified under two general categories: (a) Suppress-

ing alerts: the rules generating alerts in AGS are modified so 

that irrelevant alerts are generated less frequently. For in-

stance, in drug-drug interaction systems, if route of admin-

istration is considered in the head of rule, several alerts per-

taining to nonexistent interactions will be avoided. In this ap-

proach, since the alert management strategy is implemented in 

the AGS, it cannot be reused in other AGS. Moreover, this 

approach is not readily applicable to situations where several 

AGS are operating concurrently; and (b) Managing alerts: in 

this approach, an alert management strategy is defined for 

each type of alert. An alert management engine monitors the 

generated alerts by the AGS and manages their lifecycles 

based on their management strategy. Hence, alert fatigue is 

prevented by less frequent and smarter generation of alerts as 

they can only be raised when they are in critical stages of their 

lifecycle and certain conditions are met. Since alert manage-

ment is performed externally, this alert management strategy 

can scaled across multiple concurrent AGS.  

In this paper, we present a novel alert management framework 

featuring an Alert Management Strategy Language (AMSL) 

represented as a Web Ontology Language (OWL) ontology; 

and, coupled with an Alert Management Engine (AME) that 

executes the alert management strategy based on patient in-

formation accessible from a Health Level 7 (HL7) compliant 

Electronic Medical Records (EMR) using the Clinical Docu-

ment Architecture (HL7-CDA [2]). We have identified and 

categorized the lifecycle of different alerts and have devel-

oped alert management logic as per the alerts’ lifecycle. Our 

framework implements a set of unique features to address 

alerts fatigue, such as a smart alert counter that filters out ir-

relevant alerts based on their time stamps, alert notification 

adaptability based on users’ feedback, aggregation of alerts to 

a unified alert, responding to the alert delivery medium and 

possibility of connecting to commercial EMR systems. We 

leverage semantic web technologies to represent the alerts and 

to manage them.  

Related Work 

Approaches to avoid alert fatigue can be categorized into three 

categories. In the first approach, the underlying rules generat-

ing the alerts are modified to limit the generation of irrele-

vant/repetitive alerts or to delay the notification of the alerts 

until a point that the alert becomes critical. For instance, in 

vital signs monitoring devices, generation of an alert regard-

ing high heart rate can be delayed until a certain amount of 

time has passed since the heart rate has been more than a pre-

defined threshold [3]. In another example, Rule1 that repre-

sents theophylline–cimetidine interaction in a drug-drug inter-

action system is modified in terms of Modified_Rule1 so that 

route of administration is taken into consideration to make the 

rule fire less frequently and more accurately [4]:  

Rule1: If (theophylline and cimetidine)� Alert (Name: theo-

phylline –cimetidine, Message: “….”) 

Modified_Rule1: If (theophylline and (oral cimetidine)� 

Alert (Name: theophylline –cimetidine, Message: “…”) 

The approach to modify alert generation rules to address alert 

fatigue has the following limitations: (1) the alert generation 

logic is encoded within the rules, and hence, modifications to 

the rules is local to the AGS and it cannot be reused by other 

AGS; and (2) if several sources of alerts exist, each AGS rule 

set needs to be modified which may eventually lead to incon-

sistencies across the multiple alert generation rules.   
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The second approach to address alert fatigue is to allow the 

AGS to generate the alerts, but subsequently filter the irrele-

vant alerts using an auxiliary alert management engine. To 

filter irrelevant alerts, domain experts’ knowledge regarding 

relevancy of alerts is captured in terms of a classifier. In this 

approach, AGS users tag the alerts, as either relevant or irrel-

evant, in a normal no alert fatigue prevention setting. These 

tags are, then, used by machine learning algorithms to train a 

classifier to determine if an alert should be suppressed or pre-

sented to the user [5]. Disadvantage of this approach is the 

need for a large vole of training data that cover the entire 

breath of the alerts in different clinical scenarios, and the fact 

that the decision logic of such classifiers cannot be interpreted 

by healthcare professionals.  

The third approach to avoid alert fatigue is to capture domain 

experts’ knowledge in terms of an alert management language 

and represent the lifecycle of an alert—i.e. describing when 

and how often an alert should be shown to the user. Klimov et 

al. [6] have defined a comprehensive language to define alert 

lifecycles.  

In our work, we pursue the third approach as it allows an ex-

plicit description of alerts and their lifecycles, which can be 

used to develop generic AGS. In comparison to Klimov et al. 

[6], our approach is different in the following ways: we define 

the concept of a counter that filters the alerts based on their 

currency—i.e. either the alerts are deemed too old to be rele-

vant or are regarded as too soon to the previous alert in order 

for it to be meaningful. We also enhanced our framework by 

adding a set of desirable features such as adaptability based on 

user feedback, aggregation of messages, consistent alert man-

agement framework across several AGS operating concurrent-

ly, and connecting to EMR to be able to use patient infor-

mation in alert lifecycle definition. 

INITIATE: an INtellIgent adapTIve AlerT En-

vironment 

Our alert management framework shown in Figure 1 compris-

es the following components: 

 (1) An OWL ontology that represent our Alert Management 

Strategy Language (AMSL).  

(2) Alert Management Engine (AME) that exposes RESTful 

web services for AGS to submit their generated alerts. This 

engine manages alerts based on the alert management 

knowledge encapsulated in an instantiation of the AMSL. To 

interpret the expressions that make use of lab test result and 

medication conditions, this engine contains an HL7-CDA par-

ser that evaluates validity of expressions such as allopurinol 

on hold and Synthroid dosage > 100mg, which are represent-

able in AMSL. 

(3) CouchDB that is a NoSQL (JSON document based) data-

base storing the following items: 

a. HL7-CDA documents each representing a patient medical 

record. 

b. Instantiation of the AMSL ontology stored as a 

RDF/JSON document that represents the lifecycle of 

alerts generated by the connected AGS. 

c. Alert Status: each alert status represents how many times 

and when a specific alert has been generated for a patient. 

We will see an example of this later in the paper. 

We used a document-based database to avoid normalizing our 

ontology and HL7-CDA documents into a relational table in 

order to store the documents as a whole.  

Alert Management Strategy Language 

In this section, we discuss AMSL, which is formalized using 

an OWL ontology. Instead of describing the ontology struc-

ture, we discuss the grammar of AMSL in the grammar dis-

cussed in this section, where [] represents an optional element, 

* represent an element that can be repeated from 0 to n num-

ber of times, and terminals are put between double quotes. An 

alert management strategy is represented by a sextuple: 

Alert � ([AGSName], AlertName, [LifeCycle], 

[AlertConfig], PatientID*, UserID*). 

UserID and PatientID show the list of users and patients that 

use this strategy for this alert. AlertConfig and LifeCycle are 

discussed in the rest of this section. AGSName names the AGS 

that is the source of the generated alert. 

LifeCycle 

LifeCycle represents the lifecycle of alerts and is defined as 

follows:  

• LifeCycle � ([CfounterConfig], [SeverityConfig], 

[ActivationExpression], [InactivationExpression]). 

CounterConfig of a LifeCycle defines a counter that represents 

the number of times an alert has been generated for a patient. 

• CounterConfig � ([ResetDuration], 

[DurationBeforeIncrease]). 

Alerts that are too old are deemed to be irrelevant, and hence 

should not be considered in the counter of that alert. The logic 

is as follows: if the time when the alert was last generated is 

more than ResetDuration, the counter for that alert is set to 

zero. Likewise, alerts that are generated too close to the previ-

ous one may be irrelevant as well. To account for this situa-

tion, if the duration between the last time the counter was in-

cremented and the generation of the current alert is less than 

DurationBeforeIncrease, the counter will not be increased. As 

we will describe later, this counter is used in the calculation of 

severity and evaluation of activation and inactivation condi-

tions. 

• SeverityConfig� ([MinSeverity], [MaxSeverity], 

[NumOfSteps]). 

Severity of an alert during its lifecycle may change based on 

its counter number. Severity changes from MinSeverity to 

MaxSeverity in NumOfSteps steps as the counter increases. 

For instance, if the severity configuration is (0,1,10), severity 

of alert will linearly increase from 0 to 1 in 10 steps. 

Figure 1 – Our Alert Management Framework 
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To avoid alert fatigue, an alert generated for a patient can be 

suppressed until the alert (or the patient) meets certain criteria. 

Until these criteria have not been met, the alert will not be 

activated (i.e. notified to the user). As an example, when a 

patient enters a high value for the blood pressure it will lead to 

generation of an alert. However, one high blood pressure val-

ue does not warrant immediate attention, as it may be a mis-

reading or inaccurate measurement, hence such an alert can be 

suppressed, and only high blood pressure alerts that are gener-

ated within a specific time span may need medical attention. 

Another mechanism to avoid alert fatigue is to inactivate 

alerts that are not relevant anymore. An alert may be deemed 

irrelevant because its purpose has been accomplished. For 

instance, an active alert “Warfarin is recommended” can au-

tomatically become inactivated (i.e. hidden from user) when 

the patient is prescribed Warfarin. AME uses 

ActivationExpression and InactivationExpression in order to 

activate or inactivate an alert. An expression is defined as fol-

lows.  

• Expression � Condition | (Expression | Condition, 

Operator, Expression | Condition). 

• Operator � “or” | “and” . 

Several types of conditions based on medications of a patient, 

lab test results, counter of the generated alert, or its severity 

may be defined: 

• Condition � CounterCondition | 

MedicationCondition | SeverityCondition | 

LabResultCondition. 

A CounterCondition is defined as follows: 

• CounterCondition � (Comparator, Threshold ). 

• Comparator � “<” | “>” | “=” | “<=” | “>=”. 

Activation and inactivation of alerts may be based on their 

counter. For instance counter condition {“Comparator” : “>” , 

“Threshold” : 5} will be satisfied for a condition when its 

counter is 6 or greater. 

• SeverityCondition � (Comparator, Threshold). 

As we discussed previously, severity of a condition may 

change as the counter of the alert is changing. For instance, 

the severity condition (<, 0.5) is satisfied if severity of the 

generated alert is less than 0.5.  

• MedicationCondition � (MedStatus | DosageChange 

| (Comparator, Threshold ), MedicationName | 

MedicationCategory) . 

• MedStatus � “active” | “onHold”. 

We can define conditions based on medications that exist in 

the health record of the patient. For instance, we can define a 

medication condition that is satisfied when a specific medica-

tion is on hold. Upon satisfaction of this condition based on 

patient record, the corresponding alert will be inactivated and 

removed from the list of active alerts shown to the user. 

• LabTestCondition � (“existence” | (Comparator, 

threshold, unit) | TimesUpperLimit ), labTestName. 

Conditions based on lab test information of patients can also 

be defined. This type of condition can check existence of a 

specific lab test and whether its result is less or more than a 

specific threshold. The TimesUpperLimit value shows how 

many times value of the lab test result should be greater than 

the upper normal limit so that the corresponding condition is 

satisfied. For instance, {“existence”, “labTestName” : “TSH”} 

will be satisfied if a TSH test result is present in the electronic 

medical record of the patient.  

AlertConfig 

AlertConfig represents how alerts are communicated with the 

user and aggregated in our framework. Receiving several 

alerts in one communication can potentially reduce the alert 

fatigue as relevant alerts are communicated and attended to-

gether. 

• AlertConfig� ( CommunicationMedium, 

[AggregationConfig])  

• CommunicationMedium � “SMS” | “e-mail” | “web-

dashboard”. 

• AggregationConfig � (“non-aggregatable” | 

(“aggregatable”, maxWait4Aggregation)). 

CommunicationMedium represents the medium of communi-

cation for the generated alert. Alerts sent through a common 

communication medium can be aggregated if they are 

“aggregatable”. MaxWaitForAggregation shows the maxi-

mum amount of time that sending a message can be delayed 

so that it can be aggregated with other messages. We will see 

an example of AlertConfig and alert aggregation in the next 

section. 

Alert Management Engine (AME) 

AME exposes RESTful web services that can be used by AGS 

to submit their generated alerts. Each incoming alert is a quad-

ruple representing the AGS that has generated the alert, pa-

tient ID, the generated alert, and its time stamp. Incoming 

alerts will be used to update the corresponding JSON docu-

ments in CouchDB that represent the history and status of that 

alert-patient-user combination. In the rest of this section, we 

describe components and capabilities of AME. 

Alert Management Algorithm 

Upon receiving and incoming alert by AME, the following 

steps are performed in order to manage an alert:  

1. Update alert’s time stamps in CouchDB. 

2. Update the alert’s counter based on the time stamps. 

3. Update alert’s severity based on the counter. 

4. Evaluate conditions. 

5. Evaluate expressions based on conditions. 

6. Alter state of alerts based on satisfaction of Inactivation 

and Activation Expressions. 

7. Perform aggregation if possible. 

HL7-CDA Parser 

Medication and lab test conditions are evaluated based on 

patients’ records. To connect to EMR, we assume patient rec-

ords are received in Clinical Document Architecture (CDA) 

documents that is an XML based HL7 standard. HL7-CDA 

documents represent a snapshot of the patients’ record at the 

time of creation. HL7-CDA documents are transformed to 

JSON and stored in CouchDB. HL7-CDA parser uses the Java 

JSON library to evaluate medication and lab test conditions. 

AME uses these evaluation results to calculate satisfaction of 

medication and lab test results conditions. 

Adaptability and Personalization 

We enable personalization in our framework by allowing each 

user-patient combination to have a separate configuration for 

each alert. Adaptability enables an alert management engine 

to tune its parameters in order to fit the needs of a specific 

user. Existing AGS provide this capability by enabling users 

to modify parts of the alert generation rules such as the 
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threshold for the blood pressure alert rules. Tuning AGS rules 

can be time-consuming and requires extensive knowledge of 

the AGS domain. We propose a mechanism to provide adapt-

ability based on user feedback. Users of AME can provide 

two types of feedback: (1) an alert is being activated too fre-

quently for a patient, and (2) an alert is being activated less 

frequently than necessary. This feedback can be used to tune 

the alert lifecycle parameters accordingly in the following two 

ways:  

(a) Based on the received feedback, parameters that are re-

sponsible for the activation frequency of the alert are 

multiplied by a pre-defined coefficient. For instance, if 

the feedback is that an alert is being activated less fre-

quent than necessary, frequency parameters are modified 

in the following way: resetDuration *= 1.05, 

DurationBeforeIncrease *=0.95, MinSeverity *= 1/0.95, 

steps = round (1/0.95 * step). Hence, our alert manage-

ment framework can adapt to users’ needs based on the 

received feedback from them.  

(b) If the user is knowledgeable about the internal workings 

of AME, he can choose a specific lifecycle parameter 

such as ResetDuration or MinSeverity to be modified 

based on his feedback. As a result, that specific lifecycle 

parameter is multiplied by a predefined coefficient. For 

instance, if the user indicates that an alert is generated 

more often than needed because of ResetDuration param-

eter, this value is multiplied by 0.8 so that the counter is 

reset more often leading to less frequent activation of that 

alert. 

Aggregation 

To understand how aggregation is performed, we go through a 

simple example. Suppose that two alerts are of the same 

AlertConfig as listed below: 

{“AlertConfig”: { “Aggregatable” : “yes” ,  

   “AggregationMedium” : “e-mail”, 

   “maxWait4Aggregation” : “15m”}} 

Imagine the following alerts are generated for two different 

patients (PatientIDs = 12 and 33) and are supposed to be sent 

to a specific physician (UserID = 7):  

{“alert”: “Warfarin is recommended”, 

 “patientID”: 33, “UserID”: 7, “Status” : “active” 

 “DocumentID” : “1eb7ee96b33fa120c89”} 

{“alert”: “patient at high risk of bleeding”, 

 “patientID”: 12, “UserID”: 7, “Status” : “active” 

 “DocumentID” : “9eb9ee96b88fa000c57”} 

These two alerts are aggregated by creating the following 

document in CouchDB by AME: 

{“DocumentType” : “aggregatedAlert” 

 “AlertDocumentIDs” : [“9eb9ee96b88fa000c57”, 

                       “1eb7ee96b33fa120c89”]} 

Alert Lifecycle Categories 

In order to define the lifecycle of alerts in the IMPACT-AF 

project1, we defined 3 general categories of alert lifecycles, 

made a template for each category, and fleshed out that tem-

plate for each alert in that category. In the remainder of this 

section, we review these categories. 

Category1: Cut Off Point Alteration 

This category represents the lifecycle of alerts that compare 

patient data to a pre-defined cut off value. To avoid alert fa-

                                                           
1 http://impact-af.ca/ 

tigue, these alerts can be ignored until that patient’s value 

passes an alternative cut off value. As an example, according 

to the domain expert, output of the rule “IF bilirubin is great-

er than its upper normal limit THEN patient might have ab-

normal liver function” can be ignored until bilirubin is greater 

than two times the upper normal limit: 

{“ActivationExpression” : 

  {“LabTestCondition” :   

      {“ TimesUpperLimit” : 2, 

       “ MedicationName” : “bilirubin”}} 

Bolded values in the above example can be replaced to repre-

sent lifecycle of other alerts in this category. In the same fash-

ion, different alternative cut off values can be defined for dos-

age of medications  

Category2: Medication and Lab Test based Lifecycles 

By considering the type and dosage of medications taken by 

patients, several irrelevant alerts can be suppressed. As an 

example, according to the following rule, a heart rate below 

60 bpm is considered abnormal: “If (heart rate < 60) � pa-

tient’s heart rate is abnormal”. However, this alert would be 

of less clinical significant if it is not associated with taking a 

rate control medication. Filtering low heart rate alerts that are 

not accompanied by such a medication will potentially avoid 

alert fatigue without compromising patients’ safety or unnec-

essarily interrupting clinicians’ workflow. We define the cor-

responding lifecycle as follows for this purpose:  

{“ActivationExpression” :  

  {“MedicationConditon” : {“MedStatus”  : “active” ,  

        “MedicationCategory” : “rate control”}}} 

As long as the above expression is not satisfied, alert patient’s 

heart rate is abnormal will not be shown to the user. Bolded 

values in the above example can be replaced to represent 

lifecycle of other alerts in this category. As another example 

of this category, to avoid alert fatigue, alert pertaining to the 

following rule should be inactivated when patient starts taking 

warfarin: “If the patient has CHA2DS2-VASc score >= 2 

THEN alert physician that Warfarin is recommended”. To 

accommodate this alert fatigue prevention strategy, we define 

the lifecycle of the above rule as follows: 

{ “InactivationExpression” :  

  { “MedicationConditon” :  

    {“MedStatus”  : “active” ,  

       “MedicationName” : “Warfarin”}}} 

Category3: Counter and Severity based Lifecycles 

Some alerts can be suppressed until they are generated a cer-

tain number of times over a predefined period. For instance, 

Canadian guideline for management of Atrial Fibrillation rec-

ommend tailoring dose of heart rate control medications to 

bring resting heart rate of a patient to < 100 bpm. The corre-

sponding rule is implemented as follows in the IMPACT-AF 

rule engine: “If (heartrate > 100) � patient’s heart rate is 

uncontrolled.” Setting 100 as a cut point will probably fire too 

frequent alerts if patient is right on the edge. When presented 

this matter to the Cardiologist acting as the principal investi-

gator in the IMPACT-AF project, he suggested ignoring this 

alert unless the average heart rate is more than 120 bpm over 

72 hours with readings recorded at least 12 hours apart. If 24 

hours passes and the rule engine does not generates any alerts, 

we start counting again. To accommodate this alert fatigue 

prevention logic, we defined the lifecycle of this alert as fol-

lows:  

{“counterConfig” :  {“ResetDuration” : “24h” ,  

  “DurationBeforeIncrease” : “12h”}, 

  “ActivationExpression” :  {“CounterCondition” :  

”{“Comparator” : “>”, “Threshold” : 5}}} 
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Evaluation 

To evaluate AMSL, five general practitioners were given a 20 

minutes presentation on purpose of this language, its role in 

our framework, and several real world examples. Subsequent-

ly, participants were asked to assign an integer score from the 

range 1 to 5 (score 1 means that physician does not agree with 

the statement at all, and score 5 means that she completely 

agrees with the corresponding statement). Table 1 represents 

the percentage each score is chosen by the domain expert for 

the corresponding statement. 

Table 1- AMSL Evaluation Statements and Percentages Each 

Score Is Give to each Statement2 

Statements 
Received Score 

1 2 3 4 5 

1.Purpose of AML ele-

ments are clear 
0% 0% 0% 40% 60%

2. AML is easy to use 0% 0% 20% 60% 20%

3. AML can represent all 

aspects of alert fatigue 

prevention strategies 

0% 40% 20% 20% 20%

4. All concepts in AML 

are useful for alert fatigue 

prevention 

0% 20% 20% 40% 20%

 

Table 1 shows that majority of the participants find AMSL 

clear, easy to use, useful for and capable of representing alert 

fatigue prevention strategies. In the second part of the evalua-

tion, we asked a domain expert to design 10 patient scenarios 

each composed of a sequence of 15 events making changes to 

health record of a patient (e.g., addition of a blood work or 

heart rate). Feeding these events to the IMPACT-AF rule en-

gine generated 63 alerts. AME suppressed 34 of these mes-

sages. The remaining 29 alerts were aggregated into 14 atomic 

and composite alerts. We asked 5 general physicians to assign 

a number from the range 1 to 5 to statements 1, 2 and 3 for 

each aggregated alert, suppressed alert, and inactivated alert 

respectively. Table 2 represents the percentage that each score 

is given to the corresponding statement by domain experts. 

Table 2 – AME Evaluation Statements and Percentages Each 

Score Is Give to each Statement2 

Statements 
Received Score 

1 2 3 4 5 

1. Aggregation is correct 3% 3% 11% 20% 63%

2. Suppression is correct 0% 1% 7% 21% 71%

3. Inactivation is correct 0% 0% 6% 4% 90%

 

Table 2 shows that most of the aggregations, suppression, and 

inactivation of messages have been performed successfully by 

AME according to the participants. 

Conclusion 

In this paper, we proposed a novel alert management frame-

work that introduces unique features, such as: (1) a counter 

that filters effects of alerts that are too old or too new to be 

relevant, (2) alert severities that change by time, (3) possibil-

                                                           
2 Score 1 means that physician does not agree with the 

corresponding statement at all and score 5 means that he completely 

agrees with it 

ity of defining conditions related to patients medications and 

lab test results, (4) adaptability based on users’ feedback, (5) 

centralized management of alerts in case several AGS are 

generating alerts concurrently, (6) aggregation of alerts (pos-

sibly from different AGS) to reduce the number of alerts 

shown to the user, and (7) capturing communication medium 

information.  

Moreover, our review of the literature shows that most of the 

alert management strategies are implemented for rule based 

decision support systems. Since our alert management frame-

work is AGS dependent and does not make any assumptions 

regarding alert generation mechanism, it can be used to avoid 

alert fatigue in a variety of clinical decision support systems 

that use alternative technologies, such as neural networks or 

Bayesian belief networks. 

An interesting future work is to explore the effects of alert 

management in general, adaptation, and personalization of 

alerts, in particular on patients’ safety. For instance, in cases 

where physicians are heavily reliant on specific alerts for pa-

tients’ safety, unpredictability of alerts due to varying parame-

ters may potentially have perilous effects. In our framework, 

we defined a minimum severity to avoid this scenario. Other 

potentially dangerous scenarios should be identified and taken 

into consideration. 
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