
Towards Improving Hypertensive Patients Care:  

Pervasive Monitoring and Diagnosis Support 

Jorge Céspedes
a

 and Cynthia Villalba
a

 

a Facultad Politécnica, Universidad Nacional de Asunción, Paraguay 

 

Abstract 

Hypertension is the most common chronic condition dealt with 

by primary care physicians and other health practitioners. It 

usually has no symptoms, causing a delay in diagnosis. 

Moreover, around 20% of the global population suffers from 

“white-coat syndrome”, which can lead to misdiagnosing 

hypertension. When diagnosed, patients find it difficult to 

constantly monitor their blood pressure to ensure it is within 

acceptable levels. In this work, we propose a pervasive 

solution model for ambulatory monitoring of hypertensive 

patients and for supporting a clinician with the task of 

diagnosing hypertension. It contributes to the selection of 

attributes and techniques for assisting hypertension diagnosis, 

and also to an implementation which dynamically adjusts 

itself to each patient’s average blood pressure. 
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Introduction 

Arterial hypertension (HTN), has been globally recognized as 

the leading chronic disease that causes premature 

cardiovascular mortality and morbidity [1]. If HTN is properly 

controlled, cardiac mortality will decrease 49%, while 

cardiovascular mortality will decrease 62% [1]. Conversely, 

uncontrolled HTN, according to information from the 

Panamerican Health Organization (PAHO), could cause 

terrible health issues, such as myocardial infarction, kidney 

failure, blindness and/or heart failure [2]. Considering the 

above mentioned facts, an early diagnosis of the disease and 

providing mechanisms to maintain blood pressure within 

acceptable levels, is very important. However, there are issues 

that need to be addressed. First of all, at least 20% of the 

world’s population suffers from “white coat syndrome” [4]. In 

the context of HTN, this means that a person’s blood pressure 

readings might be higher in the doctor’s office, but once 

he/she leaves the room, it goes back to normal. Another issue, 

which is opposite of the previous one, is “masked 

hypertension”. It causes normal blood pressure readings in the 

doctor’s office, but readings at home are in the hypertensive 

range [5]. 

Hypertensive patients, find it difficult to constantly monitor 

their blood pressure. In spite of the existence of well tolerated 

effective drugs, these are not enough to maintain blood 

pressure within acceptable levels [6]. It is claimed that around 

20 million patients, will suffer a hypertensive crisis at some 

point of their lives [7]. 

This work presents a pervasive solution model to support 

hypertension diagnosis and provide monitoring of 

hypertensive patients. Supporting diagnosis by automated 

processing of data retrieved from patients could lead to more 

accurate diagnoses, while monitoring hypertensive patients 

could introduce several benefits. First, the patient is notified as 

his/her blood pressure starts to become abnormal. Second, 

every reading is stored in a central repository, allowing the 

clinician to view behavior of the blood pressure of any given 

patient and whether medication needs to be adjusted or not. 

Finally, the set of data in the repository, could be used in other 

research works.  

This work is organized as follows. The next section presents 

recent work related to assisted diagnosis and patient 

monitoring systems. Then, a description of the proposed 

solution model is presented. Next, we present the methods 

used to perform tests and results obtained with them. Finally, a 

discussion of the results and a conclusion of this work is 

presented. 

Recent Work 

Assisted Diagnosis Systems 

Most systems performing assisted diagnosis of hypertension 

use machine learning techniques, extracting features from 

available patient data or from available laboratory test results 

[8-11]. Whereas, others use techniques different from machine 

learning [12, 13], which we refer to as non-machine learning.  

Most of the works, in the non-machine learning group, ask for 

input from the user, by means of questionnaires or forms the 

patients need to fill in. 

Currently, clinicians could make use of an ambulatory blood 

pressure monitoring (ABPM) device to diagnose hypertension 

when white-coat syndrome is suspected. It is worn by patients 

for 24 hours and once completed, it is connected to a computer 

that prepares a report for the patient [14]. A disadvantage of 

this approach is that it doesn’t provide real-time notifications 

as blood pressure starts to become abnormally high, and that 

24 hours might not be a long enough period of time to gather 

relevant data. 

As a final point, we can mention that there are many 

challenges most work doing assisted diagnosis need to 

address, such as features to choose, sources of data to extract 

features from, and deciding whether to use machine learning 

or non-machine learning techniques, since better results might 

be obtained by choosing one or the other. This work tackles 

the challenges related to technique and attribute selection. 

Patient Monitoring Systems 

In this section, we focus on work performing patient 

monitoring by using wireless sensors and a smartphone to 

process data generated by them, that is, work oriented to 

pervasive monitoring. It is worth mentioning, that not only 

works monitoring hypertensive patients are considered.  

There are studies that used specific sensors and machine 

learning to identify patient’s health condition [15, 16]. Others 
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of the patients were sendentary and hypertensive, while 8% 

were hypertensive but non-sedentary. Additionally, 43% of 

them were non-sedentary and healthy, while 29% were 

sedentary and healthy. The test set was divided as follows, 

40% of patients suffered from hypertension and 60% were 

healthy. We used an online learning algorithm consisting of a 

variation of gradient descent, since most work dedicated to 

assisting diagnoses choose online learning algorithms to 

generate suggestions [31]. 

In order to validate the assisted diagnosis systems, a confusion 

matrix was built. A confusion matrix is a table of at least size 

m by m, where an entry, CM(i, j) indicates the number of 

cases i labelled by the system as class j [29]. For the system to 

have good accuracy, values along the diagonal would be far 

from zero, while the rest would be close to zero. 

The following measures were taken into account [29]: 

1. Sensitivity: refers to how well the system can identify a 

hypertensive patient (True Positive / Positive). 

2. Specificity: refers to how well the system can identify 

a healthy patient (True Negative / Negative). 

3. Precision: used to access percentage of hypertensive 

patients that are actually hypertensive (True Positive / 

(True Positive + False Positive)). 

4. Accuracy: It is a function of sensitivity and specificity 

(Sensitivity * Positive / (positive + negative) + 

Specificity * Negative / (positive + negative)). 

Where: 

• Positive is number of hypertensive patients. 

•  Negative is number of healthy patients.  

• True Positive is number of patients suggested as 

hypertensive that actually are hypertensive. 

• True Negative is number of patients suggested as 

healthy that actually are healthy.  

• False Positive is number of healthy patients suggested 

as hypertensive patients. 

• False Negative is number of patients suggested as 

healthy but actually suffer from hypertension 

Test Method for Monitoring System 

The monitoring system is comprised of two main components, 

a data gathering component and a health condition inference 

component. For testing purposes, simulated blood pressure 

readings were used, that is, the data gathering component did 

not connect to sensors, instead it obtained data from a 

simulator. The simulator starts with a patient’s average SBP 

and DBP values, and then several events are generated, where 

each event would alter a patient’s blood pressure. An event 

could be one of the following: salty food, rough emotions 

(e.g., anger), physical activity, relaxation, and no change. 

Each event, but the last one, causes blood pressure to increase 

or decrease by three levels: low, medium, high. The health 

condition inference component calculated average SBP and 

DBP as new events appeared, using the weighted average 

formula described in the Solution Model section. However, 

since values were simulated and none of them was invalid, 

weighted average and arithmetic median would have lead to 

the same values. 

To perform tests, three fictitious hypertensive patients were 

created and events were generated all day long every 30 

minutes. That is, 48 readings per day with a total of 240 

readings for each patient, since these fictitious patients were 

monitored for five days. Even though blood pressure readings 

were simulated, we expect to test the system with real patients 

and sensors in upcoming phases. 

The purpose of the test was to observe the differences between 

using values adjusted to each patient (i.e. dynamic values) and 

fixed values.  

Results 

Test Results for Assisted Diagnosis System 

In Table 1 we can observe the results obtained after 

performing the test. The system indicates that 10 patients 

suffer from hypertension and 12 patients are healthy. It has a 

false positive rate of three, which means that three patients are 

considered hypertensive even though they are healthy. It does 

not generate any false negatives. It has 100% sensitivity and 

80% specificity, which has been affected by the existence of 

false positives. This also affected the obtained precision, 

which was 77%. Finally, the system has 88% accuracy, which 

is affected by the specificity the system has. 

Table 1  - Values obtained for each measure 

Measure Value 

True Positive 10 

True Negative 12 

False Positive 3 

False Negative 0 

Sensitivity (%) 100 

Specificity (%) 80 

Precision (%) 77 

Accuracy (%) 88 

 

Test Results for Monitoring System 

In Figure 2, we can observe SBP and DBP values for patient 

P1 during a single day, displaying generated alerts. Dashed 

orange and solid red lines represent warning and critical alerts 

for dynamic values, respectively. Whereas, dotted light blue 

and mixed blue lines represent warning and critical alerts for 

fixed values, respectively. 

 

Figure 2 - SBP and DBP values for patient P1 for a day. 

Warning and Critical alerts are shown for both dynamic 

values and fixed values. 

It is important to note that only one critical alert was generated 

when dynamic values were used. Though SBP/DBP values 

higher than the one at the specified time were generated, only 

warning alerts occurred later. This is due to the average blood 

pressure of P1 adjusting itself to a new value. However, this 

might be seen as an incorrect behavior because in practice, 

average blood pressure cannot change in such a short period of 

time. Thus, Figure 2 exposes two important matters to be 

defined when using dynamic values instead of fixed ones, that 

is, the time window to consider blood pressure readings for 
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calculating average blood pressure and the frequency at which 

blood pressure is to be measured. These must be defined so 

that average blood pressure is realistic. 

The results from the tests are displayed in Table 2. We can 

observe a lower number of warning and critical alarms when 

dynamic values are used. 

Table 2– Results for Monitoring System 

Patient Fixed Values  Dynamic Values

 

Warning 

Alarms 

Critical 

Alarms 

Warning 

Alarms 

Critical 

Alarms  

P1 80 

103 

120 

20 

92 

71 

76 3 

P2 57 4 

P3 86 5 

Discussion 

In Table 3, we show the results obtained by work dedicated to 

assisting hypertension diagnosis along with ours. Information 

in the table encourages us to believe that we are on the right 

track since sensitivity and specifity values are greater than 

those obtained by some recent works. However, a comparison 

cannot be made since datasets are different. Our results might 

be improved, perhaps by using larger datasets or by trying 

different attribute combinations. 

Table 3 - Values obtained by others and this proposal 

Measure Su&Wu  Ture et al. 

Hsu et 

al. Proposal 

Sensitivity 46.89% 95.24% -- 100% 

Specificity 73.96% 71.79% -- 80% 

Accuracy 72% -- 92.8% 88% 

The monitoring system obtained results similar to those in 

[21], where the authors showed that fewer alerts are generated 

when values adjusted to patients are used. We expect that, in 

practice, this translates to generating critical alerts only when 

a patient’s current health status needs attention from the 

clinician in charge. 

Conclusion 

This work presented a pervasive solution model to support 

hypertension diagnosis and provide monitoring of 

hypertensive patients. Although, there are many works on 

assisting diagnosis, there are challenges that need to be 

addressed. One of these is the selection of features to be used 

to accomplish the task. This work introduced a feature that 

previously mentioned works had not included, that is, whether 

a patient has sedentary behavior or not. We also contributed to 

the selection of a diagnosis technique, by choosing an online 

learning algorithm different from artificial neural networks 

and support vector machines, which are the most commonly 

adopted techniques by recent works. 

Furthemore, identifying  a patient’s health condition, by using 

values adjusted to himself, allowed the system to generate 

fewer alarms than the case when fixed values were used. In 

the context of hypertension, this is a valid approach, since a 

severe blood pressure elevation might represent a crisis for 

some patients, but it might not be dangerous for someone who 

often has high blood pressure. 

As future work, we expect to try the prototype with real 

patients. That is, to obtain data from the ambulatory blood 

pressure sensor and process them in real time instead of 

simulating readings, since this will allow us to create a 

confusion matrix; and perform an analysis similar to that in 

Test Results for Diagnosis System. We also expect to get 

feedback from doctors and patients to validate the system. 
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